How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River
Abstract
:1. Introduction
2. Theoretical Framework and Research Hypothesis
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Indicator Selection and Data Characteristics
3.3.1. Indicator Selection
3.3.2. Basic Characteristics of Research Data
3.4. Methodology
3.4.1. Kernel Density Estimation
3.4.2. Dynamic Degree of Land Use Change
3.4.3. Getis-Ord Hot-Spot Analysis
3.4.4. Super-SBM Model
3.4.5. Mediating Effect Test
4. Results
4.1. Spatiotemporal Characteristics of RRL
4.1.1. Transfer in and Transfer out of RRL during 2000–2020
4.1.2. Dynamic Degree of RRL Change
4.2. Getis-Ord Hot-Spot Analysis of CLUE Change
4.3. Analysis of the Influence of RRL Change on CLUE and Its Mediating Factors
4.3.1. Direct Impact of RRL Change on CLUE
4.3.2. Analysis of the Mediating Factors of RRL Change on CLUE
5. Discussion
5.1. The Change in RRL and CLUE Shows a Significant Spatiotemporal Difference
5.2. Growth of RRL Will Reduce CLUE
5.3. Impact of RRL on CLUE Is Affected by Mediating Variables
5.4. Research Contribution and Deficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Charles, H.; Godfray, J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; et al. Food Security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrukh, M.U.; Bashir, M.K.; Hassan, S.; Adil, S.A.; Kragt, M.E. Mapping the food security studies in India, Pakistan and Bangladesh: Review of research priorities and gaps. Glob. Food Sec. 2020, 26, 100370. [Google Scholar] [CrossRef]
- FSIN. Global Report on Food Crises 2021: Building Resilience to Prevent Food Crises and Conflict. IFPRI. 2021. Available online: https://www.ifpri.org/event/global-report-food-crises-2021-building-resilience-prevent-food-crises-and-conflict (accessed on 20 August 2022).
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, X.; Liu, J.; Zhou, X.; Zhang, D. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- Cai, J.; Ma, E.; Lin, J.; Liao, L.; Han, Y. Exploring global food security pattern from the perspective of spatio-temporal evolution. J. Geogr. Sci. 2020, 30, 179–196. [Google Scholar] [CrossRef]
- Ke, N.; Zhang, X.; Lu, X.; Kuang, B.; Jiang, B. Regional disparities and influencing factors of eco-efficiency of arable land utilization in China. Land 2022, 11, 257. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Sui, F.; Yang, Y.; Zhao, S. Labor structure, land fragmentation, and land-use efficiency from the perspective of mediation effect: Based on a survey of Garlic Growers in Lanling, China. Land 2022, 11, 952. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Duro, J.A.; Lauk, C.; Kastner, T.; Erb, K.H.; Haberl, H. Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Glob. Environ. Chang. 2020, 64, 102124. [Google Scholar] [CrossRef]
- Zhan, X.; Shao, C.; He, R.; Shi, R. Evolution and efficiency assessment of pesticide and fertiliser inputs to cultivated land in China. Int. J. Environ. Res. Public Health 2021, 18, 3771. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellaku, M.T.; Sebsibe, A.S. Potential of mathematical model-based decision making to promote sustainable performance of agriculture in developing countries: A review article. Heliyon 2022, 8, e08968. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Tang, H.; Dong, Y.; Liu, K.; Jiang, P.; Liu, Y. Knowledge mapping of research on land use change and food security: A visual analysis using CiteSpace and VOSviewer. Int. J. Environ. Res. Public Health 2021, 18, 13065. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Zhu, H. Does economic growth lead to an increase in cultivated land pressure? Evidence from China. Land 2022, 11, 1515. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Han, B.; Sun, R.; Xu, W.; Li, H.; He, J.; Li, J. China’s food security situation and key questions in the new era: A perspective of farmland protection. J. Geogr. Sci. 2022, 32, 1001–1019. [Google Scholar] [CrossRef]
- Pu, M.; Zhong, Y. Rising concerns over agricultural production as COVID-19 spreads: Lessons from China. Glob. Food Sec. 2020, 26, 100409. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Liu, X.; Kong, X.; Liu, G. Restructuring rural settlements based on subjective well-being (SWB): A case study in Hubei province, central China. Land Use Policy 2017, 63, 255–265. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Q. Land use eco-efficiency and its convergence characteristics under the constraint of carbon emissions in China. Int. J. Environ. Res. Public Health 2019, 16, 3172. [Google Scholar] [CrossRef]
- Zhu, S.; Kong, X.; Jiang, P. Identification of the human-land relationship involved in the urbanization of rural settlements in Wuhan city circle, China. J. Rural Stud. 2020, 77, 75–83. [Google Scholar] [CrossRef]
- Cheng, P.; Qin, Y.; Zhu, S.; Kong, X. Ecological disturbance of rural settlement expansion: Evidence from Nantong, Eastern China. Land 2022, 11, 1741. [Google Scholar] [CrossRef]
- Kong, X.; Liu, D.; Tian, Y.; Liu, Y. Multi-objective spatial reconstruction of rural settlements considering intervillage social connections. J. Rural Stud. 2021, 84, 254–264. [Google Scholar] [CrossRef]
- He, Q.; Tan, S.; Yin, C.; Zhou, M. Collaborative optimization of rural residential land consolidation and urban construction land expansion: A case study of Huangpi in Wuhan, China. Comput. Environ. Urban Syst. 2019, 74, 218–228. [Google Scholar] [CrossRef]
- Dong, Y.; Cheng, P.; Kong, X. Spatially explicit restructuring of rural settlements: A dual-scale coupling approach. J. Rural Stud. 2022, 94, 239–249. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Chen, Y.; Ke, X. Coupling coordination development of new-type urbanization and cultivated land low-carbon utilization in the Yangtze River Delta, China. Land 2022, 11, 919. [Google Scholar] [CrossRef]
- Cui, J.; Kong, X.; Chen, J.; Sun, J.; Zhu, Y. Spatially explicit evaluation and driving factor identification of land use conflict in yangtze river economic belt. Land 2021, 10, 43. [Google Scholar] [CrossRef]
- Herzig, A.; Nguyen, T.T.; Ausseil, A.G.E.; Maharjan, G.R.; Dymond, J.R.; Arnhold, S.; Koellner, T.; Rutledge, D.; Tenhunen, J. Assessing resource-use efficiency of land use. Environ. Model. Softw. 2018, 107, 34–49. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.; Tang, L.; Tu, S.; Zhang, Y.; Qu, Y. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric. 2021, 180, 105890. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, J. Spatial-temporal pattern and convergence characteristics of provincial urban land use efficiency under environmental constraints in China. Int. J. Environ. Res. Public Health 2022, 19, 10729. [Google Scholar] [CrossRef]
- Ge, X.J.; Liu, X. Urban land use efficiency under resource-based economic transformation—A case study of shanxi province. Land 2021, 10, 850. [Google Scholar] [CrossRef]
- Han, X.; Zhang, A.; Cai, Y. Spatio-econometric analysis of urban land use efficiency in china from the perspective of natural resources input and undesirable outputs: A case study of 287 cities in china. Int. J. Environ. Res. Public Health 2020, 17, 7297. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Iida, A.; Watanabe, S.; Osawa, K. Efficiency and sustainability of land-resource use on a small island. Environ. Res. Lett. 2019, 14, 54004. [Google Scholar] [CrossRef]
- Sari, D.W.; Hidayat, F.N.; Abdul, I. Efficiency of land use in smallholder palm oil plantations in indonesia: A stochastic frontier approach. For. Soc. 2021, 5, 75–89. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Féres, J.G. Farm size and Land use efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Gu, Z.; Yang, X.; Ren, J.; Fan, Y.; Zhou, Y. A new framework of land use efficiency for the coordination among food, economy and ecology in regional development. Sci. Total Environ. 2020, 710, 135670. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, Y.; Li, Y.; Chen, Y. Dynamic trends and driving forces of land use intensification in the cultivated land of China. J. Geogr. Sci. 2015, 25, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, S.; Cheng, L. Evaluation of cultivated land use efficiency with environmental constraints in the dongting lake eco-economic zone of hunan province, China. Land 2020, 9, 440. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Lu, Z.; Li, Y. The expansion mechanism of rural residential land and implications for sustainable regional development: Evidence from the Baota District in China’s Loess Plateau. Land 2021, 10, 172. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Long, K. Farmers’ identity, property rights cognition and perception of rural residential land distributive justice in China: Findings from Nanjing, Jiangsu Province. Habitat Int. 2018, 79, 99–108. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Su, F.; Tao, R. Rural residential properties in China: Land use patterns, efficiency and prospects for reform. Habitat Int. 2012, 36, 201–209. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Exploring environmental efficiency and total factor productivity of cultivated land use in China. Sci. Total Environ. 2020, 726, 138434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Qu, Y.; Zhan, L.; Jiang, G.; Ma, W.; Dong, X. How to Address “Population Decline and Land Expansion (PDLE)” of rural residential areas in the process of Urbanization: A comparative regional analysis of human-land interaction in Shandong Province. Habitat Int. 2021, 117, 102441. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, Z.; Liang, D.; Xu, Z. Rural residential land transition in the Beijing-Tianjin-Hebei region: Spatial-temporal patterns and policy implications. Land Use Policy 2020, 96, 104700. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Cui, J. Spatial differentiation and influencing factors in the ecological well-being performance of Urban Agglomerations in the Middle Reaches of the Yangtze River: A hierarchical perspective. Int. J. Environ. Res. Public Health 2022, 19, 12867. [Google Scholar] [CrossRef]
- Demirhan, H.; Renwick, Z. Missing value imputation for short to mid-term horizontal solar irradiance data. Appl. Energy 2018, 225, 998–1012. [Google Scholar] [CrossRef]
- Mu, L.; Wang, L.; Wang, Y.; Chen, X.; Han, W. Urban Land Use and Land Cover Change Prediction via Self-Adaptive Cellular Based Deep Learning with Multisourced Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5233–5247. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Rommel, J.; Feng, S. Do land markets improve land-use efficiency? evidence from Jiangsu, China. Appl. Econ. 2020, 52, 317–330. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Dang, H. Urban land use efficiency and coordination in China. Sustainability 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Tang, H.; Lin, F.; Kong, X. Bibliometrics of the nexus between food security and carbon emissions: Hotspots and trends. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Yuan, J.; Bian, Z.; Yan, Q.; Pan, Y. Spatio-temporal distributions of the land use effciency coupling coordination degree in mining cities of western China. Sustainability 2019, 11, 5288. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Jiang, X. Evaluate the economic and environmental efficiency of land use from the perspective of decision-makers’ subjective preferences. Ecol. Indic. 2021, 129, 107984. [Google Scholar] [CrossRef]
- Qu, Y.; Zong, H.; Su, D.; Ping, Z.; Guan, M. Land use change and its impact on landscape ecological risk in typical areas of the Yellow River Basin in China. Int. J. Environ. Res. Public Health 2021, 18, 11301. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Feng, W.; Li, Y.; Li, L. Study on spatial tropism distribution of rural settlements in the Loess Hilly and Gully Region based on natural factors and traffic accessibility. J. Rural Stud. 2022, 93, 441–448. [Google Scholar] [CrossRef]
- Chu, H.J.; Liau, C.J.; Lin, C.H.; Su, B.S. Integration of fuzzy cluster analysis and kernel density estimation for tracking typhoon trajectories in the Taiwan region. Expert Syst. Appl. 2012, 39, 9451–9457. [Google Scholar] [CrossRef]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Policy 2022, 113, 105895. [Google Scholar] [CrossRef]
- Tan, M.J.; Guan, C.H. Are people happier in locations of high property value? Spatial temporal analytics of activity frequency, public sentiment and housing price using twitter data. Appl. Geogr. 2021, 132, 102474. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, H.; Jiang, P.; Chen, J. What is the impact of the establishment of natural reserves on rural residential land? An empirical study from Hunan Province, China. Front. Environ. Sci. 2022, 10, 706. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Qiu, Y.; Zhou, D. Does command-and-control regulation promote green innovation performance? Evidence from China’s industrial enterprises. Sci. Total Environ. 2020, 712, 136362. [Google Scholar] [CrossRef]
- Tone, K.; Toloo, M.; Izadikhah, M. A modified slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2020, 287, 560–571. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L. Three-dimensional intergovernmental competition and urban sprawl: Evidence from Chinese prefectural-level cities. Land Use Policy 2019, 87, 104035. [Google Scholar] [CrossRef]
- Cheng, P.; Dong, Y.; Wang, Z.; Tang, H.; Jiang, P.; Liu, Y. What are the impacts of livelihood capital and distance effect on farmers’ willingness to pay for coastal zone ecological protection? Empirical analysis from the Beibu Gulf of China. Ecol. Indic. 2022, 140, 109053. [Google Scholar] [CrossRef]
- Salmerón Gómez, R.; Rodríguez Sánchez, A.; García, C.G.; García Pérez, J. The VIF and MSE in raise regression. Mathematics 2020, 8, 605. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, H.; Zhu, S.; Jiang, P.; Wang, J.; Kong, X.; Liu, K. Distance to river basin affects residents’ willingness to pay for ecosystem services: Evidence from the Xijiang river basin in China. Ecol. Indic. 2021, 126, 107691. [Google Scholar] [CrossRef]
- Hangartner, D.; Kopp, D.; Siegenthaler, M. Monitoring hiring discrimination through online recruitment platforms. Nature 2021, 589, 572–576. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, J.; Yang, T.; Ding, T. Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions. J. Environ. Manag. 2023, 325, 116423. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Fan, M. Do the rich have stronger willingness to pay for environmental protection? New evidence from a survey in China. World Dev. 2018, 105, 83–94. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, Q.-Y.; Su, K.; Zhang, Z.-X. Spatiotemporal dynamics and obstacles of the multi-functionality of land use in Xiangxi, China. Appl. Sci. 2019, 9, 3649. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xin, L. Assessment of the efficiency of cultivated land occupied by urban and rural construction land in China from 1990 to 2020. Land 2022, 11, 941. [Google Scholar] [CrossRef]
Variables | Indicators | Indicator Description | Unit |
---|---|---|---|
Input | Labor force (LF) | Number of agricultural employees | 104 people |
Cultivated land (CL) | Total area of cultivated land | 104 hm2 | |
Agricultural machinery (AM) | Total power of agricultural machinery | 104 kW | |
Irrigation (IR) | Effective irrigation area | 104 hm2 | |
Pesticide (PE) | Pesticide usage | 104 t | |
Fertilizer (FE) | Agricultural chemical fertilizer usage | 104 t | |
Agricultural plastic film (APF) | Agricultural plastic film usage | 104 t | |
Expected output | Social benefits (SB) | Total grain output | 104 t |
Economic benefits (ENB) | Gross value of agricultural output | 108 RMB | |
Unexpected output | Ecological benefits (ELB) | Total carbon emissions from cultivated land use | 106 t |
Variables | Indicators | Indicator Description | Unit |
---|---|---|---|
Dependent variable | Cultivated land use efficiency (CLUE) | Actual utilization efficiency of cultivated land | % |
Independent variable | Rural residential land (RRL) | RRL area | 104 hm2 |
Mediating variables | Per capita cultivated land area (PCLA) | Total area of cultivated land/total permanent population of the city | m2 |
Rural permanent population (RPP) | ― | 104 people | |
The area of cultivated land occupied by rural residential land (CLRRL) | ― | 104 hm2 | |
Control variables | Gross domestic product (GDP) | Regional GDP | 104 RMB |
Total regional population (TRP) | Total permanent population of the city | 104 people | |
Per capita disposable income of farmers (PDIF) | ― | 104 RMB | |
Urban construction land area (UCLA) | ― | 104 hm2 | |
Proportion of the primary industry (PPI) | Proportion of output value of the primary industry in the total output value of primary, secondary, and tertiary industries | % | |
Proportion of nongrain crop sown area (PNG) | Nongrain crop sown area/total crop sown area | % |
Variables | Unit | 2000 | 2010 | 2020 | Variables | Unit | 2000–2010 | 2010–2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M. | S.D. | M. | S.D. | M. | S.D. | M. | S.D. | M. | S.D. | ||||
LF | 104 people | 278.53 | 24.86 | 260.04 | 25.04 | 193.6 | 18.96 | RRL | 104 hm2 | 0.62 | 0.07 | 0.67 | 0.08 |
CL | 104 hm2 | 41.97 | 3.64 | 40.96 | 3.56 | 40.55 | 3.54 | PCLA | m2 | 145.01 | 11.98 | 751.79 | 24.89 |
AM | 104 kW | 107.54 | 10.26 | 284.43 | 25.79 | 307.03 | 29.06 | RPP | 104 people | 103.05 | 8.47 | 250.51 | 13.45 |
IR | 104 hm2 | 16.19 | 1.45 | 16.12 | 1.54 | 20.13 | 1.91 | CLRRL | 104 hm2 | 0.52 | 0.03 | 0.49 | 0.02 |
PE | 104 t | 0.61 | 0.06 | 0.88 | 0.09 | 0.55 | 0.06 | GDP | 104 RMB | 757.15 | 129.63 | 1665.89 | 281.86 |
FE | 104 t | 25.01 | 3.71 | 17.34 | 1.82 | 15.19 | 1.71 | TRP | 104 people | 97.96 | 6.99 | 97.57 | 9.84 |
APF | 104 t | 0.27 | 0.02 | 0.43 | 0.04 | 0.44 | 0.04 | PDIF | 104 RMB | 0.36 | 0.02 | 1.19 | 0.04 |
SB | 104 t | 163.19 | 14.51 | 194.51 | 18.39 | 188.47 | 18.86 | UCLA | 104 hm2 | 0.04 | 0.01 | 0.06 | 0.02 |
ENB | 108 RMB | 59.72 | 6.18 | 137.82 | 15.55 | 205.08 | 19.19 | PPI | % | 0.14 | 0.01 | 0.11 | 0.01 |
ELB | 106 t | 6.36 | 0.93 | 17.89 | 3.08 | 13.72 | 3.07 | PNG | % | 0.16 | 0.01 | 0.24 | 0.01 |
Provinces | Cities | 2000–2010 | 2010–2020 | 2000–2020 | |||
---|---|---|---|---|---|---|---|
Area Change (hm2) | Change Dynamics (%) | Area Change (hm2) | Change Dynamics (%) | Area Change (hm2) | Change Dynamics (%) | ||
Jiangxi | Nanchang | 843.84 | 0.50 | 924.93 | 0.53 | 1768.77 | 0.53 |
Jingdezhen | 369.09 | 0.51 | −133.74 | −0.18 | 235.35 | 0.16 | |
Pingxiang | 2327.22 | 4.38 | 351.18 | 0.46 | 2678.4 | 2.52 | |
Jiujiang | 2574.99 | 1.19 | −1574.64 | −0.65 | 1000.35 | 0.23 | |
Xinyu | 2583.99 | 2.02 | −1796.85 | −1.17 | 787.14 | 0.31 | |
Yingtan | 842.40 | 1.53 | −501.21 | −0.79 | 341.19 | 0.31 | |
Ganzhou | 2751.84 | 0.99 | −467.19 | −0.15 | 2284.65 | 0.41 | |
Ji’an | 2298.06 | 0.61 | 24.48 | 0.01 | 2322.54 | 0.31 | |
Yichun | 8431.38 | 2.32 | −2801.34 | −0.63 | 5630.04 | 0.78 | |
Fuzhou | 1301.85 | 0.89 | 92.43 | 0.06 | 1394.28 | 0.47 | |
Shangrao | 1884.42 | 0.73 | −259.38 | −0.09 | 1625.04 | 0.31 | |
Hubei | Wuhan | −346.32 | −0.13 | 1341.81 | 0.52 | 995.49 | 0.19 |
Huangshi | 499.14 | 0.32 | −266.40 | −0.17 | 232.74 | 0.08 | |
Shiyan | −187.74 | −0.75 | 559.62 | 2.41 | 371.88 | 0.74 | |
Yichang | 720.09 | 0.34 | 340.56 | 0.16 | 1060.65 | 0.25 | |
Xiangyang | 7747.20 | 2.23 | −4973.04 | −1.17 | 2774.16 | 0.40 | |
Ezhou | −264.60 | −0.25 | 613.71 | 0.58 | 349.11 | 0.16 | |
Jingmen | 1447.56 | 0.55 | −264.42 | −0.09 | 1183.14 | 0.22 | |
Xiaogan | 119.88 | 0.04 | 678.15 | 0.20 | 798.03 | 0.12 | |
Jingzhou | 1530.36 | 0.27 | 256.32 | 0.04 | 1786.68 | 0.15 | |
Huanggang | 25.29 | 0.00 | 715.86 | 0.14 | 741.15 | 0.07 | |
Xianning | −201.06 | −0.20 | 309.60 | 0.31 | 108.54 | 0.05 | |
Suizhou | 293.13 | 0.90 | 13.32 | 0.04 | 306.45 | 0.47 | |
Enshi | 534.96 | 6.52 | −227.34 | −1.68 | 307.62 | 1.88 | |
Xiantao | 51.30 | 0.02 | 254.88 | 0.10 | 306.18 | 0.06 | |
Qianjiang | 295.74 | 0.16 | −238.50 | −0.13 | 57.24 | 0.02 | |
Tianmen | −756.00 | −0.27 | 898.20 | 0.33 | 142.2 | 0.03 | |
Shennongjia | −4.68 | −0.84 | 35.64 | 6.98 | 30.96 | 2.78 | |
Hunan | Changsha | −39.15 | −0.03 | 87.66 | 0.07 | 48.51 | 0.02 |
Zhuzhou | −548.73 | −0.45 | 706.50 | 0.60 | 157.77 | 0.06 | |
Xiangtan | −131.85 | −0.24 | 45.45 | 0.08 | −86.4 | −0.08 | |
Hengyang | 124.38 | 0.09 | 385.29 | 0.29 | 509.67 | 0.19 | |
Shaoyang | 439.74 | 0.38 | 143.37 | 0.12 | 583.11 | 0.25 | |
Yueyang | 574.29 | 0.35 | 562.86 | 0.33 | 1137.15 | 0.35 | |
Changde | −707.76 | −0.27 | 1204.38 | 0.47 | 496.62 | 0.09 | |
Zhangjiajie | −116.82 | −0.44 | 38.70 | 0.15 | −78.12 | −0.15 | |
Yiyang | −429.12 | −0.35 | 270.27 | 0.23 | −158.85 | −0.07 | |
Chenzhou | −61.74 | −0.04 | 243.36 | 0.17 | 181.62 | 0.06 | |
Yongzhou | −62.64 | −0.04 | 10.80 | 0.01 | −51.84 | −0.02 | |
Huaihua | 48.96 | 0.05 | 114.21 | 0.13 | 163.17 | 0.09 | |
Loudi | 115.83 | 0.15 | 162.90 | 0.20 | 278.73 | 0.17 | |
Xiangxi | −4375.44 | −4.12 | −39.33 | −0.06 | −4414.77 | −2.08 |
Variables | 2000–2010 | 2010–2020 | 2000–2020 | |||
---|---|---|---|---|---|---|
C. | S.D. | C. | S.D. | C. | S.D. | |
Constant | 0.939621 *** | 0.047004 | 0.520387 *** | 0.056517 | 0.579584 *** | 0.045357 |
RRL | −0.127247 ** | 0.053144 | −0.009909 | 0.060372 | −0.157018 ** | 0.057842 |
GDP | 0.108573 | 0.105358 | 0.513858 *** | 0.141018 | 1.135845 *** | 0.114932 |
TRP | −0.389996 *** | 0.058736 | 0.041316 | 0.088263 | −0.451061 *** | 0.073171 |
PDIF | 0.155043 ** | 0.062931 | −0.509704 *** | 0.082945 | −0.316739 *** | 0.064036 |
UCLA | 0.228848 ** | 0.092503 | −0.283182 ** | 0.109524 | −0.579463 *** | 0.083946 |
PPI | −0.301542 *** | 0.043041 | 0.153766 *** | 0.042263 | −0.181923 *** | 0.034911 |
PNG | 0.039527 | 0.038681 | −0.331165 *** | 0.070238 | 0.489428 *** | 0.042902 |
F | 13.21 | 8.40 | 45.89 | |||
R-squared | 0.2199 | 0.1521 | 0.4948 | |||
p value | 0.000 | 0.000 | 0.000 |
Variables | Removed Provincial Capital City Data | Ordered Logit Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000–2010 | 2010–2020 | 2000–2020 | 2010–2020 | 2010–2020 | 2000–2020 | |||||||
C. | S.D. | C. | S.D. | C. | S.D. | C. | S.D. | C. | S.D. | C. | S.D. | |
RRL | −0.13731 ** | 0.05501 | −0.00406 | 0.06531 | −0.14824 ** | 0.06111 | −1.24713 ** | 0.70001 | −0.19821 | 0.69258 | −1.87082 ** | 0.74112 |
GDP | −0.17932 | 0.14641 | 0.41826 ** | 0.16373 | 1.42148 *** | 0.12883 | 3.53442 ** | 1.39416 | 9.10687 *** | 1.55349 | 14.0963 *** | 1.72662 |
TRP | −0.25952 *** | 0.06843 | −0.06156 | 0.10386 | −0.45061 *** | 0.08996 | −6.99636 *** | 082588 | −0.57016 | 0.93038 | −4.31402 *** | 1.01505 |
PDIF | 0.29945 *** | 0.06738 | −0.61751 *** | 0.09836 | −0.31604 *** | 0.07334 | 0.93239 | 0.79891 | −6.50564 *** | 0.84933 | −5.40867 *** | 0.99855 |
UCLA | 1.11422 *** | 0.20143 | −0.52024 | 0.48476 | −2.09671 *** | 0.30987 | 1.07355 | 1.15748 | −5.39479 *** | 1.05603 | −7.73185 *** | 1.17954 |
PPI | −0.41844 ** | 0.04797 | 0.15233 *** | 0.04469 | −0.11255 ** | 0.04021 | −1.44119 ** | 0.66017 | 2.71976 *** | 0.43585 | −2.09945 *** | 0.53446 |
PNG | 0.09256 *** | 0.0403 | −0.37452 *** | 0.07523 | 0.52978 *** | 0.04376 | −1.11937 ** | 0.51745 | −1.58571 | 0.98215 | 6.69406 *** | 0.73265 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variables | 2000–2010 | 2010–2020 | 2000–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
PCLA | RPP | CLRRL | PCLA | RPP | CLRRL | PCLA | RPP | CLRRL | |
Constant | 0.911686 *** | 0.047731 | 0.206975 *** | 0.546806 *** | 0.577096 *** | 0.788445 *** | 0.601736 *** | 0.379316 *** | 0.187229 *** |
RRL | −0.174552 *** | 0.388241 *** | 0.832353 *** | 0.000146 | −0.042281 | −0.118101 ** | −0.008667 | 0.026543 | 0.842947 *** |
GDP | 0.158959 | −0.870447 *** | 0.453512 *** | 0.677937 *** | −0.965634 *** | 0.563437 *** | 0.627969 *** | −0.372766 ** | 0.793678 *** |
TRP | −0.998076 *** | 0.450798 *** | −0.444819 *** | −0.625535 *** | −0.230604 ** | 0.001496 | −0.789471 *** | −0.516846 *** | −0.115712 |
PDIF | −0.256741 *** | 0.163413 ** | −0.077721 | −0.036981 | 0.756335 *** | −0.247157 *** | 0.037361 | 0.236381 ** | −0.291865 *** |
UCLA | 0.105647 | 0.338092 ** | 0.148308 | −0.253552 *** | 0.994001 *** | −0.128424 | −0.045891 | 0.611912 *** | −0.310729 ** |
PPI | 0.157919 *** | 0.252383 *** | 0.063553 | 0.028285 | 0.070417 | −0.335185 *** | −0.130632 *** | 0.404827 *** | −0.138858 *** |
PNG | −0.053527 | −0.093955 * | −0.277488 *** | 0.238443 *** | 0.033784 | −0.555086 *** | 0.201429 *** | −0.179173 *** | −0.538831 *** |
F | 101.99 | 28.70 | 52.55 | 35.69 | 19.21 | 47.11 | 38.43 | 59.11 | 78.75 |
R-squared | 0.6852 | 0.3799 | 0.5286 | 0.4323 | 0.2908 | 0.5013 | 0.4506 | 0.5578 | 0.6270 |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variables | 2000–2010 | 2010–2020 | 2000–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
MNL-1 | MNL-2 | MNL-3 | MNL-1 | MNL-2 | MNL-3 | MNL-1 | MNL-2 | MNL-3 | |
Constant | 1.223971 *** | 0.928423 *** | 0.978189 *** | 0.959923 *** | 0.545352 *** | 0.692641 *** | 0.568219 *** | 0.579098 *** | 0.573263 *** |
RRL | −0.072806 | −0.036162 | −0.282348 *** | −0.010027 | −0.008081 | −0.015892 | −0.157182 ** | −0.156984 ** | −0.128561 * |
PCLA | −0.311894 *** | −0.803823 *** | 0.018887 | ||||||
RPP | 0.234611 *** | −0.043259 | 0.001282 | ||||||
CLRRL | −0.186340 *** | −0.218471 *** | 0.033759 ** | ||||||
GDP | 0.158152 | 0.312789 ** | 0.193081 * | 1.058801 *** | 0.472085 ** | 0.636953 *** | 1.123984 *** | 1.136323 *** | 1.109051 *** |
TRP | −0.701291 *** | −0.495758 *** | −0.472884 *** | −0.461503 *** | 0.031341 | 0.041643 | −0.436149 *** | −0.450397 *** | −0.447153 *** |
PDIF | 0.074967 | 0.116705 * | 0.140561 ** | −0.539431 *** | −0.476986 *** | −0.563701 *** | −0.317444 *** | −0.317042 *** | −0.306886 *** |
UCLA | 0.261799 *** | 0.149528 * | 0.256484 ** | −0.486993 *** | −0.240182 ** | −0.311239 ** | −0.578596 *** | −0.580247 *** | −0.568973 *** |
PPI | −0.252288 *** | −0.360754 *** | −0.289699 *** | 0.176503 *** | 0.156812 *** | 0.080538 * | −0.179456 *** | −0.182442 *** | −0.177235 *** |
PNG | 0.022832 | 0.061571 * | −0.012179 | −0.139499 ** | −0.329704 *** | −0.452435 *** | 0.485623 *** | 0.489658 *** | 0.507619 *** |
F | 17.30 | 16.42 | 14.69 | 17.96 | 7.44 | 9.04 | 40.05 | 40.04 | 40.18 |
R-squared | 0.2974 | 0.2866 | 0.2644 | 0.3053 | 0.1541 | 0.1812 | 0.4949 | 0.4948 | 0.4957 |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mediating Variables | Mediating Effect | S.D. | Lower 95% Confidence Interval | Upper 95% Confidence Interval | Test Results | |
---|---|---|---|---|---|---|
2000–2010 | RRL → PCLA → CLUE | 0.054441 *** | 0.012435 | 0.030068 | 0.078815 | Establish |
RRL → RPP → CLUE | 0.091085 ** | 0.033216 | 0.025982 | 0.156188 | Establish | |
RRL → CLRRL → CLUE | −0.155101 *** | 0.037825 | −0.229236 | −0.080964 | Establish | |
2010–2020 | RRL → PCLA → CLUE | −0.000117 | 0.020922 | −0.041124 | 0.040889 | Not Established |
RRL → RPP → CLUE | 0.001829 | 0.008629 | −0.015084 | 0.018743 | Not Established | |
RRL → CLRRL → CLUE | 0.025801 ** | 0.009544 | 0.007095 | 0.044507 | Establish | |
2000–2020 | RRL → PCLA → CLUE | −0.000163 | 0.005893 | −0.011714 | 0.011387 | Not Established |
RRL → RPP → CLUE | 0.000034 | 0.003339 | −0.006511 | 0.006579 | Not Established | |
RRL → CLRRL → CLUE | 0.028457 ** | 0.039255 | 0.048481 | 0.105396 | Establish |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Wu, Y.; Chen, J.; Deng, L.; Zeng, M. How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River. Land 2022, 11, 2263. https://doi.org/10.3390/land11122263
Tang H, Wu Y, Chen J, Deng L, Zeng M. How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River. Land. 2022; 11(12):2263. https://doi.org/10.3390/land11122263
Chicago/Turabian StyleTang, Houtian, Yuanlai Wu, Jinxiu Chen, Liuxin Deng, and Minjie Zeng. 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River" Land 11, no. 12: 2263. https://doi.org/10.3390/land11122263
APA StyleTang, H., Wu, Y., Chen, J., Deng, L., & Zeng, M. (2022). How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River. Land, 11(12), 2263. https://doi.org/10.3390/land11122263