Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Graphical Analysis of PAR and Other Radiometric Variables
3.2. Complete Models Development and Validation
- -
- G1: models that include and (m_1, m_4, and m_5),
- -
- G2: models that do not include sin (α) and simultaneously (m_2, m_3, and m_6),
Models | a | b | c | d | Station | MAE 1 | MBE 1 | RMSE 1 | MPE (%) | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
G1 | m_1 | 0.018 | −0.030 | 0.385 | - | CEDER | 25.683 | 3.242 | 33.425 | −1.795 | 0.995 |
PSA | 28.445 | −6.253 | 36.641 | 1.246 | 0.994 | ||||||
m_4 | 0.028 | −0.029 | 0.373 | −0.008 | CEDER | 25.313 | 2.542 | 33.177 | −1.816 | 0.996 | |
PSA | 28.913 | −6.040 | 37.433 | 1.186 | 0.994 | ||||||
m_5 | 0.019 | −0.030 | 0.380 | 0.004 | CEDER | 25.595 | 2.990 | 33.360 | −1.851 | 0.995 | |
PSA | 28.673 | −6.152 | 36.979 | 1.226 | 0.994 | ||||||
G2 | m_2 | 0.295 | 0.035 | −0.198 | - | CEDER | 108.033 | 6.330 | 145.848 | −16.338 | 0.913 |
PSA | 92.002 | −18.124 | 127.034 | −1.284 | 0.922 | ||||||
m_3 | 0.126 | 0.006 | 0.255 | - | CEDER | 101.927 | 7.143 | 136.499 | −19.155 | 0.923 | |
PSA | 86.357 | −12.325 | 116.862 | −1.599 | 0.935 | ||||||
m_6 | 0.094 | 0.001 | 0.038 | 0.301 | CEDER | 101.762 | 8.770 | 136.903 | −20.294 | 0.923 | |
PSA | 85.478 | −11.117 | 115.844 | −1.799 | 0.936 |
3.3. Comparison between Complete Models and Bibliographic Models
CEDER-CIEMAT | PSA-CIEMAT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Models | MAE 1 | MBE 1 | RMSE 1 | MPE(%) | R2 | MAE 1 | MBE 1 | RMSE 1 | MPE(%) | R2 |
m_1 | 25.6828 | 3.242 | 33.425 | 1.795 | 0.995 | 28.445 | −6.253 | 36.641 | 1.246 | 0.994 |
m_4 | 25.3128 | 2.542 | 33.177 | −1.816 | 0.996 | 28.913 | −6.040 | 37.433 | 1.186 | 0.994 |
m_5 | 25.5951 | 2.990 | 33.360 | −1.851 | 0.995 | 28.673 | −6.152 | 36.979 | 1.226 | 0.994 |
Alados | 110.944 | 110.581 | 136.863 | −15.840 | 0.994 | 116.581 | 5.819 | 53.018 | 1.125 | 0.992 |
Foyo-Moreno | 110.0813 | 109.323 | 150.393 | −12.479 | 0.994 | 124.593 | 123.633 | 166.398 | −10.524 | 0.991 |
Wang | 43.4608 | 36.287 | 53.859 | −8.035 | 0.994 | 40.835 | 27.326 | 56.229 | −2.993 | 0.991 |
Ferrera-Cobos | 136.1521 | 135.026 | 174.649 | −16.660 | 0.994 | 151.318 | 148.399 | 193.599 | −12.384 | 0.991 |
3.4. Comparison between Complete Models and Interval Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | a | b | c | d | e | Station | MPE (%) | MBE 1 | RMSE 1 | R2 |
---|---|---|---|---|---|---|---|---|---|---|
0.189 | 0.109 | - | - | - | CEDER | −69.046 | 151.513 | 356.347 | 0.557 | |
PSA | −12.277 | 6.877 | 232.068 | 0.740 | ||||||
0.007 | 0.372 | - | - | - | CEDER | −2.114 | 10.983 | 35.786 | 0.996 | |
PSA | 1.437 | −1.049 | 44.151 | 0.994 | ||||||
0.318 | −0.204 | - | - | - | CEDER | −17.194 | −1.998 | 147.847 | 0.911 | |
PSA | −1.731 | −25.528 | 128.259 | 0.921 | ||||||
0.128 | 0.256 | - | - | - | CEDER | −19.24 | 5.498 | 136.714 | 0.924 | |
PSA | −1.652 | −13.661 | 116.63 | 0.935 | ||||||
0.018 | −0.030 | 0.385 | - | - | CEDER | −1.795 | 3.242 | 33.425 | 0.995 | |
PSA | 1.246 | −6.253 | 36.641 | 0.994 | ||||||
0.295 | 0.035 | −0.198 | - | - | CEDER | −16.338 | 6.33 | 145.848 | 0.913 | |
PSA | −1.284 | −18.124 | 127.034 | 0.922 | ||||||
0.125 | 0.006 | 0.254 | - | - | CEDER | −19.155 | 7.143 | 136.499 | 0.923 | |
PSA | −1.599 | −12.325 | 116.862 | 0.935 | ||||||
0.025 | 0.353 | −0.014 | - | - | CEDER | −2.15 | 9.442 | 34.877 | 0.996 | |
PSA | 1.296 | −0.789 | 44.92 | 0.993 | ||||||
0.009 | 0.365 | 0.006 | - | - | CEDER | −2.206 | 10.633 | 35.49 | 0.996 | |
PSA | 1.394 | −0.802 | 44.623 | 0.993 | ||||||
0.093 | 0.039 | 0.303 | - | - | CEDER | −20.343 | 8.661 | 136.944 | 0.923 | |
PSA | −1.812 | −11.213 | 115.783 | 0.936 | ||||||
0.028 | −0.029 | 0.373 | −0.008 | - | CEDER | −1.816 | 2.542 | 33.177 | 0.996 | |
PSA | 1.186 | −6.04 | 37.433 | 0.994 | ||||||
0.019 | −0.030 | 0.380 | 0.004 | - | CEDER | −1.851 | 2.99 | 33.36 | 0.995 | |
PSA | 1.226 | −6.152 | 36.979 | 0.994 | ||||||
0.094 | 0.001 | 0.038 | 0.301 | - | CEDER | −20.294 | 8.77 | 136.903 | 0.923 | |
PSA | −1.799 | −11.117 | 115.844 | 0.936 | ||||||
0.073 | 0.373 | −0.072 | −0.087 | - | CEDER | −1.070 | 8.825 | 35.513 | 0.996 | |
PSA | 1.310 | −3.016 | 41 | 0.993 | ||||||
0.056 | −0.025 | 0.383 | −0.044 | −0.053 | CEDER | −1.165 | 3.082 | 33.085 | 0.996 | |
PSA | 1.200 | -6.521 | 36.047 | 0.994 |
Cloudy Skies | Partly Cloudy Skies | Clear Skies | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | a | b | c | d | e | a | b | c | d | e | a | b | c | d | e |
0.068 | 0.021 | 0.218 | −0.001 | 0.311 | −0.022 | ||||||||||
0.003 | 0.378 | −0.003 | 0.400 | 0.045 | 0.321 | ||||||||||
0.143 | −0.067 | 0.275 | −0.124 | 0.291 | 0.027 | ||||||||||
0.077 | 0.171 | 0.157 | 0.182 | 0.287 | 0.014 | ||||||||||
0.002 | 0.001 | 0.377 | 0.006 | −0.021 | 0.402 | 0.051 | −0.042 | 0.351 | |||||||
0.143 | 0.026 | −0.080 | 0.264 | 0.028 | −0.128 | 0.306 | −0.020 | 0.022 | |||||||
0.065 | 0.026 | 0.213 | 0.147 | 0.020 | 0.185 | 0.297 | −0.026 | 0.028 | |||||||
0.012 | 0.376 | −0.009 | 0.025 | 0.366 | −0.019 | 0.045 | 0.318 | 0.014 | |||||||
0.003 | 0.377 | 0.012 | 0.009 | 0.362 | 0.027 | 0.053 | 0.331 | −0.024 | |||||||
0.194 | −0.119 | −0.164 | 0.059 | 0.108 | 0.329 | 0.059 | 0.261 | 0.304 | |||||||
0.012 | 0.002 | 0.374 | −0.010 | 0.023 | −0.016 | 0.377 | −0.013 | 0.051 | −0.041 | 0.350 | 0.003 | ||||
0.002 | 0.001 | 0.372 | 0.015 | 0.013 | −0.016 | 0.374 | 0.020 | 0.052 | −0.041 | 0.353 | −0.005 | ||||
0.180 | 0.026 | −0.118 | −0.118 | 0.063 | 0.012 | 0.096 | 0.315 | 0.026 | −0.049 | 0.319 | 0.394 | ||||
0.053 | 0.375 | −0.051 | −0.132 | 0.026 | 0.367 | −0.020 | −0.002 | 0.087 | 0.395 | −0.091 | −0.133 | ||||
0.053 | 0.001 | 0.374 | −0.051 | −0.129 | 0.019 | −0.016 | 0.376 | −0.008 | 0.008 | 0.058 | −0.040 | 0.364 | −0.016 | −0.025 |
References
- Hindersin, S.; Leupold, M.; Kerner, M.; Hanelt, D. Key Parameters for Outdoor Biomass Production of Scenedesmus Obliquus in Solar Tracked Photobioreactors. J. Appl. Phycol. 2014, 26, 2315–2325. [Google Scholar] [CrossRef]
- Raymond Hunt, E., Jr. Relationship between Woody Biomass and PAR Conversion Efficiency for Estimating Net Primary Production from NDVI. Int. J. Remote Sens. 1994, 15, 1725–1729. [Google Scholar] [CrossRef]
- Ramírez-Pérez, L.J.; Morales-Díaz, A.B.; De Alba-Romenus, K.; González-Morales, S.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Determination of Micronutrient Accumulation in Greenhouse Cucumber Crop Using a Modeling Approach. Agronomy 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Lee, Y.; Han, S.H.; Hwang, S.J. The Effects of Wavelength and Wavelength Mixing Ratios on Microalgae Growth and Nitrogen, Phosphorus Removal Using Scenedesmus Sp. for Wastewater Treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef]
- Trofimchuk, O.A.; Petikar, P.V.; Turanov, S.B.; Romanenko, S.A. The Influence of PAR Irradiance on Yield Growth of Chlorella Microalgae. IOP Conf. Ser. Mater. Sci. Eng. 2019, 510. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Gagnon, G.A.; Jamieson, R.C. Microalgae Growth and Phosphorus Uptake in Wastewater under Simulated Cold Region Conditions. Ecol. Eng. 2016, 95, 588–593. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Moheimani, N.R.; Cosgrove, J.J.; Bahri, P.A.; Parlevliet, D. Effect of Different Light Spectra on the Growth and Productivity of Acclimated Nannochloropsis Sp. (Eustigmatophyceae). Algal Res. 2015, 8, 121–127. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Farrelly, D.J.; Everard, C.D.; Fagan, C.C.; McDonnell, K.P. Carbon Sequestration and the Role of Biological Carbon Mitigation: A Review. Renew. Sustain. Energy Rev. 2013, 21, 712–727. [Google Scholar] [CrossRef]
- Ali, H.; Park, C.W. Numerical Multiphase Modeling of CO2 Absorption and Desorption in Microalgal Raceway Ponds to Improve Their Carbonation Efficiency. Energy 2017, 127, 358–371. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivard, B.; Feng, J. Remote Estimation of Gross Primary Production in Wheat Using Chlorophyll-Related Vegetation Indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhao, M.; Wang, H.; Wood, E.F. Impact of Satellite Based PAR on Estimates of Terrestrial Net Primary Productivity. Int. J. Remote Sens. 2010, 31, 5221–5237. [Google Scholar] [CrossRef]
- Leblon, B.; Guerif, M.; Baret, F. The Use of Remotely Sensed Data in Estimation of PAR Use Efficiency and Biomass Production of Flooded Rice. Remote Sens. Environ. 1991, 38, 147–158. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity. J. Geophys. Res. Atmos. 2002, 107, ACL-2. [Google Scholar] [CrossRef] [Green Version]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, I.R. On the Direct Effect of Clouds and Atmospheric Particles on the Productivity and Structure of Vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef]
- Lee, C.-s.; Hoes, P.; Cóstola, D.; Hensen, J.L.M. Assessing the Performance Potential of Climate Adaptive Greenhouse Shells. Energy 2019, 175, 534–545. [Google Scholar] [CrossRef] [Green Version]
- Cemek, B.; Demir, Y.; Uzun, S.; Ceyhan, V. The Effects of Different Greenhouse Covering Materials on Energy Requirement, Growth and Yield of Aubergine. Energy 2006, 31, 1780–1788. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Liu, Y.; Chow, D. A Climate-Based Analysis of Photosynthetically Active Radiation Availability in Large-Scale Greenhouses across China. J. Clean. Prod. 2021, 315, 127901. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Lin, A.; Hu, B. Analysis of Photosynthetically Active Radiation under Various Sky Conditions in Wuhan, Central China. Int. J. Biometeorol. 2014, 58, 1711–1720. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Ma, Y.; Hu, B.; Zhang, M. Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. Int. J. Biometeorol. 2014, 58, 1265–1277. [Google Scholar] [CrossRef]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X.; González, J.A. Analysis of Spatial and Temporal Variability of the PAR/GHI Ratio and PAR Modeling Based on Two Satellite Estimates. Remote Sens. 2020, 12, 1262. [Google Scholar] [CrossRef] [Green Version]
- Akitsu, T.K.; Nasahara, K.N.; Ijima, O.; Hirose, Y.; Ide, R.; Takagi, K.; Kume, A. The Variability and Seasonality in the Ratio of Photosynthetically Active Radiation to Solar Radiation: A Simple Empirical Model of the Ratio. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102724. [Google Scholar] [CrossRef]
- Xia, X.; Li, Z.; Wang, P.; Chen, H.; Cribb, M. Estimation of Aerosol Effects on Surface Irradiance Based on Measurements and Radiative Transfer Model Simulations in Northern China. J. Geophys. Res. 2007, 112, D22S10. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Vonder Haar, T.H. Satellite Meteorology—An Introduction; Academic Press: Cambridge, MA, USA, 1995; ISBN 978-0124064300. [Google Scholar]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X.; González, J.A. Models for Estimating Daily Photosynthetically Active Radiation in Oceanic and Mediterranean Climates and Their Improvement by Site Adaptation Techniques. Adv. Sp. Res. 2020, 65, 1894–1909. [Google Scholar] [CrossRef]
- Vindel, J.M.; Valenzuela, R.X.; Navarro, A.A.; Zarzalejo, L.F.; Paz-Gallardo, A.; Souto, J.; Méndez-Gómez, R.; Cartelle, D.; Casares, J. Modeling Photosynthetically Active Radiation from Satellite-Derived Estimations over Mainland Spain. Remote Sens. 2018, 10, 849. [Google Scholar] [CrossRef] [Green Version]
- Lozano, I.L.; Sánchez-Hernández, G.; Guerrero-Rascado, J.L.; Alados, I.; Foyo-Moreno, I. Analysis of Cloud Effects on Long-Term Global and Diffuse Photosynthetically Active Radiation at a Mediterranean Site. Atmos. Res. 2022, 268, 106010. [Google Scholar] [CrossRef]
- Escobedo, J.F.; Gomes, E.N.; Oliveira, A.P.; Soares, J. Modeling Hourly and Daily Fractions of UV, PAR and NIR to Global Solar Radiation under Various Sky Conditions at Botucatu, Brazil. Appl. Energy 2009, 86, 299–309. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Alados-Arboledas, L. Photosynthetically Active Radiation: Measurements and Modelling. Agric. For. Meteorol. 1996, 78, 121–131. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Yasuda, Y.; Ohtani, Y.; Watanabe, T.; Kominami, Y.; Yamanoi, K. A Practical Model to Estimate Photosynthetically Active Radiation Using General Meteorological Elements in a Temperate Humid Area and Comparison among Models. Theor. Appl. Climatol. 2014, 115, 583–589. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Jiang, W.; Guo, X. Predicting Daily Photosynthetically Active Radiation from Global Solar Radiation in the Contiguous United States. Energy Convers. Manag. 2015, 89, 71–82. [Google Scholar] [CrossRef]
- Pashiardis, S.; Kalogirou, S.; Pelengaris, A. Characteristics of Photosynthetic Active Radiation (PAR) Through Statistical Analysis at Larnaca, Cyprus. SM J. Biometrics Biostat. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X. A New Index Assessing the Viability of PAR Application Projects Used to Validate PAR Models. Agronomy 2021, 11, 470. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Granados-López, D.; García-Rodríguez, S.; Díez-Mediavilla, M.; Alonso-Tristán, C. Modelling Photosynthetic Active Radiation (PAR) through Meteorological Indices under All Sky Conditions. Agric. For. Meteorol. 2021, 310, 108627. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Users Manual for SERf QC Software—Assessing the Quality of Solar Radiation; National Renewable Energy Laboratory: Golden, CO, USA, 1993.
- Sengupta, M.; Habte, A.; Kurtz, S.; Dobos, A.; Wilbert, S.; Lorenz, E.; Stoffel, T.; Renné, D.; Gueymard, C.; Myers, D.; et al. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; IEA: Paris, France, 2015. [Google Scholar]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Das Geographische System Der Klimate; Gebrüder, B., Ed.; Mit 14 Textflguren: Berlin, Germany, 1936. [Google Scholar]
- Agencia Estatal de Meteorología (AEMET); Instituto de Meteorologia de Portugal (IM). Atlas Climático Ibérico—Iberian Climate Atlas; AEMET-Ministerio de Medio Ambiente, y Medio Rural y Marino & Instituto de Meteorologia de Portugal: Madrid, Spain, 2011. [Google Scholar]
- Zo, I.S.; Jee, J.B.; Kim, B.Y.; Lee, K.T. Baseline Surface Radiation Network (BSRN) Quality Control of Solar Radiation Data on the Gangneung-Wonju National University Radiation Station. Asia-Pacific J. Atmos. Sci. 2017, 53, 11–19. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Liu, G. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. J. Geophys. Res. Atmos. 2007, 112, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Polo, J.; Zarzalejo, L.F.; Ramirez, L.; Espinar, B. Iterative Filtering of Ground Data for Qualifying Statistical Models for Solar Irradiance Estimation from Satellite Data. Sol. Energy 2006, 80, 240–247. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.A.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; IEA: Paris, France, 2021. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, USA, 1983; ISBN 0123737508/9780123737502/0123737524/9780123737526. [Google Scholar]
- Salazar, G.; Raichijk, C. Evaluation of Clear-Sky Conditions in High Altitude Sites. Renew. Energy 2014, 64, 197–202. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Hu, B.; Lin, A.; Li, H.; Zou, L. Modeling and Analysis of the Spatiotemporal Variations of Photosynthetically Active Radiation in China during 1961–2012. Renew. Sustain. Energy Rev. 2015, 49, 1019–1032. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L. A New Conventional Regression Model to Estimate Hourly Photosynthetic Photon Flux Density under All Sky Conditions. Int. J. Climatol. 2017, 37, 1067–1075. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wane, O.; Ramírez Ceballos, J.A.; Ferrera-Cobos, F.; Navarro, A.A.; Valenzuela, R.X.; Zarzalejo, L.F. Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land 2022, 11, 1868. https://doi.org/10.3390/land11101868
Wane O, Ramírez Ceballos JA, Ferrera-Cobos F, Navarro AA, Valenzuela RX, Zarzalejo LF. Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land. 2022; 11(10):1868. https://doi.org/10.3390/land11101868
Chicago/Turabian StyleWane, Ousmane, Julián A. Ramírez Ceballos, Francisco Ferrera-Cobos, Ana A. Navarro, Rita X. Valenzuela, and Luis F. Zarzalejo. 2022. "Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain" Land 11, no. 10: 1868. https://doi.org/10.3390/land11101868
APA StyleWane, O., Ramírez Ceballos, J. A., Ferrera-Cobos, F., Navarro, A. A., Valenzuela, R. X., & Zarzalejo, L. F. (2022). Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land, 11(10), 1868. https://doi.org/10.3390/land11101868