The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Results of Literature Search
2.3. Data Treatment
2.4. Principal Component Analysis (PCA)
2.5. Multiple Correspondence Analysis (MCA)
2.6. International Cooperation and Exchange of Information
2.7. Statistical Analysis with RStudio
3. Results
3.1. Primary Data Analysis
3.2. PCA
3.3. MCA
3.4. International Collaboration and Exchange of Information
4. Discussion
4.1. Area- and Species-Specific Patterns Built by Correlations within Methodological Variables
4.2. International Collaboration and Exchange of Information
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Acronym |
---|---|
Norway | NO |
Sweden | SE |
Finland | FI |
Russia | RUSS |
Switzerland | CH |
Italy | ITLY |
Germany | DE |
France | FR |
Bulgaria | BG |
Greece | GR |
FYROM | FYROM |
Albania | ALB |
Lithuania | LT |
Belarus | BYS |
Romania | ROM |
Poland | PL |
Slovakia | SK |
Czech Republic | CZ |
Ukraine | UKR |
Slovenia | SI |
Montenegro | MNE |
Croatia | HR |
Bosnia Herzegovina | BA |
Serbia | RS |
References
- Byrne, M.S.; Peralta, D.M.; Ibañez, E.A.; Nardelli, M.; Túnez, J.I. Non-Invasive Sampling Techniques Applied to Conservation Genetic Studies in Mammals. In Molecular Ecology and Conservation Genetics of Neotropical Mammals; Springer: Cham, Switzerland, 2021; pp. 63–83. [Google Scholar] [CrossRef]
- Taberlet, P.; Luikart, G. Non-Invasive Genetic Sampling and Individual Identification. Biol. J. Linn. Soc. 1999, 68, 41–55. [Google Scholar] [CrossRef]
- Breck, S. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters by William, L. Thompson. Wildl. Soc.Bull. 2006, 34, 897–998. [Google Scholar] [CrossRef]
- Carroll, E.L.; Bruford, M.W.; DeWoody, J.A.; Leroy, G.; Strand, A.; Waits, L.; Wang, J. Genetic and Genomic Monitoring with Minimally Invasive Sampling Methods. Evol. Appl. 2018, 11, 1094–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrbinšek, T.; Jelenčič, M.; Boljte, B.; Konec, M.; Erich, M.; Iosif, R.; Moza, I.; Promberger, B. Report on Analysis of Genetic Samples. In Collected in 2017–2018 on Brown Bears (Ursus Arctos), Eurasian Lynx (Lynx Lynx) and Grey Wolf (Canis Lupus) in a Pilot Area in Southern Carpathians, Romania; University of Ljubljana, Biotechnical Faculty: Ljubljana, Slovenia, 2019. [Google Scholar]
- Dinalp, B.L. Final Report. Available online: https://dinalpbear.eu/wp-content/uploads/LIFE-DINALP-BEAR_final-report_web.pdf (accessed on 30 November 2022).
- Kopatz, A.; Kleven, O.; Kojola, I.; Aspi, J.; Norman, A.J.; Spong, G.; Gyllenstrand, N.; Dalén, L.; Fløystad, I.; Hagen, S.B.; et al. Restoration of Transborder Connectivity for Fennoscandian Brown Bears (Ursus Arctos). Biol. Conserv. 2021, 253, 108936. [Google Scholar] [CrossRef]
- Mueller, S.A.; Reiners, T.E.; Middelhoff, T.L.; Anders, O.; Kasperkiewicz, A.; Nowak, C. The Rise of a Large Carnivore Population in Central Europe: Genetic Evaluation of Lynx Reintroduction in the Harz Mountains. Conserv. Genet. 2020, 21, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Burlaud, R. Transnational Cooperation for the Genetic Monitoring of the Transboundary Eurasian Lynx Population in France, Germany and Switzerland: Review of Knowledge and Prospects for the Future; WWF France: Paris, France, 2022. [Google Scholar]
- Banks, S.C.; Piggott, M.P. Non-Invasive Genetic Sampling Is One of Our Most Powerful and Ethical Tools for Threatened Species Population Monitoring: A Reply to Lavery et al. Biodivers. Conserv. 2022, 31, 723–728. [Google Scholar] [CrossRef]
- Taft, H.R.; McCoskey, D.N.; Miller, J.M.; Pearson, S.K.; Coleman, M.A.; Fletcher, N.K.; Mittan, C.S.; Meek, M.H.; Barbosa, S. Research–Management Partnerships: An Opportunity to Integrate Genetics in Conservation Actions. Conserv. Sci. Pract. 2020, 2, e218. [Google Scholar] [CrossRef]
- Cook, C.N.; Sgrò, C.M. Understanding Managers’ and Scientists’ Perspectives on Opportunities to Achieve More Evolutionarily Enlightened Management in Conservation. Evol. Appl. 2018, 11, 1371–1388. [Google Scholar] [CrossRef]
- Taylor, H.R.; Dussex, N.; van Heezik, Y. Bridging the Conservation Genetics Gap by Identifying Barriers to Implementation for Conservation Practitioners. Glob. Ecol. Conserv. 2017, 10, 231–242. [Google Scholar] [CrossRef]
- Bartoń, K.A.; Zwijacz-Kozica, T.; Zięba, F.; Sergiel, A.; Selva, N. Bears without Borders: Long-Distance Movement in Human-Dominated Landscapes. Glob. Ecol. Conserv. 2019, 17, e00541. [Google Scholar] [CrossRef]
- Papp, C.-R.; Scheele, B.C.; Rákosy, L.; Hartel, T. Transdisciplinary Deficit in Large Carnivore Conservation Funding in Europe. Nat. Conserv. 2022, 49, 31–52. [Google Scholar] [CrossRef]
- Ibouroi, M.T.; Arnal, V.; Cheha, A.; Dhurham, S.A.O.; Montgelard, C.; Besnard, A. Noninvasive Genetic Sampling for Flying Foxes: A Valuable Method for Monitoring Demographic Parameters. Ecosphere 2021, 12, e03327. [Google Scholar] [CrossRef]
- Goossens, B.; Bruford, M.W. Non-Invasive Genetic Analysis in Conservation. In Population Genetics for Animal Conservation; Giorgio, B., Michael, W.B., Heidi, C.H., Annapaolo, R., Cristiano, V., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 167–201. ISBN 9780511626920. [Google Scholar]
- Moradi, F.; Sadeghi, S.M.M.; Heidarlou, H.B.; Deljouei, A.; Boshkar, E.; Borz, S.A. Above-Ground Biomass Estimation in a Mediterranean Sparse Coppice Oak Forest Using Sentinel-2 Data. Ann. For. Res. 2022, 65, 165–182. [Google Scholar] [CrossRef]
- Dinca, L.; Badea, O.; Guiman, G.; Braga, C.; Crisan, V.; Greavu, V.; Murariu, G.; Georgescu, L. Monitoring of Soil Moisture in Long-Term Ecological Research (LTER) Sites of Romanian Carpathians. Ann. For. Res 2018, 61, 171–188. [Google Scholar] [CrossRef]
- Kershaw, F.; Bruford, M.W.; Funk, W.C.; Grueber, C.E.; Hoban, S.; Hunter, M.E.; Laikre, L.; MacDonald, A.J.; Meek, M.H.; Mittan, C.; et al. The Coalition for Conservation Genetics: Working across Organizations to Build Capacity and Achieve Change in Policy and Practice. Conserv. Sci. Pract. 2022, 4, e12635. [Google Scholar] [CrossRef]
- Zemanova, M.A. Poor Implementation of Non-Invasive Sampling in Wildlife Genetics Studies. Rethink. Ecol. 2019, 4, 119–132. [Google Scholar] [CrossRef]
- O’Brien, D.; Laikre, L.; Hoban, S.; Bruford, M.W.; Ekblom, R.; Fischer, M.C.; Hall, J.; Hvilsom, C.; Hollingsworth, P.M.; Kershaw, F.; et al. Bringing Together Approaches to Reporting on within Species Genetic Diversity. J. Appl. Ecol. 2022, 59, 2227–2233. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cremades, R.; Broekman, A.; Sanchez-Plaza, A.; Mitter, H.; Marin, M. Mainstreaming the Nexus Approach in Climate Services Will Enable Coherent Local and Regional Climate Policies. Adv. Clim. Chang. Res. 2021, 12, 752–755. [Google Scholar] [CrossRef]
- Kopatz, A.; Landro, J.; Flagstad, O.; Stokmo, J.A. DNA-Based Monitoring of Large Carnivores in Scandinavia. Dissemination from a Visual Storyline Approach. NINA Report 1999; Norwegian Institute for Nature Research: Trondheim, Norway, 2022. [Google Scholar]
- de Oliveira, M.E.; Saranholi, B.H.; Dirzo, R.; Galetti, P.M. A Review of Philopatry and Dispersal in Felids Living in an Anthropised World. Mamm. Rev. 2022, 52, 208–220. [Google Scholar] [CrossRef]
- Skrbinšek, T.; Luštrik, R.; Majić-Skrbinšek, A.; Potočnik, H.; Kljun, F.; Jelenčič, M.; Kos, I.; Trontelj, P. From Science to Practice: Genetic Estimate of Brown Bear Population Size in Slovenia and How It Influenced Bear Management. Eur. J. Wildl. Res. 2019, 65, 1–15. [Google Scholar] [CrossRef]
- Morin, P.A.; Martien, K.K.; Archer, F.I.; Cipriano, F.; Steel, D.; Jackson, J.; Taylor, B.L. Applied Conservation Genetics and the Need for Quality Control and Reporting of Genetic Data Used in Fisheries and Wildlife Management. J. Hered. 2010, 101, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoban, S.; Bruford, M.; D’Urban Jackson, J.; Lopes-Fernandes, M.; Heuertz, M.; Hohenlohe, P.A.; Paz-Vinas, I.; Sjögren-Gulve, P.; Segelbacher, G.; Vernesi, C.; et al. Genetic Diversity Targets and Indicators in the CBD Post-2020 Global Biodiversity Framework Must Be Improved. Biol. Conserv. 2020, 248, 108654. [Google Scholar] [CrossRef]
- Araminienė, V.; Dinca, L.; Varnagirytė–Kabašinskiene, I.; Enescu, R.; Crisan, V.; Stakėnas, V. Growth and Chemical Composition of Silver Birch: Comparative Study between Lithuania and Romania. J. For. Res. 2021, 32, 2111–2120. [Google Scholar] [CrossRef]
- Zemanova, M.A. Noninvasive Genetic Assessment Is an Effective Wildlife Research Tool When Compared with Other Approaches. Genes 2021, 12, 1672. [Google Scholar] [CrossRef] [PubMed]
- Chisita, C.T.; Abdullahi, I. Rising above the Grain Silo Mentality through Collaboration: Creating Opportunities between the LIS Educators and Practionners in Developing Countries. In Proceedings of the World Library and Information Congress: 78th IFLA General Conference and Assembly, Helsinki, Finland, 11–17 August 2012; pp. 1–16. [Google Scholar]
- Decker, D.J.; Forstchen, A.B.; Siemer, W.F.; Smith, C.A.; Frohlich, R.K.; Schiavone, M.V.; Lederle, P.E.; Pomeranz, E.F. Moving the Paradigm from Stakeholders to Beneficiaries in Wildlife Management. J. Wildl. Manag. 2019, 83, 513–518. [Google Scholar] [CrossRef]
- Ferreira, V. Knowledge Sharing in Forestry. Int. J. Res. Agric. For. 2019, 5, 10–14. [Google Scholar]
- Johnston, J.; Volz, S.; Bruce, K.; Chipman, R.; Luchsinger, J.; Mcconnell, J.; Owens, R. Improuring Wildlife Management Information Transfer for Wildlife Management. Society 2010, 27, 1043–1049. [Google Scholar]
- Tudose, N.C.; Cheval, S.; Ungurean, C.; Broekman, A.; Sanchez-Plaza, A.; Cremades, R.; Mitter, H.; Kropf, B.; Davidescu, S.O.; Dinca, L.; et al. Climate Services for Sustainable Resource Management: The Water—Energy—Land Nexus in the Tărlung River Basin (Romania). Land Use Policy 2022, 119, 106221. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Aberdeen, UK, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 2020, 1, 337–354. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix; 2017. Available online: https://github.com/taiyun/corrplot (accessed on 30 November 2022).
- Josse, J.; Husson, F. MissMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 2016, 70, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Anderson, R.; Babin, B.; Black, W. Multivariate Data Analysis.Pdf. Aust. Cengage 2010, 8, 758. [Google Scholar]
- Dray, S.; Dufour, A.B. The Ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Zitt, M.; Bassecoulard, E.; Okubo, Y. Shadows of the Past in International Cooperation: Collaboration Profiles of the Top Five Producers of Science. Scientometrics 2000, 47, 627–657. [Google Scholar] [CrossRef]
- Seashore, K.; Jones, L.M.; Campbell, E.G.; Louis, K.S.; Jones, L.M.; Campbell, E.G. Machoscope Sharing in Science. Am. Sci. 2014, 90, 304–307. [Google Scholar]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [Green Version]
- Bischof, R.; Milleret, C.; Dupont, P.; Chipperfield, J.; Brøseth, H.; Kindberg, J. RovQuant: Estimating Density, Abundance and Population Dynamics of Bears, Wolverines and Wolves in Scandinavia; Norwegian University of Life Sciences: Ås Municipality, Norway, 2019. [Google Scholar]
- De Barba, M.; Waits, L.P.; Genovesi, P.; Randi, E.; Chirichella, R.; Cetto, E. Comparing Opportunistic and Systematic Sampling Methods for Non-Invasive Genetic Monitoring of a Small Translocated Brown Bear Population. J. Appl. Ecol. 2010, 47, 172–181. [Google Scholar] [CrossRef]
- Solberg, K.H.; Bellemain, E.; Drageset, O.M.; Taberlet, P.; Swenson, J.E. An Evaluation of Field and Non-Invasive Genetic Methods to Estimate Brown Bear (Ursus Arctos) Population Size. Biol. Conserv. 2006, 128, 158–168. [Google Scholar] [CrossRef]
- Estimating Population Size of Elusive Animals with DNA from Hunter-Collected Feces: Four Methods for Brown Bears on JSTOR. Available online: https://www.jstor.org/stable/3591018 (accessed on 22 February 2022).
- Skrbinšek, T.; Jelenčič, M.; Luštrik, R.; Konec, M.; Boljte, B.; Jerina, K.; Černe, R.; Jonozovič, M.; Bartol, M.; Huber, Đ.; et al. Genetic Estimates of Census and Effective Population Sizes of Brown Bears in Northern Dinaric Mountains and South-Eastern Alps Report; University of Ljubljana: Ljubljana, Slovenia, 2017; Available online: https://dinalpbear.eu/wp-content/uploads/DAB2015.C5.PopulationSizeEstimateFinalReport_Skrbin%C5%A1ek-et-al.2017.pdf (accessed on 30 November 2022).
- Skrbinšek, T.; Konec, M.; Jerina, K.; Molinari-Jobin, A.; Molinari, P.; Rauer, G.; Knauer, F.; Bartol, M.; Boljte, B.; Jelenčič, M. Expansion of Bears from Dinaric Mountains into South-Eastern Alps Report Action, C.5: Population Surveillance; University of Ljubljana: Ljubljana, Slovenia, 2019; Available online: https://dinalpbear.eu/wp-content/uploads/ReportC5_Bear-Expansion-towards-Alps-V1.1FINAL.pdf (accessed on 30 November 2022).
- Skrbinšek, T.; Jelenčič, M.; Waits, L.; Kos, I.; Trontelj, P. Highly Efficient Multiplex PCR of Noninvasive DNA Does Not Require Pre-Amplification. Mol. Ecol. Resour. 2010, 10, 495–501. [Google Scholar] [CrossRef]
- Schenker, L.; Bollmann, K.; Rehnus, M.; Brodbeck, S.; Gugerli, F. Hare’s Affairs: Lessons Learnt from a Noninvasive Genetic Monitoring for Tracking Mountain Hare Individuals. Ecol. Evol. 2020, 10, 10150–10166. [Google Scholar] [CrossRef]
- Arthofer, W.; Heussler, C.; Krapf, P.; Schlick-Steiner, B.C.; Steiner, F.M. Identifying the Minimum Number of Microsatellite Loci Needed to Assess Population Genetic Structure: A Case Study in Fly Culturing. Fly 2018, 12, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Caniglia, R.; Fabbri, E.; Galaverni, M.; Milanesi, P.; Randi, E. Noninvasive Sampling and Genetic Variability, Pack Structure, and Dynamics in an Expanding Wolf Population. J. Mammal. 2014, 95, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Rigg, R.; Skrbinšek, T.; Linnell, J. Engaging Hunters and Other Stakeholders in a Pilot Study of Wolves in Slovakia Using Non-Invasive Genetic Sampling; University of Ljubljana: Ljubljana, Slovenia, 2014; Available online: https://lciepub.nina.no/pdf/635622555894332225_PA_Slovakia_FinalReport.pdf (accessed on 30 November 2022).
- Krojerová- Prokešová, J.; Turbaková, B.; Jelenčič, M.; Bojda, M.; Kutal, M.; Skrbinšek, T.; Koubek, P.; Bryja, J. Genetic Constraints of Population Expansion of the Carpathian Lynx at the Western Edge of Its Native Distribution Range in Central Europe. Heredity 2018, 122, 785–799. [Google Scholar] [CrossRef]
- Skrbinšek, T.; Boljte, B.; Jelenčič, M.; Sindičić, M.; Paule, L.; Promberger, B.; Rigg, R.; Bartol, M.; Pop, M.; Kubala, J.; et al. Baseline (Pre-Reinforcement) Genetic Status of SE Alpine and Dinaric Lynx Population Action A3; University of Ljubljana: Ljubljana, Slovenia, 2019. [Google Scholar]
- Mumma, M.A.; Zieminski, C.; Fuller, T.K.; Mahoney, S.P.; Waits, L.P. Evaluating Noninvasive Genetic Sampling Techniques to Estimate Large Carnivore Abundance. Mol. Ecol. Resour. 2015, 15, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Kocijan, I.; Galov, A.; Ćetković, H.; Kusak, J.; Gomerčić, T.; Huber, D. Genetic Diversity of Dinaric Brown Bears (Ursus Arctos) in Croatia with Implications for Bear Conservation in Europe. Mamm. Biol. 2011, 76, 615–621. [Google Scholar] [CrossRef]
- Fedorca, A.; Popa, M.; Jurj, R.; Ionescu, G.; Ionescu, O.; Fedorca, M. Assessing the Regional Landscape Connectivity for Multispecies to Coordinate On-the-Ground Needs for Mitigating Linear Infrastructure Impact in Brasov–Prahova Region. J. Nat. Conserv. 2020, 58, 125903. [Google Scholar] [CrossRef]
- Tsaparis, D.; Karaiskou, N.; Mertzanis, Y.; Triantafyllidis, A. Non-Invasive Genetic Study and Population Monitoring of the Brown Bear (Ursus Arctos) (Mammalia: Ursidae) in Kastoria Region—Greece. J. Nat. Hist. 2015, 49, 393–410. [Google Scholar] [CrossRef]
- Young, J.C.; Waylen, K.A.; Sarkki, S.; Albon, S.; Bainbridge, I.; Balian, E.; Davidson, J.; Edwards, D.; Fairley, R.; Margerison, C.; et al. Improving the Science-Policy Dialogue to Meet the Challenges of Biodiversity Conservation: Having Conversations Rather than Talking at One-Another. Biodivers. Conserv. 2014, 23, 387–404. [Google Scholar] [CrossRef]
Class | Number of Samples Collected Per Individual and Per Year | Number of Sex Markers Used | Number of STRs Used | Number of Sample Types |
---|---|---|---|---|
1 | [0;1.6] | 0 | [0;10] | [1;2] |
2 | [1.6;6.3] | [0;+] | [11;15] | [3;4] |
3 | [6.3;+] | n/a | [16;+] | [5;+] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilinca, E.; Fedorca, A.; Baciu, I.; Fedorca, M.; Ionescu, G. The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians. Land 2022, 11, 2222. https://doi.org/10.3390/land11122222
Ilinca E, Fedorca A, Baciu I, Fedorca M, Ionescu G. The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians. Land. 2022; 11(12):2222. https://doi.org/10.3390/land11122222
Chicago/Turabian StyleIlinca, Elisabeth, Ancuta Fedorca, Iulia Baciu, Mihai Fedorca, and Georgeta Ionescu. 2022. "The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians" Land 11, no. 12: 2222. https://doi.org/10.3390/land11122222
APA StyleIlinca, E., Fedorca, A., Baciu, I., Fedorca, M., & Ionescu, G. (2022). The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians. Land, 11(12), 2222. https://doi.org/10.3390/land11122222