Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Landsat Image Data
2.2.2. Other Data
2.3. Annual Mapping of Cyanobacterial Blooms
2.4. Spatiotemporal Dynamics of Annual Cyanobacterial Blooms
2.5. Accuracy Validation
2.6. Driver Analysis
3. Results
3.1. Accuracy Validation
3.1.1. Accuracy Assessment for Cyanobacterial Bloom Map
3.1.2. Accuracy Assessment for Annual Cyanobacterial Bloom Area
3.2. Spatiotemporal Dynamics of Annual Cyanobacterial Blooms
3.3. Interannual Changes in the Frequency of Cyanobacterial Blooms
3.4. Drivers of Annual SpatioTemporal Changes in Cyanobacterial Blooms
3.4.1. Meteorological and Water Quality Changes
3.4.2. Influence of Individual Meteorological or Water Quality Factor
3.4.3. Analysis of the Major Factors Influencing Cyanobacterial Blooms
4. Discussion
4.1. Drivers of Cyanobacterial Bloom Dynamics in Taihu Lake
4.2. Innovations and Reliability of This Study
4.3. Uncertainty and Limitations of Detection and Mapping of Cyanobacterial Blooms
5. Conclusions
- (1)
- The long-term trend and dynamics of cyanobacterial blooms were consistent with the ground truth and previous studies, confirming the feasibility of long-term monitoring for cyanobacterial blooms based on Landsat data and the FAI threshold.
- (2)
- Spatial information on cyanobacterial blooms can be clearly observed. From 1984 to 2021, cyanobacterial blooms spread from the northern part of Taihu Lake to the central and western parts. In recent years, sporadic blooms have started to appear in the East Lake and East Bay. The percentage of area (from 0.05% to 38.28%, p < 0.05) and frequency of occurrence (from 0.0005 to 0.66, p < 0.05) continued to increase with a significant trend.
- (3)
- The occurrence of cyanobacterial blooms in Taihu Lake was influenced by a combination of eutrophication and meteorological factors, with a cumulative variance of 72.2 81%. TLI and SH were the most significant positive factors (both correlation coefficients > 0.42, p < 0.05) and WS was the most significant negative factor (both correlation coefficients > 0.6, p < 0.05).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.; Xu, J. Satellite analysis to identify changes and drivers of CyanoHABs dynamics in Lake Taihu. Water Sci. Technol. Water Supply 2016, 16, 1451–1466. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze river, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Gao, Y.; Yang, C.; Wang, S. Impacts of algae bloom on spatial distribution variations of the typical heavy metals from sediments in Chaohu Lake. Acta Sci. Circumstantiae 2022, 1–10. [Google Scholar] [CrossRef]
- Cao, J.; Tian, Z.; Chu, Z.; Niu, Y.; Zheng, B. Nitrogen and phosphorus control thresholds of cyanobacteria blooms in Lake Taihu. J. Lake Sci. 2022, 34, 1–16. [Google Scholar] [CrossRef]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Liu, Y.; Jeppesen, E.; Sevenning, J.; Wu, J.; Zhang, W.; Zhou, T.; Wang, P.; Nangombe, S.; et al. From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize megafauna. Innovation 2021, 2, 100092. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, C.; Teubner, K.; Dokulil, M. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: An 8-year investigation. Hydrobiologia 2003, 506, 273–279. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, J.; Hu, X. Study on countermeasures to enhance emergency prevention and control ability of cyanobacteria bloom and lake flooding in Taihu Lake. Water Resour. Dev. Manag. 2022, 8, 18–22. [Google Scholar] [CrossRef]
- Peng, L.; Ti, C.; Li, H.; Wang, L.; Yan, X. Estimates and characteristics of pollutant discharge from pond cultures in the Taihu Basin. J. Lake Sci. 2020, 32, 70–78. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, M. Daily Dynamic Remote Sensing Monitoring of Cyanobacterial Blooms in Taihu Lake. China Resour. Compr. Util. 2022, 40, 170–172. [Google Scholar] [CrossRef]
- Chao, M.; Zhao, Q.; Yang, T.; Xie, F. Comparative Research of Cyanobacteria Blooms Extraction Methods Based on Landsat8 Images. J. Atmos. Environ. Opt. 2021, 16, 520–528. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; IIyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ma, R.; Duan, H.; Gu, X.; Zhang, S. Detecting Aquatic Vegetation Changes in Taihu Lake, China Using Multi-temporal Satellite Imagery. Sensors 2008, 8, 3988–4005. [Google Scholar] [CrossRef] [Green Version]
- Oyama, Y.; Matsushita, B.; Fokushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, X.; Dong, R. Long-Term Spatial and Temporal Monitoring of Cyanobacteria Blooms Using MODIS on Google Earth Engine: A Case Study in Taihu Lake. Remote Sens. 2019, 11, 2269. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhang, Y.; Zhou, Y.; Liu, X.; Zhu, G.; Qin, B.; Gao, G. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017, 7, 40326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Cai, X.; Wang, S.; Yang, X. Analysis of the Causes of Cyanobacteria Bloom: A Review. J. Resour. Ecol. 2020, 11, 405–413. [Google Scholar] [CrossRef]
- Zhu, G.; Shi, K.; Li, W.; Li, N.; Zou, W.; Guo, C.; Zhu, M.; Xu, H.; Zhang, Y.; Qin, B. Seasonal forecast method of cyanobacterial bloom intensity in eutrophic Lake Taihu, China. J. Lake Sci. 2020, 32, 1421–1431. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Sun, P.; Ni, T. Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China. Sci. Total Environ. 2022, 816, 151617. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Lei, Q.; Zhang, X.; Yen, H.; Wang, H.; Zhai, L.; Liu, H.; Huang, J.; Ren, T.; Qiu, W.; et al. Effects of anthropogenic activities on long-term changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. Sci. Total Environ. 2018, 645, 1212–1220. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W.; Tang, J. Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements. Remote Sens. Environ. 2011, 115, 841–854. [Google Scholar] [CrossRef]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Chen, H.; Wang, R.; Feng, G.; Xue, Z.; Hu, S. Analysis on the reasons for the large bloom area of Lake Taihu in 2017. J. Lake Sci. 2019, 31, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhang, Y.; Zhang, Y.; Li, N.; Qin, B.; Zhu, G.; Zhou, Y. Phenology of Phytoplankton Blooms in a Trophic Lake Observed from Long-Term MODIS Data. Environ. Sci. Technol. 2019, 53, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fang, H.; He, G.; Jiang, H.; Wang, C. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents. Environ. Pollut. 2016, 219, 760–773. [Google Scholar] [CrossRef] [PubMed]
- United States Geological Survey. Available online: https://earthexplorer.usgs.gov (accessed on 5 December 2021).
- Google Earth Engine. Available online: https://code.earthengine.google.com (accessed on 10 December 2021).
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- China Meteorological Data Sharing Service System. Available online: http://data.cma.cn (accessed on 15 March 2022).
- National Earth System Science Data Center. Available online: http://www.geodata.cn (accessed on 20 March 2022).
- Lv, X.; Wu, S.; Zhang, Y.; Zhou, D.; Yang, Q.; Liu, X. Analysis on variation of main indicators of eutrophication and mutrition level in Taihu lake. J. Water. Resour. Water Eng. 2014, 25, 1–6. [Google Scholar] [CrossRef]
- Taihu Basin Authority of Ministry of Water Resources. Available online: http://www.tba.gov.cn (accessed on 20 March 2022).
- Xie, H.; Hu, M.; Ji, X.; Cao, B.; Jia, S.; Xu, J.; Jin, X. Water Quality Evolution Characteristics and Pollution Factors Analysis in Poyang Lake from 2011 to 2019. Environ. Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- China City Statistical Yearbook. Available online: https://data.cnki.net/Yearbook (accessed on 25 March 2022).
- Wang, M.; Shi, W. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies. Geophys. Res. Lett. 2005, 32, L13606. [Google Scholar] [CrossRef] [Green Version]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 2010, 115, C04002. [Google Scholar] [CrossRef] [Green Version]
- Zong, J.; Wang, X.; Zhong, Q.; Xiao, X.; Ma, J.; Zhao, B. Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle-Lower Yangtze River Basin. Remote Sens. 2019, 11, 1754. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows, Version 19.0; IBM Corp.: Armonk, NY, USA, 2010. [Google Scholar]
- OriginLab Corporation. OriginPro, Version 2022b; OriginLab Corporation: Northampton, MA, USA, 2022. [Google Scholar]
- Zhang, M.; Yang, Z.; Shi, X. Expansion and drivers of cyanobacterial blooms in Lake Taihu. J. Lake Sci. 2019, 31, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yang, F.; Li, Y.; Wang, S. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake. Sci. Total Environ. 2017, 603–604, 699–708. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics and Drivers of Algal Blooms in a Plateau Lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Pu, Y.; Zhu, M.; Luan, Z.; Shi, K. Automatic Detection of Algal Blooms Using Sentinel-2 MSI and Landsat OLI Images. IEEE J.-Stars 2021, 14, 8497–8511. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Shi, X.; Kong, F.; Ma, R.; Yu, Y. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res. 2016, 103, 302–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Liu, J.; Deng, J.; Qin, B.; Zhu, G.; Zhou, Y. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Sci. Total Environ. 2016, 569–570, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Bio. 2008, 14, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhang, Y.; Zhu, G.; Qin, B.; Pan, D. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations. Int. J. Appl. Earth Obs. 2018, 68, 287–297. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Shi, K.; Zhu, G.; Zhu, M.; Yan, W.; Wang, Z. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci. Total Environ. 2015, 518–519, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Wu, C.; Li, Y.; Lyu, H.; Fang, S.; Yan, X.; Liu, G.; Zheng, Z.; Du, C.; Bi, S. Long-term observation of cyanobacteria blooms using multi-source satellite images: A case study on a cloudy and rainy lake. Environ. Sci. Pollut. Res. 2019, 26, 11012–11028. [Google Scholar] [CrossRef]
- Zhu, G. Eutrophic status and causing factors for a large, shallow and subtropical Lake Taihu, China. J. Lake Sci. 2008, 20, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Jochimsen, M.C.; Kümmerlin, R.; Straile, D. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecol. Lett. 2013, 16, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, J.; Song, K.; Liang, C.; Gao, J. Analysis on Spatial and Temporal Character of Algae Bloom in Lake Chaohu and Its Driving Factors Based on Landsat Imagery. Resour. Environ. Yangtze Basin 2019, 28, 1205–1213. [Google Scholar] [CrossRef]
- Yan, D.D.; Li, J.T.; Yao, X.Y.; Luan, Z.Q. Quantifying the Long-Term Expansion and Dieback of Spartina Alterniflora Using Google Earth Engine and Object-Based Hierarchical Random Forest Classification. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2021, 14, 9781–9793. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Shi, K.; Zhou, Y.; Tang, X.; Zhu, G.; Qin, B. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data. Remote Sens. 2015, 7, 10295–10320. [Google Scholar] [CrossRef]
Component | Loading Matrix | |
---|---|---|
Principal Component 1 | Principal Component 2 | |
TLI | 0.556 | 0.229 |
T | 0.359 | −0.287 |
P | −0.087 | 0.819 |
WS | −0.525 | −0.355 |
SH | 0.528 | −0.264 |
Variance percentage/% | 46.744 | 25.536 |
Cumulative variance percentage/% | 46.745 | 72.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, Y.; Xie, S.; Li, M.; Chen, L.; Wu, C.; Yan, D.; Luan, Z. Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake. Land 2022, 11, 2197. https://doi.org/10.3390/land11122197
Li J, Liu Y, Xie S, Li M, Chen L, Wu C, Yan D, Luan Z. Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake. Land. 2022; 11(12):2197. https://doi.org/10.3390/land11122197
Chicago/Turabian StyleLi, Jingtai, Yao Liu, Siying Xie, Min Li, Li Chen, Cuiling Wu, Dandan Yan, and Zhaoqing Luan. 2022. "Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake" Land 11, no. 12: 2197. https://doi.org/10.3390/land11122197
APA StyleLi, J., Liu, Y., Xie, S., Li, M., Chen, L., Wu, C., Yan, D., & Luan, Z. (2022). Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake. Land, 11(12), 2197. https://doi.org/10.3390/land11122197