Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Selection and Greenhouse Pot Experiment
2.2. Resins Experiment with Soil Pots and Their Use as Soil Extractants
2.3. Determination of K Solubilizing Rhizosphere Microbial Population
2.4. Statistical Analysis
3. Results
3.1. Soil Characteristics, Distribution of Soil K Pools, and Amounts of Soil K Extracted by Different Extraction Methods
3.2. Distribution of Population of K Solubilizing Rhizosphere Microbes among Soils
3.3. Interrelationships between K Utake, Basic Soil Properties, and Soil K Pools
3.4. Performance of Cation Exchange Resins to Predict K Uptake by Plants
3.5. Participation of Soil K Pools on the Extraction Capacity of Cation Exchange Resins: First Insights on the Contribution of K Solubilized by Rhizosphere Microbes
r2 = 0.89, p ≤ 0.001
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in Agriculture—Status and Perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Sarikhani, M.R.; Oustan, S.; Ebrahimi, M.; Aliasgharzad, N. Isolation and Identification of Potassium-releasing Bacteria in Soil and Assessment of Their Ability to Release Potassium for Plants. Eur. J. Soil Sci. 2018, 69, 1078–1086. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Evaluation of Sodium Tetraphenylboron (NaBPh4) as a Soil Test of Potassium Availability. Arch. Agron. Soil Sci. 2017, 63, 468–476. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Potassium Availability: An Approach Using Thermodynamic Parameters Derived from Quantity-Intensity Relationships. Geoderma 2019, 338, 355–364. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Potassium-Fixing Clay Minerals as Parameters That Define K Availability of K-Deficient Soils Assessed with a Modified Mitscherlich Equation Model. J. Soil Sci. Plant Nutr. 2019, 19, 830–840. [Google Scholar] [CrossRef]
- FAO. World Fertilizer Trends and Outlook to 2020; FAO: Rome, Italy, 2017. [Google Scholar]
- Bell, M.J.; Ransom, M.D.; Thompson, M.L.; Hinsinger, P.; Florence, A.M.; Moody, P.W.; Guppy, C.N. Considering Soil Potassium Pools with Dissimilar Plant Availability. In Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 163–190. [Google Scholar]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R. The Potassium Paradox: Implications for Soil Fertility, Crop Production and Human Health. Renew. Agric. Food Syst. 2014, 29, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, P. Potassium. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 1035–1039. [Google Scholar]
- Hinsinger, P. Plant-induced changes of soil processes and properties. In Soil Conditions and Plant Growth, 1st ed.; Gregory, P.J., Nortcliff, S., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 323–365. ISBN 978-1-4051-9770-0. [Google Scholar]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium Solubilizing Bacteria (KSB): Mechanisms, Promotion of Plant Growth, and Future Prospects: A Review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P. Does a Rhizospheric Microorganism Enhance K+ Availability in Agricultural Soils? Microbiol. Res. 2014, 169, 337–347. [Google Scholar] [CrossRef]
- Zarjani, J.K.; Aliasgharzad, N.; Oustan, S.; Emadi, M.; Ahmadi, A. Isolation and Characterization of Potassium Solubilizing Bacteria in Some Iranian Soils. Arch. Agron. Soil Sci. 2013, 59, 1713–1723. [Google Scholar] [CrossRef]
- Breker, J.S.; DeSutter, T.; Rakkar, M.K.; Chatterjee, A.; Sharma, L.; Franzen, D.W. Potassium Requirements for Corn in North Dakota: Influence of Clay Mineralogy. Soil Sci. Soc. Am. J. 2019, 83, 429–436. [Google Scholar] [CrossRef]
- Moody, P.W.; Bell, M.J. Availability of Soil Potassium and Diagnostic Soil Tests. Soil Res. 2006, 44, 265. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Karim, A.J.M.S.; Solaiman, A.R.M.; Islam, M.S.; Saleque, M.A. Eight-Year Long Potassium Fertilization Effects on Quantity/Intensity Relationship of Soil Potassium under Double Rice Cropping. Soil Tillage Res. 2017, 169, 99–117. [Google Scholar] [CrossRef]
- Jalali, M. A Study of the Quantity/Intensity Relationships of Potassium in Some Calcareous Soils of Iran. Arid. Land Res. Manag. 2007, 21, 133–141. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Wang, J.; Phillips, R.E. New developments and perspectives on soil potassium quantity/intensity relationships. Adv. Agron. 1994, 52, 173–227. [Google Scholar] [CrossRef]
- Cox, A.E.; Joern, B.C.; Roth, C.B. Nonexchangeable Ammonium and Potassium Determination in Soils with a Modified Sodium Tetraphenylboron Method. Soil Sci. Soc. Am. J. 1996, 60, 114–120. [Google Scholar] [CrossRef]
- Cox, A.E.; Joern, B.C.; Brouder, S.M.; Gao, D. Plant-Available Potassium Assessment with a Modified Sodium Tetraphenylboron Method. Soil Sci. Soc. Am. J. 1999, 63, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Núñez, A.; Morón, A. Potassium Dynamics in Western Uruguayan Agricultural Mollisols. Commun. Soil Sci. Plant Anal. 2017, 48, 2558–2572. [Google Scholar] [CrossRef]
- Bilias, F.; Tsigili, S.; Barbayiannis, N. A Preliminary Evaluation of Cation Exchange Resins as a Soil Test of Potassium Availability in Soils of Northern Greece with Different K Loadings. J Soil Sci. Plant Nutr. 2021, 21, 1004–1012. [Google Scholar] [CrossRef]
- Helmke, P.A.; Sparks, D.L. Lithium, Sodium, Potassium, Rubidium, and Cesium. In SSSA Book Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 551–574. ISBN 978-0-89118-866-7. [Google Scholar]
- Buck, R.L.; Hopkins, B.G.; Webb, B.L.; Jolley, V.D.; Cline, N.L. Depth of Ion Exchange Resin Capsule Placement Impacts on Estimation of Nitrogen and Phosphorus Bioavailability in Semiarid Low-Fertility Soils. Soil Sci. 2016, 181, 216–221. [Google Scholar] [CrossRef]
- Schaff, B.E.; Skogley, E.O. Diffusion of Potassium, Calcium, and Magnesium in Bozeman Silt Loam as Influenced by Temperature and Moisture. Soil Sci. Soc. Am. J. 1982, 46, 521–524. [Google Scholar] [CrossRef]
- Skogley, E.O.; Schaff, B.E. Ion Diffusion in Soils as Related to Physical and Chemical Properties. Soil Sci. Soc. Am. J. 1985, 49, 847–850. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Allen, S.E.; Terman, G.L.; Clements, L.B. Greenhouse Techniques for Soil-Plant-Fertilizer Research; National Fertilizer Development Center, Tennessee Valley Authority: Muscle Shoals, AL, USA, 1976. [Google Scholar]
- Jones, B.J., Jr.; Case, V.W. Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Ziadi, N.; Simard, R.R.; Allard, G.; Lafond, J. Field Evaluation of Anion Exchange Membranes as a N Soil Testing Method for Grasslands. Can. J. Soil. Sci. 1999, 79, 281–294. [Google Scholar] [CrossRef]
- Zhang, M.; Riaz, M.; Liu, B.; Xia, H.; El-desouki, Z.; Jiang, C. Two-Year Study of Biochar: Achieving Excellent Capability of Potassium Supply via Alter Clay Mineral Composition and Potassium-Dissolving Bacteria Activity. Sci. Total Environ. 2020, 717, 137286. [Google Scholar] [CrossRef] [PubMed]
- Tonidandel, S.; LeBreton, J.M. RWA Web: A Free, Comprehensive, Web-Based, and User-Friendly Tool for Relative Weight Analyses. J. Bus. Psychol. 2015, 30, 207–216. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System Fort Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Murrell, T.S.; Mikkelsen, R.L.; Sulewski, G.; Norton, R.; Thompson, M.L. Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-59196-0. [Google Scholar]
- Das, D.; Dwivedi, B.S.; Datta, S.P.; Datta, S.C.; Meena, M.C.; Agarwal, B.K.; Shahi, D.K.; Singh, M.; Chakraborty, D.; Jaggi, S. Potassium Supplying Capacity of a Red Soil from Eastern India after Forty-Two Years of Continuous Cropping and Fertilization. Geoderma 2019, 341, 76–92. [Google Scholar] [CrossRef]
- Rehm, G.W.; Sorensen, R.C. Effects of Potassium and Magnesium Applied for Corn Grown on an Irrigated Sandy Soil. Soil Sci. Soc. Am. J. 1985, 49, 1446–1450. [Google Scholar] [CrossRef]
- Sadusky, M.C.; Sparks, D.L.; Noll, M.R.; Hendricks, G.J. Kinetics and Mechanisms of Potassium Release from Sandy Middle Atlantic Coastal Plain Soils. Soil Sci. Soc. Am. J. 1987, 51, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Niebes, J.-F.; Dufey, J.E.; Jaillard, B.; Hinsinger, P. Release of Nonexchangeable Potassium from Different Size Fractions of Two Highly K-Fertilized Soils in the Rhizosphere of Rape (Brassica napus Cv. Drakkar). Plant Soil 1993, 155–156, 403–406. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of Potassium Solubilizing Bacteria (Bacillus cereus) on Growth and Yield of Potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
Soil Location | Classification | pH | Clay | CaCO3 | OM 1 | CEC 2 | NH4OAc-K 3 | |
---|---|---|---|---|---|---|---|---|
% | cmolc kg−1 | mg kg−1 | ||||||
1 | Kerasia | Luvisol | 7.3 | 20.9 | - | 2.0 | 19.3 | 92.0 |
2 | Assiros | Cambisol | 6.2 | 33.7 | - | 2.6 | 30.1 | 121.0 |
3 | Pente Vrises | Luvisol | 6.3 | 38.2 | - | 2.6 | 24.8 | 93.0 |
4 | Univ. Farm | Fluvisol | 7.7 | 25.4 | 3.2 | 2.2 | 22.7 | 56.0 |
5 | Sindos | Fluvisol | 7.3 | 28.2 | 4.3 | 2.5 | 22.3 | 82.0 |
6 | Kristoni | Cambisol | 5.6 | 32.9 | - | 2.4 | 21.5 | 85.0 |
7 | Pedino | Luvisol | 5.0 | 28.4 | - | 2.2 | 21.1 | 81.0 |
8 | Sirako | Vertisol | 7.4 | 42.1 | - | 2.6 | 29.0 | 111.0 |
9 | Gynekokastro | Fluvisol | 7.3 | 26.3 | - | 2.5 | 14.9 | 87.0 |
10 | Mouries | Entisol | 6.3 | 12.0 | - | 2.0 | 12.3 | 60.0 |
(a) n = 30 1 | r2 |
Total K uptake (mg kg−1) = 3.60 K soluble (mg L−1) + 24.20 | 0.50 *** |
Total K uptake (mg kg−1) = 0.34 NH4OAc-K (mg kg−1) + 13.52 | 0.39 *** |
Total K uptake (mg kg−1) = 0.07 NaBPh4-K, 1 min (mg kg−1) + 30.73 | 0.20 * |
Total K uptake (mg kg−1) = 0.29 Resin-K 1:200, 60 min (mg kg−1) − 1.54 | 0.64 *** |
(b) n = 30 | r2 |
Total K uptake (mg kg−1) = 0.39 Clay (%) + 2.47 K soluble (mg L−1) + 0.18 Resin-K 1:200, 60 min (mg kg−1) − 12.99 | 0.85 *** |
Total K uptake (mg kg−1) = 0.32 Clay (%) − 4.35 pH + 3.50 K soluble (mg L−1) + 0.06 NaBPh4-K, 1 min (mg kg−1) + 30.11 | 0.84 *** |
Total K uptake (mg kg−1) = −2.92 pH + 3.17 K soluble (mg L−1) + 0.29 NH4OAc-K (mg kg−1) + 20.97 | 0.83 *** |
Variables | Raw Relative Weight | Rescaled Relative Weight % |
---|---|---|
K-feldspars | 0.140 | 15.6 |
OM% 1 | 0.055 | 6.14 |
NH4OAc-K | 0.356 | 39.8 |
pH | 0.082 | 9.17 |
Non exch. K | 0.091 | 10.2 |
K soluble | 0.171 | 19.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilias, F.; Kotsangeli, E.; Ipsilantis, I.; Barbayiannis, N. Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land 2022, 11, 2146. https://doi.org/10.3390/land11122146
Bilias F, Kotsangeli E, Ipsilantis I, Barbayiannis N. Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land. 2022; 11(12):2146. https://doi.org/10.3390/land11122146
Chicago/Turabian StyleBilias, Fotis, Eleni Kotsangeli, Ioannis Ipsilantis, and Nikolaos Barbayiannis. 2022. "Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes" Land 11, no. 12: 2146. https://doi.org/10.3390/land11122146
APA StyleBilias, F., Kotsangeli, E., Ipsilantis, I., & Barbayiannis, N. (2022). Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land, 11(12), 2146. https://doi.org/10.3390/land11122146