Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Indicator |
---|
1. Agri-environmental commitments |
2. Agricultural areas under Natura 2000 |
3. Farmers’ training level and use of environmental farm advisory services |
4. Area under organic farming |
5. Mineral fertilizer consumption |
6. Consumption of pesticides |
7. Irrigation |
8. Energy use |
9. Land use change |
10. Cropping patterns, Livestock patterns |
11. Soil cover, Tillage practices, Manure storage |
12. Intensification/extensification |
13. Specialization |
14. Risk of land abandonment |
15. Gross nitrogen balance |
16. Risk of pollution by phosphorus |
17. Pesticide risk |
18. Ammonia emissions |
19. Greenhouse gas emissions |
20. Water abstraction |
21. Soil erosion |
22. Genetic diversity |
23. High Nature Value farmland |
24. Production of renewable energy |
25. Population trends of farmland birds |
26. Soil quality |
27. Water Quality—Nitrate pollution, Pesticide pollution |
28. Landscape—state and diversity |
References
- European Commission. The New Common Agricultural Policy: 2023–27; Publications Office of the European Union: Luxembourg; Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_en (accessed on 10 August 2022).
- European Commission. Farm to Fork Strategy. For a Fair, Healthy and Environmentally-Friendly Food System; Publications Office of the European Union: Luxembourg, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 10 August 2022).
- Schebesta, H.; Candel, J.J. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A.; Sompolska-Rzechuła, A.; Pawłowska-Tyszko, J.; Soliwoda, M. Crop insurance, land productivity and the environment: A way forward to a better understanding. Agriculture 2021, 11, 1108. [Google Scholar] [CrossRef]
- Fuglie, K.O. Is agricultural productivity slowing? Glob. Food Secur. 2018, 17, 73–83. [Google Scholar] [CrossRef]
- FAO. Productivity and Efficiency Measurement in Agriculture; Literature Review and Gaps Analysis. 2017. Available online: https://www.fao.org/3/ca6428en/ca6428en.pdf (accessed on 20 October 2022).
- Yamada, S.; Ruttan, V.W. International comparisons of productivity in agriculture. In New Developments in Productivity Measurement; University of Chicago Press: Chicago, IL, USA, 1980; pp. 507–594. [Google Scholar]
- Sharma, K.C.; Rao, D.P.; Shepherd, W.F. Productivity of agricultural labour and land: An international comparison. Agric. Econ. 1990, 4, 1–12. [Google Scholar] [CrossRef]
- Gajić, M.; Matkovski, B.; Zekić, S.; Đokić, D. Development performances of agriculture in the Danube region countries. Econ. Agric. 2015, 62, 921–936. [Google Scholar] [CrossRef] [Green Version]
- Birovljev, J.; Đokić, D.; Matkovski, B.; Kleut, Ž. Economic performances of agriculture of CEFTA and former CEFTA countries. Econ. Agric. 2017, 64, 1413–1424. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for Agricultural Sustainable Intensification: A Review of Research. Land 2019, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a com-plex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Solly, A.; Berisha, E.; Cotella, G. Towards Sustainable Urbanization. Learning from What’s Out There. Land 2021, 10, 356. [Google Scholar] [CrossRef]
- OECD. Towards Sustainable Land Use: Aligning Biodiversity, Climate, and Food Policies. Available online: https://www.oecd-ilibrary.org/sites/3809b6a1-en/1/2/1/index.html?itemId=/content/publication/3809b6a1-en&_csp_=5db648acc373bad6d1abd3dc5e769aca&itemIGO=oecd&itemContentType=book#section-d1e637 (accessed on 20 August 2022).
- IPBES. The IPBES Assessment Report on Land Degradation and Restoration. Available online: https://ipbes.net/assessment-reports/ldr (accessed on 20 August 2022).
- Taddese, S. The Impacts of Land Degradation on Crop Productivity in Ethiopia: A Review. J. Environ. Earth Sci. 2018, 8, 102–106. [Google Scholar]
- ELD. Report for Policy and Decision Makers: Reaping Economic and Environmental Benefits from Sustainable Land Management; Economics of Land Degradation (ELD) Initiative: Bonn, Germany, 2015. [Google Scholar]
- Kopittke, P.; Menzies, N.; Wang, P.; McKenna, B.; Lombi, E. Soil and the intensifi-cation of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, M. Agricultural intensification and the damages to human health in relation to agrochemicals: Application of artificial intelli-gence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- European Commission. Agri-Environmental Indicators; Publications Office of the European Union: Luxembourg. Available online: https://ec.europa.eu/eurostat/web/agriculture/agri-environmental-indicators (accessed on 10 August 2022).
- Nin, A.; Ehui, S.; Benin, S. Livestock productivity in developing countries: An assessment. Handb. Agric. Econ. 2007, 3, 2461–2532. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Myeki, L.W.; Bahta, Y.T.; Matthews, N. Exploring the Growth of Agricultural Productivity in AFRICA: A Färe-Primont Index Approach. Agriculture 2022, 12, 1236. [Google Scholar] [CrossRef]
- Dakpo, K.H.; Desjeux, Y.; Jeanneaux, P.; Latruffe, L. Productivity, technical efficiency and technological change in French agriculture during 2002–2015: A Färe-Primont index decomposition using group frontiers and meta-frontier. Appl. Econ. 2019, 51, 1166–1182. [Google Scholar] [CrossRef] [Green Version]
- Griliches, Z. Estimates of the aggregate agricultural production function from cross-sectional data. J. Farm Econ. 1963, 45, 419–428. [Google Scholar] [CrossRef]
- Griliches, Z. Research expenditures, education, and the aggregate agricultural production function. Am. Econ. Rev. 1964, 54, 961–974. Available online: https://www.jstor.org/stable/1809481 (accessed on 12 March 2022).
- Dawson, P.J.; Lingard, J. Management bias and returns to scale in a Cobb-Douglas production function for agriculture. Eur. Rev. Agric. Econ. 1982, 9, 7–24. [Google Scholar] [CrossRef]
- Lau, L.J.; Yotopoulos, P.A. The meta-production function approach to technological change in world agriculture. J. Dev. Econ. 1989, 31, 241–269. [Google Scholar] [CrossRef]
- Swinnen, J.F.M.; Vranken, L. Reforms and agricultural productivity in Central and Eastern Europe and the Former Soviet Republics: 1989–2005. J. Prod. Anal. 2010, 33, 241–258. [Google Scholar] [CrossRef]
- Hayami, Y. Sources of agricultural productivity gap among selected countries. Am. J. Agric. Econ. 1969, 51, 564–575. [Google Scholar] [CrossRef]
- Hayami, Y.; Ruttan, V.W. Agricultural productivity differences among countries. Am. Econ. Rev. 1970, 60, 895–911. [Google Scholar]
- Kawagoe, T.; Hayami, Y.; Ruttan, V.W. The intercountry agricultural production function and productivity differences among countries. J. Dev. Econ. 1985, 19, 113–132. [Google Scholar] [CrossRef]
- Voltr, V. Concept of soil fertility and soil productivity: Evaluation of agricultural sites in the Czech Republic. Arch. Agron. Soil Sci. 2012, 58, 243–251. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/ (accessed on 8 July 2022).
- World Bank. Available online: https://data.worldbank.org/ (accessed on 27 October 2022).
- Agricultural Policy Plus—APP. Available online: http://app.seerural.org/ (accessed on 27 October 2022).
- Martinovska Stojcheska, A.; Kotevska, A.; Janeska Stamenkovska, I.; Dimitrievski, D.; Zhllima, E.; Vaško, Ž.; Bajramović, S.; Kerolli Mustafa, M.; Spahić, M.; Kovačević, V.; et al. Recent Agricultural Policy Developments in the Context of the EU Approximation Process in the Pre-Accession Countries; Martinovska Stojcheska, A., Kotevska, A., Ciaian, P., Ilic, B., Pavloska-Gjorgjieska, D., Salputra, G., Eds.; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Matkovski, B.; Zekić, S.; Đokić, D.; Jurjević, Ž.; Đurić, I. Export Competitiveness of Agri-Food Sector during the EU Integration Process: Evidence from the Western Balkans. Foods 2022, 11, 10. [Google Scholar] [CrossRef]
- Erjavec, E.; Volk, T.; Rednak, M.; Ciaian, P.; Lazdinis, M. Agricultural policies and European Union accession processes in the Western Balkans: Aspirations versus reality. Eurasian Geogr. Econ. 2021, 62, 46–75. [Google Scholar] [CrossRef]
- Khan, M.H. Farm size and land productivity relationships in Pakistan. Pak. Dev. Rev. 1979, 18, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Hartley, J.E. Does the Solow Residual actually measure changes in technology? Rev. Political Econ. 2000, 12, 27–44. [Google Scholar] [CrossRef]
- Marcikić Horvat, A.; Matkovski, B.; Zekić, S.; Radovanov, B. Technical efficiency of agriculture in Western Balkan countries undergoing the process of EU integration. Agric. Econ. Zemědělská Ekon. 2020, 66, 65–73. [Google Scholar] [CrossRef]
- Volk, T.; Rednak, M.; Erjavec, E. Western Balkans agriculture and European integration: Unused potential and policy failures? Post Communist Econ. 2012, 24, 111–123. [Google Scholar] [CrossRef]
- Đokić, D.; Novaković, T.; Tekić, D.; Matkovski, B.; Zekić, S.; Milić, D. Technical Efficiency of Agriculture in the European Union and Western Balkans: SFA Method. Agriculture 2022, 12, 1992. [Google Scholar] [CrossRef]
- Bogdanov, N.; Rodić, V.; Vittuari, M. Structural change and transition in the agricultural sector: Experience of Serbia. Communist Post Communist Stud. 2017, 50, 319–330. [Google Scholar] [CrossRef]
- Dakić, S.; Mijić, K. Regression analysis of the impact of internal factors on return on assets: A case of meat processing enterprises in Serbia. Strateg. Manag. 2020, 25, 1. [Google Scholar] [CrossRef]
- Matkovski, B.; Radovanov, B.; Zekić, S. The Effects of Foreign Agri-food trade Liberalization in South East Europe. Econ. Cas. 2018, 66, 945–966. [Google Scholar]
- Miletić, V.; Ćurčić, N.; Simonović, Z. Quality standardization: A factor of sustainable competitiveness of companies in Serbia. Anal. Ekon. Fak. U Subotici 2020, 44, 99–114. [Google Scholar] [CrossRef]
- Mizik, T. Agri-Food Trade Competitiveness: A Review of the Literature. Sustainability 2021, 13, 11235. [Google Scholar] [CrossRef]
- Matkovski, B.; Zekić, S.; Jurjević, Ž.; Đokić, D. The agribusiness sector as a regional export opportunity: Evidence for the Vojvodina region. Int. J. Emerg. Mark. 2021. [Google Scholar] [CrossRef]
- Krstić, M.; Radivojević, V. Regional Competitiveness: Theoretical and empirical Aspects. In Disruptive Technologies and Eco-Innovation for Sustainable Development; IGI Global Book; Akkucuk, U., Ed.; Engineering Science Reference: Hershey, PA, USA, 2022; pp. 150–170. [Google Scholar]
- Krstić, M.; Filipe, J.A.; Chavaglia, J. Higher Education as a Determinant of the Competitiveness and Sustainable Development of an Economy. Sustainability 2020, 12, 6607. [Google Scholar] [CrossRef]
- Steinfeld, H.; Mooney, H.A.; Schneider, F.; Neville, L.E. (Eds.) Drivers, consequences, and responses. In Livestock in a Changing Landscape; Island Press: Washington, DC, USA, 2013; Volume 1. [Google Scholar]
- Balzer, F.; Zühlke, S.; Hannappel, S. Antibiotics in groundwater under locations with high livestock density in Germany. Water Sci. Technol. Water Supply 2016, 16, 1361–1369. [Google Scholar] [CrossRef]
- Županić, F.Ž.; Radić, D.; Podbregar, I. Climate change and agriculture management: Western Balkan region analysis. Energ. Sustain. Soc. 2021, 11, 51. [Google Scholar] [CrossRef]
- European Commission. Glossary: Livestock Density Index; Publications Office of the European Union: Luxembourg. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_density_index (accessed on 18 July 2022).
- Matkovski, B.; Đokić, D.; Zekić, S.; Jurjević, Ž. Determining Food Security in Crisis Conditions: A Comparative Analysis of the Western Balkans and the EU. Sustainability 2020, 12, 9924. [Google Scholar] [CrossRef]
- Zekić, S.; Kleut, Ž.; Matkovski, B.; Đokić, D. Determining agricultural impact on environment: Evidence for EU-28 and Serbia. Outlook Agric. 2018, 47, 116–124. [Google Scholar] [CrossRef]
- Gordon, I.J. Livestock production increasingly influences wildlife across the globe. Animal 2018, 12, s372–s382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Bindrabam, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biol. Fertil. Soil. 2015, 51, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.S.; Oelofse, M.; Hoeve, M.; Bruun, S. Environmental Impact Assessment on the Production and Use of Biobased Fertilizers. Biorefinery Inorg. 2020, 329–362. [Google Scholar] [CrossRef]
- Hasler, K. Environmental Impact of Mineral Fertilizers: Possible Improvements through the Adoption of Eco-Innovations. 2017. Available online: https://research.wur.nl/en/publications/environmental-impact-of-mineral-fertilizers-possible-improvements (accessed on 27 October 2022).
- Glauben, T.; Svanidze, M.; Götz, L.; Prehn, S.; Jamali Jaghdani, T.; Đurić, I.; Kuhn, L. The War in Ukraine, Agricultural Trade and Risks to Global Food Security. Intereconomics 2022, 57, 157–163. [Google Scholar] [CrossRef]
- FAO. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 8 September 2022).
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture: Systems at Breaking Point. Synthesis Report. Available online: https://www.fao.org/land-water/solaw2021/en/ (accessed on 8 September 2022).
- Willet, J.; Wetser, K.; Vreeburg, J.; Rijnaarts, H.H.M. Review of methods to assess sustainability of industrial water use. Water Resour. Ind. 2019, 21, 100110. [Google Scholar] [CrossRef]
Variables | Coefficients | Std. Error | t-Ratio | p-Value |
---|---|---|---|---|
const. | 1.82 | 0.430308 | 4.234422 | 0.00 *** |
Labor/Land | 0.16 | 0.055803 | 2.804541 | 0.01 ** |
Capital/Land | 0.02 | 0.058507 | 0.333235 | 0.74 |
Fertilizers/Land | 0.24 | 0.029196 | 8.242370 | 0.00 *** |
Livestock/Land | 0.37 | 0.142243 | 2.602155 | 0.01 ** |
R2 | 0.76 | |||
Adjusted R2 | 0.74 | |||
F (4,73) | 56.37 | |||
p-value | 0.00 |
Inputs | Estimated Parameters (C) | r (Growth Rate) | C x r | Contribution to Land Productivity Change (%) |
---|---|---|---|---|
Labor/Land | 0.16 | −1.65% | −0.26% | −43% |
Capital/Land | 0.02 | 1.81% | 0.04% | 6% |
Fertilizers/Land | 0.24 | 4.05% | 0.97% | 160% |
Livestock/Land | 0.37 | −1.83% | −0.68% | −111% |
Production factors | 0.07% | 12% | ||
Residual | 0.54% | 88% | ||
Land productivity growth rate | 0.61% | 0.61% | 100% |
Average 2007–2010 | Average 2011–2014 | Average 2015–2018 | Average | Growth Rate | |
---|---|---|---|---|---|
Albania | 0.62 | 0.62 | 0.64 | 0.63 | −0.36% |
B & H | 0.33 | 0.34 | 0.31 | 0.33 | −0.58% |
Montenegro | 0.19 | 0.28 | 0.37 | 0.27 | 7.65% |
N. Macedonia | 0.32 | 0.25 | 0.25 | 0.28 | −2.76% |
Serbia | 0.54 | 0.49 | 0.48 | 0.50 | −1.14% |
EU-27 | 0.75 | 0.75 | 0.76 | 0.75 | 0.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đokić, D.; Matkovski, B.; Jeremić, M.; Đurić, I. Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans. Land 2022, 11, 2216. https://doi.org/10.3390/land11122216
Đokić D, Matkovski B, Jeremić M, Đurić I. Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans. Land. 2022; 11(12):2216. https://doi.org/10.3390/land11122216
Chicago/Turabian StyleĐokić, Danilo, Bojan Matkovski, Marija Jeremić, and Ivan Đurić. 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans" Land 11, no. 12: 2216. https://doi.org/10.3390/land11122216
APA StyleĐokić, D., Matkovski, B., Jeremić, M., & Đurić, I. (2022). Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans. Land, 11(12), 2216. https://doi.org/10.3390/land11122216