From Wooded Savannah to Farmland and Settlement: Population Growth, Drought, Energy Needs and Cotton Price Incentives Driving Changes in Wacoro, Mali
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Work Flow and Land Cover Classes for Data Collection and Processing
2.3. Sources of Land Use/Land Cover Data and Supervised Classification
2.4. Estimation of the Precision of Image Interpretation
- Stratified sampling was adopted so that the control points to be verified in the field were defined in proportion to the size of the stratum; 30 control points were determined for each of the classes;
- A total of 210 points were defined for the entire study area (seven land cover classes);
- At the level of each stratum, the control points were as dispersed as possible over the entire study area;
- A confusion matrix was constructed to report the results; the matrix revealed not only the general errors made at the level of each class during the interpretation but also the errors due to confusion between land cover classes;
- Errors of omission and confusion were calculated for each land cover class; the values obtained reflect the details of the interpretation of each class. Considering a class such as woodland savannah, it was referred to as an error of omission whenever this woodland class had been omitted from the map. It was a confusion error when the wooded savannah area had been classified as another class. Coordinates of each land cover class were collected from the field and incorporated into the maps for validating classified areas.
2.5. LULCC Driving Factors Assessment
- Age (50 and above);
- Knowledge of the long-term biophysical and socio-institutional context of the study sites;
- Experience in local decision-making approaches;
- Experience in working with extension workers.
3. Results
3.1. Land Use Land Cover Change between 1990 and 2020 in Wacoro, Mali
3.2. Local People’s Perception of the Main driving Factors of LULCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Kangalawe, R.Y.M. Land use/cover changes and their implications on rural livelihoods in the degraded environments of central Tanzania. Afr. J. Ecol. 2009, 47, 135–141. [Google Scholar] [CrossRef]
- Kiggundu, N.; Anaba, L.A.; Banadda, N.; Wanyama, J.; Kabenge, I. Assessing Land Use and Land Cover Changes in the Murchison Bay Catchment of Lake Victoria Basin in Uganda. J. Sustain. Dev. 2018, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Elagouz, M.; Abou-Shleel, S.; Belal, A.; El-Mohandes, M. Detection of land use/cover change in Egyptian Nile Delta using remote sensing. Egypt J. Remote Sens. Space Sci. 2019, 23, 57–62. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land Use Change and Forestry; Cambridge University Press: Cambridge, UK, 2015; pp. 301–302. [Google Scholar] [CrossRef] [Green Version]
- IPBES. The IPBES Assessment Report on Land Degradation and Restoration; IPBES: Panama City, Panama, 2018. [Google Scholar]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security-A global perspective for livestock production. Land Degrad. Dev. 2018, 30, 561–573. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Achieving Zero Net Land Degradation: Challenges and opportunities. J. Arid. Environ. 2015, 112, 44–51. [Google Scholar] [CrossRef]
- Ofori, S.A.; Cobbina, S.J.; Obiri, S. Climate Change, Land, Water, and Food Security: Perspectives from Sub-Saharan Africa. Front. Sustain. Food Syst. 2021, 5, 680924. [Google Scholar] [CrossRef]
- Asongu, S.A.; Efobi, U.R.; Tanankem, B.V.; Osabuohien, E.S. Globalisation and Female Economic Participation in Sub-Saharan Africa. Gend. Issues 2019, 37, 61–89. [Google Scholar] [CrossRef] [Green Version]
- Yonaba, R.; Koïta, M.; Mounirou, L.; Tazen, F.; Queloz, P.; Biaou, A.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso. Land Use Policy 2021, 103, 105305. [Google Scholar] [CrossRef]
- World Bank. Options for Preparing a Sustainable Land Management (SLM) Program in Mali Consistent with TerrAfrica for World Bank Engagement at the Country Level Introduction; World Bank: Bamako, Mali, 2012. [Google Scholar]
- Coulibaly, B.; Li, S. Impact of Agricultural Land Loss on Rural Livelihoods in Peri-Urban Areas: Empirical Evidence from Sebougou, Mali. Land 2020, 9, 470. [Google Scholar] [CrossRef]
- ECB. Northern Mali Conflict & Food Insecurity; Acaps: Geneva, Switzerland, 2012; pp. 1–30. [Google Scholar]
- Neimark, B.; Toulmin, C.; Batterbury, S. Peri-urban land grabbing? dilemmas of formalising tenure and land acquisitions around the cities of Bamako and Ségou, Mali. J. Land Use Sci. 2018, 13, 319–324. [Google Scholar] [CrossRef]
- West, C.T.; Benecky, S.; Karlsson, C.; Reiss, B.; Moody, A.J. Bottom-Up Perspectives on the Re-Greening of the Sahel: An Evaluation of the Spatial Relationship between Soil and Water Conservation (SWC) and Tree-Cover in Burkina Faso. Land 2020, 9, 208. [Google Scholar] [CrossRef]
- Dioila Met Service, Weather Atlas, Dioila, Mali-Climate & Monthly Weather Forecast. Available online: https://www.weather-atlas.com/ (accessed on 21 April 2022).
- Cheong, S.-M.; Brown, D.G.; Kok, K.; Lopez-Carr, D. Mixed methods in land change research: Towards integration. Trans. Inst. Br. Geogr. 2011, 37, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Sarfo, I.; Shuoben, B.; Otchwemah, H.B.; Darko, G.; Kedjanyi, E.A.G.; Oduro, C.; Folorunso, E.A.; Alriah, M.A.A.; Amankwah, S.O.Y.; Ndafira, G.C. Validating Local Drivers Inuencing Land Use Cover Change (LUCC) in Southwestern Ghana: A Mixed-Method Approach (MMA) Analysis; Research Square: Durham, NC, USA, 2022. [Google Scholar] [CrossRef]
- Komatsu, T.; Hashim, M.; Nurdin, N.; Noiraksar, T.; Prathep, A.; Stankovic, M.; Son, T.P.H.; Thu, P.M.; Luong, C.V.; Wouthyzen, S.; et al. Practical mapping methods of seagrass beds by satellite remote sensing and ground truthing Northwest Pacific Action Plan (NOWPAP), Special Monitoring and Coastal Environmental Assessment Regional Activity Centre. Coast. Mar. Sci. 2020, 43, 1–25. [Google Scholar]
- Squeri, C.; Poni, S.; Di Gennaro, S.; Matese, A.; Gatti, M. Comparison and Ground Truthing of Different Remote and Proximal Sensing Platforms to Characterize Variability in a Hedgerow-Trained Vineyard. Remote Sens. 2021, 13, 2056. [Google Scholar] [CrossRef]
- Mas, J.-F.; de Vasconcelos, R.N.; Franca-Rocha, W. Analysis of High Temporal Resolution Land Use/Land Cover Trajectories. Land 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yu, L.; Peng, D.; Zhao, J.; Cheng, Y.; Liu, X.; Li, W.; Meng, R.; Xu, X.; Gong, P. Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Sci. China Earth Sci. 2020, 63, 1390–1407. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wrlght, A. Rule-Based Classification Systems Using Classification and Regression Tree (CART) Analysis. Photogramm. Eng. Remote Sens. 2001, 67, 1137–1142. [Google Scholar]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2020, 70, 15–22. [Google Scholar] [CrossRef]
- Munoz-Mari, J.; Bruzzone, L.; Camps-Valls, G. A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2683–2692. [Google Scholar] [CrossRef]
- Kraemer, H.C. Kappa Coefficient. 2014. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat00365.pub2 (accessed on 12 July 2022).
- Bai, H.; Li, D.; Ge, Y.; Wang, J. A spatial heterogeneity-based rough set extension for spatial data. Int. J. Geogr. Inf. Sci. 2019, 33, 240–268. [Google Scholar] [CrossRef]
- Song, B.; Shi, H. Fault Detection and Classification Using Quality-Supervised Double-Layer Method. IEEE Trans. Ind. Electron. 2018, 65, 8163–8172. [Google Scholar] [CrossRef]
- Perumal, K.; Bhaskaran, R. Supervised Classification Performance of Multispectral Images. arXiv 2010, arXiv:1002.4046. [Google Scholar]
- Piramanayagam, S.; Saber, E.; Schwartzkopf, W.; Koehler, F.W. Supervised Classification of Multisensor Remotely Sensed Images Using a Deep Learning Framework. Remote Sens. 2018, 10, 1429. [Google Scholar] [CrossRef] [Green Version]
- Wang, F. Fuzzy Supervised Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 1990, 28, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Sisodia, P.S.; Tiwari, V.; Kumar, A. Analysis of Supervised Maximum Likelihood Classification for remote sensing image. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 9–12. [Google Scholar] [CrossRef]
- Oloukoï, J. Usefulness of remote sensing and geographic information systems in the study of the spatial dynamics of land use in central Benin. Ph.D. Thesis, Université d’Abomey-Calavi, Godomey, Bénin, 2012. [Google Scholar]
- Oseph, V.I.J.; Ama, M.; Oseph, J.; Loukoi, O. Evaluation of Analogical Satellite Image Processing Accuracy in a Study of Land Cover. Télédétection 2003, 3, 429–441. [Google Scholar]
- Vieira, S.M.; Kaymak, U.; Sousa, J.M.C. Cohen’s kappa coefficient as a performance measure for feature selection. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Schielein, J.; Börner, J. Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy 2018, 76, 81–94. [Google Scholar] [CrossRef]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Bayala, J.; Dayamba, S.D.; Ayantunde, A.A.; Somda, J.; Dembele, C.K.; Bationo, B.A.; Buah, S.; Sanogo, D.; Tougiani, A.; Zougmoré, R. Methodological Guide Community Participatory Inventory and Prioritization of Climate-Smart Crop-livestock Agroforestry Technologies/Practices Techical Manual. Available online: www.worldagroforestry.org (accessed on 8 April 2022).
- Dansoko, B. A Cross Villages Assessment of Environmental Change and Human Mobility in the Dano Watershed, Burkina Faso; WASCAL: Accra, Ghana, 2015. [Google Scholar]
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Adaawen, S. Understanding Climate Change and Drought Perceptions, Impact and Responses in the Rural Savannah, West Africa. Atmosphere 2021, 12, 594. [Google Scholar] [CrossRef]
- Okafor, G.C.; Annor, T.; Odai, S.N.; Larbi, I. Land Use Landcover Change Monitoring and Projection in the Dano Catchment, Southwest Burkina Faso. Int. J. Adv. Remote Sens. GIS 2019, 9, 3185–3204. [Google Scholar] [CrossRef]
- Sanogo, K.; Birhanu, B.; Sanogo, S.; Aishetu, A.; Ba, A. Spatiotemporal Response of Vegetation to Rainfall and Air Temperature Fluctuations in the Sahel: Case Study in the Forest Reserve of Fina, Mali. Sustainability 2021, 13, 6250. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al-Saidi, M. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Sci. Total Environ. 2020, 742, 140509. [Google Scholar] [CrossRef]
- Piipponen, J.; Jalava, M.; de Leeuw, J.; Rizayeva, A. Global Assessment of Grassland Carrying Capacities and Relative Stocking Densities of Livestock. Available online: https://uknowledge.uky.edu/igc (accessed on 21 January 2022).
- Rahimi, J.; Haas, E.; Grote, R.; Kraus, D.; Smerald, A.; Laux, P.; Goopy, J.; Butterbach-Bahl, K. Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Sci. Rep. 2021, 11, 22094. [Google Scholar] [CrossRef] [PubMed]
- Maintaining Peace and Stability in Mali’s Sikasso Region Strategies to Contain Land-Related Conflicts. 2020. Available online: www.international-alert.org (accessed on 3 March 2022).
- Diawara, M.O.; Hiernaux, P.; Mougin, E.; Sissoko, S.; Kergoat, L.; Diakite, H.S.; Diallo, A.; Soumaguel, N. Joint monitoring of livestock stocking rates and rangeland vegetation of Hombori district in Mali during the 2010-2011 dry season. Int. J. Biol. Chem. Sci. 2020, 14, 1941–1956. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Fonturbel, T.; Pérez-Gorostiaga, P.; Jiménez, E.; Madrigal, J. Effects of Wildfire, Salvage Logging and Slash. Land Degrad. Dev. 2007, 607, 591–607. [Google Scholar] [CrossRef]
- Olumba, E.E.; Nwosu, B.U.; Okpaleke, F.N.; Okoli, R.C. Conceptualising eco-violence: Moving beyond the multiple labelling of water and agricultural resource conflicts in the Sahel. Third World Q. 2022, 43, 2075–2090. [Google Scholar] [CrossRef]
- FAO. Global Forest Assessment Resources 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Falconnier, G.N.; Descheemaeker, K.; Traore, B.; Bayoko, A.; Giller, K.E. Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali. Land Use Policy 2018, 70, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Thiam, S.; Villamor, G.B.; Faye, L.C.; Sène, J.H.B.; Diwediga, B.; Kyei-Baffour, N. Monitoring land use and soil salinity changes in coastal landscape: A case study from Senegal. Environ. Monit. Assess. 2021, 193, 259. [Google Scholar] [CrossRef] [PubMed]
- dar William, D.; Arun, K. Greening the Grey, Rajpal and Sons (January 1, 2014). Available online: https://www.amazon.com/Greening-Grey-WilliamD-Dar/dp/9350642832 (accessed on 12 September 2022).
Land Cover Class | Definition |
---|---|
Wooded savannah | Wooded savannah is a mix of woody and grass layers where the canopy of the woody component is not closed. |
Shrub savannah | Shrub savannah is a mix of shrubs and grass layers. |
Farmland | Farmland corresponds to cultivated land that can also show presence of woody components. |
Water bodies | Water bodies represent standing water surfaces during most of the year. |
Grassland | Grasslands are characterized as lands dominated by grasses and herbaceous annuals rather than trees or large shrubs. |
Settlement | Settlements consist of residential areas, roads and other concrete infrastructure including areas for sheltering people, animals, or machinery. |
Bare soil | Bare soil is barren land that has sand, rocks, and thin soil. It includes dry salt flats, sand dunes, deserts, beaches, gravel pits, quarries, exposed rock, strip mines, etc. |
Rocky | Rocky areas are covered mainly by blocks of rock. |
Images | Global Precision | Coefficient Kappa |
---|---|---|
TM 1990 | 88.70% | 0.87 |
ETM+ (2000 and 2010) | 87.41% | 0.85 |
OLI 2020 | 93.51% | 0.93 |
Person’s Correlations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pop | Settlement | Water Bodies | Wooded Savannah | Shrub savannah | Grassy Steppes | Farmland | Bare Soil | Rocky | ||
Pop | Pearson’s r | |||||||||
p-value | ||||||||||
Settlement | Pearson’s r | 0,865 | ||||||||
p-value | 0,135 | |||||||||
Body of water | Pearson’s r | 0,091 | −0,402 | |||||||
p-value | 0,909 | 0,598 | ||||||||
Wooded savannah | Pearson’s r | −0,893 | −0,995 ** | 0,365 | ||||||
p-value | 0,107 | 0,005 | 0,635 | |||||||
Shrub savannah | Pearson’s r | 0,692 | 0,896 | −0,619 | −0,912 | |||||
p-value | 0,308 | 0,104 | 0,381 | 0,088 | ||||||
Grassy steppes | Pearson’s r | 0,888 | 0,94 | −0,333 | −0,968 * | 0,944 | ||||
p-value | 0,112 | 0,06 | 0,667 | 0,032 | 0,056 | |||||
Farmland | Pearson’s r | 0,960 * | 0,927 | −0,042 | −0,927 | 0,695 | 0,857 | |||
p-value | 0,04 | 0,073 | 0,958 | 0,073 | 0,305 | 0,143 | ||||
Bare soil | Pearson’s r | −0,405 | 0,092 | −0,808 | −0,011 | 0,138 | −0,135 | −0,167 | ||
p-value | 0,595 | 0,908 | 0,192 | 0,989 | 0,862 | 0,865 | 0,833 | |||
Rocky | Pearson’s r | −0,417 | −0,7 | 0,438 | 0,626 | −0,437 | −0,416 | −0,655 | 0,578 | |
p-value | 0,583 | 0,3 | 0,562 | 0,374 | 0,563 | 0,584 | 0,345 | 0,422 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanogo, N.D.M.; Dayamba, S.D.; Renaud, F.G.; Feurer, M. From Wooded Savannah to Farmland and Settlement: Population Growth, Drought, Energy Needs and Cotton Price Incentives Driving Changes in Wacoro, Mali. Land 2022, 11, 2117. https://doi.org/10.3390/land11122117
Sanogo NDM, Dayamba SD, Renaud FG, Feurer M. From Wooded Savannah to Farmland and Settlement: Population Growth, Drought, Energy Needs and Cotton Price Incentives Driving Changes in Wacoro, Mali. Land. 2022; 11(12):2117. https://doi.org/10.3390/land11122117
Chicago/Turabian StyleSanogo, Nagalé Dit Mahamadou, Sidzabda Djibril Dayamba, Fabrice G. Renaud, and Melanie Feurer. 2022. "From Wooded Savannah to Farmland and Settlement: Population Growth, Drought, Energy Needs and Cotton Price Incentives Driving Changes in Wacoro, Mali" Land 11, no. 12: 2117. https://doi.org/10.3390/land11122117
APA StyleSanogo, N. D. M., Dayamba, S. D., Renaud, F. G., & Feurer, M. (2022). From Wooded Savannah to Farmland and Settlement: Population Growth, Drought, Energy Needs and Cotton Price Incentives Driving Changes in Wacoro, Mali. Land, 11(12), 2117. https://doi.org/10.3390/land11122117