Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Datasets
Supervised Classification
2.3. Methods
2.3.1. Cellular Automata
2.3.2. Markov Prediction Model
2.3.3. Land Cover Change Detection
2.3.4. Model Validation
2.3.5. Dynamic Rate Changer of Land Use and Land Cover
3. Results
3.1. Image Classification and Accuracy Assessment
3.2. Land Cover Transformation Dynamics
3.3. Area Transfer and Probability Matrix of LULC
4. Discussion
4.1. Historical Land Use-Land Cover Changes
4.2. Land Cover Prediction Using Transition Probabilities and Transition Matrix
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spruce, J.; Bolten, J.; Mohammed, I.N.; Srinivasan, R.; Lakshmi, V. Mapping land use land cover change in the Lower Mekong Basin from 1997 to 2010. Front. Environ. Sci. 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alawamy, J.S.; Balasundram, S.K.; Mohd Hanif, A.H.; Boon Sung, C.T. Detecting and analyzing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability 2020, 12, 4490. [Google Scholar] [CrossRef]
- Thakur, T.K.; Patel, D.K.; Bijalwan, A.; Dobriyal, M.J.; Kumar, A.; Thakur, A.; Bohra, A.; Bhat, J.A. Land use land cover change detection through geospatial analysis in an Indian Biosphere Reserve. Trees For. People 2020, 2, 100018. [Google Scholar] [CrossRef]
- Gedefaw, A.A.; Atzberger, C.; Bauer, T.; Agegnehu, S.K.; Mansberger, R. Analysis of land cover change detection in Gozamin District, Ethiopia: From remote sensing and DPSIR perspectives. Sustainability 2020, 12, 4534. [Google Scholar] [CrossRef]
- Dar, M.U.D.; Shah, A.I.; Bhat, S.A.; Kumar, R.; Huisingh, D.; Kaur, R. Blue Green infrastructure as a tool for sustainable urban development. J. Clean. Prod. 2021, 318, 128474. [Google Scholar] [CrossRef]
- Hasan, S.; Shi, W.; Zhu, X. Impact of land use land cover changes on ecosystem service value–A case study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef] [Green Version]
- Tewabe, D.; Fentahun, T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ. Sci. 2020, 6, 1778998. [Google Scholar] [CrossRef]
- Yulianto, F.; Nugroho, U.C.; Nugroho, N.P.; Sunarmodo, W.; Khomarudin, M.R. Spatial-temporal dynamics land use/land cover change and flood hazard mapping in the Upstream Citarum Watershed, West Java, Indonesia. Quaest. Geogr. 2020, 39, 125–146. [Google Scholar] [CrossRef]
- Guirado, E.; Blanco-Sacristán, J.; Rodríguez-Caballero, E.; Tabik, S.; Alcaraz-Segura, D.; Martínez-Valderrama, J.; Cabello, J. Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors. Sensors 2021, 21, 320. [Google Scholar] [CrossRef]
- Bufebo, B.; Elias, E. Effects of Land Use/Land Cover Changes on Selected Soil Physical and Chemical Properties in Shenkolla Watershed, South Central Ethiopia. Adv. Agric. 2020, 2020, 5145483. [Google Scholar] [CrossRef]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Almazroui, M.; Mashat, A.; Assiri, M.E.; Butt, M.J. Application of landsat data for urban growth monitoring in Jeddah. Earth Syst. Environ. 2017, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Tena, T.M.; Mwaanga, P.; Nguvulu, A. Impact of land use/land cover change on hydrological components in Chongwe River Catchment. Sustainability 2019, 11, 6415. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.A.; Dar, M.U.D.; Meena, R.S. Soil erosion and management strategies. In Sustainable Management of Soil and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 73–122. [Google Scholar]
- Ul Zaman, M.; Bhat, S.; Sharma, S.; Bhat, O. Methods to control soil erosion-a review. Int. J. Pure Appl. Biosci 2018, 6, 1114–1121. [Google Scholar] [CrossRef]
- Matlhodi, B.; Kenabatho, P.K.; Parida, B.P.; Maphanyane, J.G. Evaluating land use and land cover change in the Gaborone dam catchment, Botswana, from 1984–2015 using GIS and remote sensing. Sustainability 2019, 11, 5174. [Google Scholar] [CrossRef] [Green Version]
- Omar, P.J.; Gupta, N.; Tripathi, R.P.; Shekhar, S. A study of change in agricultural and forest land in Gwalior city using satellite imagery. SAMRIDDHI A J. Phys. Sci. Eng. Technol. 2017, 9, 109–112. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, X.; Liang, H.; Meng, Q. Assessing the impact of land cover changes on surface urban heat islands with high-spatial-resolution imagery on a local scale: Workflow and case study. Sustainability 2019, 11, 5188. [Google Scholar] [CrossRef]
- El-Hamid, A.; Hazem, T. Geospatial analyses for assessing the driving forces of land use/land cover dynamics around the Nile Delta Branches, Egypt. J. Indian Soc. Remote Sens. 2020, 48, 1661–1674. [Google Scholar] [CrossRef]
- El-Hamid, H.T.A.; Caiyong, W.; Yongting, Z. Geospatial analysis of land use driving force in coal mining area: Case study in Ningdong, China. GeoJournal 2021, 86, 605–620. [Google Scholar] [CrossRef]
- Ayele, G.T.; Tebeje, A.K.; Demissie, S.S.; Belete, M.A.; Jemberrie, M.A.; Teshome, W.M.; Mengistu, D.T.; Teshale, E.Z. Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia. Air Soil Water Res. 2018, 11, 1178622117751603. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Abd El-Hamid, H.T. Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China. Comput. Electron. Agric. 2020, 172, 105355. [Google Scholar] [CrossRef]
- Mustafa, E.K.; Liu, G.; El-Hamid, A.; Hazem, T.; Kaloop, M.R. Simulation of land use dynamics and impact on land surface temperature using satellite data. GeoJournal 2021, 86, 1089–1107. [Google Scholar] [CrossRef]
- Islam, K.; Jashimuddin, M.; Nath, B.; Nath, T.K. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Space Sci. 2018, 21, 37–47. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang, D.C.; Kirkham, M.B.; O’Connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.-A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.; Al, A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Jamali, A. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Appl. Sci. 2019, 1, 1448. [Google Scholar] [CrossRef]
- Gurjar, S.K.; Tare, V. Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013–14) satellite images: A case study of Ramganga River, India. Environ. Monit. Assess. 2019, 191, 217. [Google Scholar] [CrossRef] [PubMed]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.; Hemp, A. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, 111354. [Google Scholar] [CrossRef]
- Viana, C.M.; Girão, I.; Rocha, J. Long-term satellite image time-series for land use/land cover change detection using refined open source data in a rural region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Talukdar, S. Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environ. Dev. Sustain. 2020, 22, 363–382. [Google Scholar] [CrossRef]
- Auboiroux, V.; Larzabal, C.; Langar, L.; Rohu, V.; Mishchenko, A.; Arizumi, N.; Labyt, E.; Benabid, A.-L.; Aksenova, T. Space–Time–Frequency Multi-Sensor Analysis for Motor Cortex Localization Using Magnetoencephalography. Sensors 2020, 20, 2706. [Google Scholar] [CrossRef] [PubMed]
- Mușuroi, C.; Oproiu, M.; Volmer, M.; Firastrau, I. High sensitivity differential giant magnetoresistance (GMR) based sensor for non-contacting DC/AC current measurement. Sensors 2020, 20, 323. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Rafiq, J.I.; Islam, M.R. Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors 2020, 20, 317. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.; Saadatseresht, M. Imagery Network Fine Registration by Reference Point Cloud Data Based on the Tie Points and Planes. Sensors 2021, 21, 317. [Google Scholar] [CrossRef]
- Maboudi, M.; Amini, J.; Malihi, S.; Hahn, M. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images. ISPRS J. Photogramm. Remote Sens. 2018, 138, 151–163. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Kirimi, F. Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis. Remote Sens. 2020, 12, 1057. [Google Scholar] [CrossRef]
- Ralha, C.G.; Abreu, C.G.; Coelho, C.G.; Zaghetto, A.; Macchiavello, B.; Machado, R.B. A multi-agent model system for land-use change simulation. Environ. Model. Softw. 2013, 42, 30–46. [Google Scholar] [CrossRef]
- Wang, C.; Lei, S.; Elmore, A.J.; Jia, D.; Mu, S. Integrating temporal evolution with cellular automata for simulating land cover change. Remote Sens. 2019, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Sari, F. Assessment of land-use change effects on future beekeeping suitability via CA-Markov prediction model. J. Apic. Sci. 2020, 64, 263–276. [Google Scholar] [CrossRef]
- Rather, M.A.; Meraj, G.; Farooq, M.; Shiekh, B.A.; Kumar, P.; Kanga, S.; Singh, S.K.; Sahu, N.; Tiwari, S.P. Identifying the Potential Dam Sites to Avert the Risk of Catastrophic Floods in the Jhelum Basin, Kashmir, NW Himalaya, India. Remote Sens. 2022, 14, 1538. [Google Scholar] [CrossRef]
- Meraj, G. Assessing the Impacts of Climate Change on Ecosystem Service Provisioning In Kashmir Valley India. Ph.D. Thesis. 2021. Available online: http://hdl.handle.net/10603/354338 (accessed on 15 October 2022).
- Meraj, G.; Farooq, M.; Singh, S.K.; Islam, M.; Kanga, S. Modeling the sediment retention and ecosystem provisioning services in the Kashmir valley, India, Western Himalayas. Modeling Earth Syst. Environ. 2022, 8, 3859–3884. [Google Scholar] [CrossRef]
- Bera, A.; Taloor, A.K.; Meraj, G.; Kanga, S.; Singh, S.K.; Đurin, B.; Anand, S. Climate vulnerability and economic determinants: Linkages and risk reduction in Sagar Island, India; A geospatial approach. Quat. Sci. Adv. 2021, 4, 100038. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Ayoub, S.; Altaf, S. Geoinformatics based approach for estimating the sediment yield of the mountainous watersheds in Kashmir Himalaya, India. Geocarto Int. 2018, 33, 1114–1138. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A. Geoinformatics approach to qualitative forest density loss estimation and protection cum conservation strategy-a case study of Pir Panjal range, J&K, India. Int. J. Curr. Res. Rev. 2012, 4, 47–61. [Google Scholar]
- Farooq, M.; Rashid, H.; Meraj, G.; Kanga, S.; Singh, S.K. Assessing the Microclimatic Environmental Indicators of Climate Change of a Temperate Valley in the Western Himalayan Region. In Climate Change, Disaster and Adaptations; Springer: Berlin/Heidelberg, Germany, 2022; pp. 47–61. [Google Scholar]
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G.; Farooq, M.; Kumar, P.; Kanga, S.; Singh, S.K. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2022, 1–24. [Google Scholar] [CrossRef]
- Debnath, J.; Meraj, G.; Das Pan, N.; Chand, K.; Debbarma, S.; Sahariah, D.; Gualtieri, C.; Kanga, S.; Singh, S.K.; Farooq, M. Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE 2022, 17, e0271190. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, H.; Shivakumar, B.; Praveen, J. Pixel-based classification of multispectral remotely sensed data using support vector machine classifier. In National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015); Alva’s Institute of Engineering and Technology: Moodbidri, India, 2015. [Google Scholar]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Fitzsimmons, P.; Getoor, R. Homogeneous random measures and strongly supermedian kernels of a Markov process. Electron. J. Probab. 2003, 8, 1–54. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Omar, N.Q.; Ahamad, M.S.S.; Wan Hussin, W.M.A.; Samat, N.; Binti Ahmad, S.Z. Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. J. Indian Soc. Remote Sens. 2014, 42, 165–178. [Google Scholar] [CrossRef]
- Wang, S.W.; Munkhnasan, L.; Lee, W.-K. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Singh, S.K.; Gupta, M.; Thakur, J.K.; Mukherjee, S. Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS. Environ. Eng. Manag. J. (EEMJ) 2013, 12, 2343–2355. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, Y.; Liu, L.; Li, L.; Li, S.; Zhang, B.; Cui, B.; Rai, M.K. Qualifying land use and land cover dynamics and their impacts on ecosystem service in central himalaya transboundary landscape based on google earth engine. Land 2021, 10, 173. [Google Scholar] [CrossRef]
- Prokop, P. Tea plantations as a driving force of long-term land use and population changes in the Eastern Himalayan piedmont. Land Use Policy 2018, 77, 51–62. [Google Scholar] [CrossRef]
- Mondal, P.P.; Zhang, Y. Research progress on changes in land use and land cover in the western Himalayas (India) and effects on ecosystem services. Sustainability 2018, 10, 4504. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.; Mir, A.; Rasool, R.; Singh, H.; Ahmed, P. A geographical analysis of land use/land cover dynamics in Lolab watershed of Kashmir Valley, Western Himalayas using remote sensing and GIS. J. Remote Sens. GIS 2017, 6, 189. [Google Scholar] [CrossRef]
- Mohan, M.; Pathan, S.K.; Narendrareddy, K.; Kandya, A.; Pandey, S. Dynamics of urbanization and its impact on land-use/land-cover: A case study of megacity Delhi. J. Environ. Prot. 2011, 2, 1274. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Pandey, P.C.; Nathawat, M. Assessment of land consumption rate with urban dynamics change using geospatial techniques. J. Land Use Sci. 2012, 7, 135–148. [Google Scholar] [CrossRef]
- Wania, A.; Kemper, T.; Tiede, D.; Zeil, P. Mapping recent built-up area changes in the city of Harare with high resolution satellite imagery. Appl. Geogr. 2014, 46, 35–44. [Google Scholar] [CrossRef]
- Jain, M.; Dawa, D.; Mehta, R.; Dimri, A.; Pandit, M. Monitoring land use change and its drivers in Delhi, India using multi-temporal satellite data. Modeling Earth Syst. Environ. 2016, 2, 19. [Google Scholar] [CrossRef]
- Shafiq, M.u.; Tali, J.A.; Islam, Z.u.; Qadir, J.; Ahmed, P. Changing Land Surface Temperature in Response to Land use changes in Kashmir valley of Northwestern Himalayas. Geocarto Int. 2022, 1–19. [Google Scholar] [CrossRef]
- Meer, M.S.; Mishra, A.K. Remote sensing application for exploring changes in land-use and land-cover over a district in Northern India. J. Indian Soc. Remote Sens. 2020, 48, 525–534. [Google Scholar] [CrossRef]
- Rasool, R.; Fayaz, A.; ul Shafiq, M.; Singh, H.; Ahmed, P. Land use land cover change in Kashmir Himalaya: Linking remote sensing with an indicator based DPSIR approach. Ecol. Indic. 2021, 125, 107447. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rashid, I. Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab. J. Geosci. 2014, 7, 143–160. [Google Scholar] [CrossRef]
Land Cover | Latitude and Longitude | Elevation (m.a.s.l.) | Topography | Slope (%) | Depth of Soil (cm) | Natural Vegetation |
---|---|---|---|---|---|---|
Agriculture | 34°10′19″ N 74°31′02″ E | 1983 | Undulating | 3–8 | 0–179 | Pinus spp., Ulmus spp., Populus spp., Salix spp., Fir spp., Berberis spp., Aaicheria spp. |
Horticulture | 34° 12′57″ N 74° 21′49″ E | 2385 | Rolling | 8–16 | 0–83 | Pinus spp., Ulmus spp., Populus spp., Wild grass spp., Walnut spp., Celtis spp., Aaicheria spp. |
Agro-Forestry | 34°15′50″ N 74°18′18″ E | 2162 | Foot hills | 16–25 | 0–188 | Pinus spp., Ciderus spp., Populus spp., Ailanthus spp., Walnut spp., Urtica spp., Aaicheria spp., Rumex spp. |
Fallow Land | 34°2′32″ N 74°14′06″ E | 2110 | Rolling | 8–16 | 0–114 | Populus spp., Salix spp, Walnut spp, Taraxicum spp., Malwa spp., Berberis spp., Cotoneaster spp., Aliesthus spp. |
Land Cover | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | |
Water | 74.00 | 1.06 | 68.00 | 0.98 | 54.00 | 0.77 |
Snow | 400.00 | 5.74 | 357.00 | 5.12 | 312.00 | 4.48 |
Vegetation | 1280.00 | 18.36 | 1315.00 | 18.86 | 1365.00 | 19.58 |
Forest | 1823.00 | 26.15 | 1708.00 | 24.50 | 1695.00 | 24.31 |
Agriculture | 1555.00 | 22.30 | 1484.00 | 21.29 | 1397.00 | 20.04 |
Horticulture | 273.00 | 3.92 | 402.00 | 5.77 | 588.00 | 8.43 |
Urban | 677.00 | 9.71 | 918.00 | 13.17 | 984.00 | 14.11 |
Fallow land | 890.00 | 12.77 | 720.00 | 10.33 | 577.00 | 8.28 |
Total | 6972 | 100 | 6972 | 100 | 6972 | 100 |
LC | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | |
Water | 76.19 | 81 | 79.24 | 86.14 | 84.1 | 89.32 |
Snow | 72.9 | 75.2 | 76.31 | 78.23 | 81.3 | 89.6 |
Vegetation | 88.56 | 82.25 | 85.14 | 89.35 | 82.4 | 77.63 |
Forest | 94.03 | 97.44 | 89.26 | 93.54 | 91.54 | 96.37 |
Agriculture | 81.43 | 83.89 | 92.45 | 97.36 | 89.56 | 91.18 |
Horticulture | 86.24 | 89.24 | 93.75 | 98.82 | 95.52 | 98.91 |
Urban | 74.35 | 77.38 | 86.48 | 89.93 | 83.09 | 88.62 |
Fallow land | 80.68 | 78.57 | 84.9 | 89.64 | 94.34 | 95.35 |
Kappa coefficient | 81.79 | 83.12 | 85.94 | 90.37 | 87.73 | 90.87 |
Overall accuracy | 81.13 | 78.09 | 81.0 |
LC | 2000 to 2010 | 2010 to 2020 | 2000 to 2020 | |||
---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | |
Water | 6.00 | 8.11 | 14.00 | 20.59 | 20.00 | 37.04 |
Snow | 43.00 | 10.75 | 45.00 | 12.61 | 88.00 | 28.21 |
Vegetation | −35.00 | −2.73 | −50.00 | −3.80 | −85.00 | −6.23 |
Forest | −115.00 | −6.31 | −13.00 | −0.76 | −128.00 | −7.55 |
Agriculture | 71.00 | 4.57 | 87.00 | 5.86 | 158.00 | 11.31 |
Horticulture | 129.00 | 47.25 | 186.00 | 46.27 | 315.00 | 53.57 |
Urban | 241.00 | 35.60 | 66.00 | 7.19 | 307.00 | −1.20 |
Fallow land | 170.00 | 19.10 | 143.00 | 19.86 | 313.00 | 54.25 |
LC Type | Total (Area/km2) | Unchanged (Area/km2) | Transfer Area (Area/km2) | Transfer Rate (Area/km2) | Gain Area (Area/km2) | Gain Rate (Area/km2) | Rate of Change (Area/km2) | Dynamic Degree % |
---|---|---|---|---|---|---|---|---|
Water | 74.00 | 58.19 | 15.81 | 2.14 | 9.81 | 1.33 | 3.46 | 3.53 |
Snow | 400.00 | 330.47 | 69.53 | 1.74 | 26.53 | 0.66 | 2.40 | 0.91 |
Vegetation | 1280.00 | 1235.56 | 44.44 | 0.35 | 79.44 | 0.62 | 0.97 | 0.12 |
Forest | 1823.00 | 1678.09 | 144.91 | 0.79 | 29.91 | 0.16 | 0.96 | 0.32 |
Agriculture | 1555.00 | 1467.44 | 87.56 | 0.56 | 16.56 | 0.11 | 0.67 | 0.40 |
Horticulture | 273.00 | 250.09 | 22.91 | 0.84 | 151.91 | 5.56 | 6.40 | 0.42 |
Urban | 677.00 | 602.98 | 74.02 | 1.09 | 315.02 | 4.65 | 5.75 | 0.18 |
Fallow land | 890.00 | 654.72 | 235.28 | 2.64 | 65.28 | 0.73 | 3.38 | 0.52 |
LC | Total (Area/km2) | Unchanged (Area/km2) | Transfer Area (Area/km2) | Transfer Rate (Area/km2) | Gain Area (Area/km2) | Gain Rate (Area/km2) | Rate of Change (Area/km2) | Dynamic Degree (%) |
---|---|---|---|---|---|---|---|---|
Water | 68.00 | 48.79 | 19.21 | 2.83 | 5.21 | 0.77 | 3.59 | 6.89 |
Snow | 357.00 | 286.81 | 70.19 | 1.97 | 25.19 | 0.71 | 2.67 | 1.06 |
Vegetation | 1315.00 | 1299.54 | 15.46 | 0.12 | 65.46 | 0.50 | 0.62 | 0.09 |
Forest | 1708.00 | 1662.97 | 45.03 | 0.26 | 32.03 | 0.19 | 0.45 | 0.14 |
Agriculture | 1484.00 | 1313.44 | 170.56 | 1.15 | 83.56 | 0.56 | 1.71 | 0.20 |
Horticulture | 402.00 | 370.1 | 31.90 | 0.79 | 217.90 | 5.42 | 6.21 | 0.29 |
Urban | 918.00 | 734.34 | 183.66 | 2.00 | 249.66 | 2.72 | 4.72 | 0.19 |
Fallow land | 720.00 | 515 | 205.00 | 2.85 | 62.00 | 0.86 | 3.71 | 0.60 |
LC | Water | Snow | Vegetation | Forest | Agriculture | Horticulture | Urban | Fallow Land | Total |
---|---|---|---|---|---|---|---|---|---|
Water | 58.19 | 0.18 | 7.76 | 1.23 | 2.19 | 0.34 | 3.00 | 1.11 | 74.00 |
Snow | 15.67 | 330.47 | 8.97 | 12.56 | 0.15 | 0.89 | 0.00 | 31.29 | 400.00 |
Vegetation | 2.12 | 0.45 | 1235.56 | 8.89 | 3.45 | 12.78 | 14.13 | 2.62 | 1280.00 |
Forest | 2.68 | 15.98 | 20.09 | 1678.09 | 30.88 | 57.09 | 16.09 | 2.10 | 1823.00 |
Agriculture | 2.09 | 0.34 | 1.03 | 0.09 | 1467.44 | 69.00 | 13.56 | 1.45 | 1555.00 |
Horticulture | 0.05 | 0.11 | 1.56 | 1.40 | 3.12 | 250.04 | 14.99 | 1.73 | 273.00 |
Urban | 0.55 | 0.13 | 4.01 | 5.17 | 18.43 | 42.28 | 602.98 | 3.45 | 677.00 |
Fallow land | 1.23 | 0.76 | 3.46 | 38.90 | 50.77 | 70.87 | 69.30 | 654.71 | 890.00 |
Total | 82.58 | 348.42 | 1282.44 | 1746.33 | 1576.43 | 503.29 | 734.05 | 698.46 | 6972.00 |
LC | Water | Snow | Vegetation | Forest | Agriculture | Horticulture | Urban | Fallow Land |
---|---|---|---|---|---|---|---|---|
Water | 59.70 | 3.14 | 4.05 | 1.89 | 8.12 | 7.60 | 5.40 | 10.10 |
Snow | 10.03 | 48.6 | 5.56 | 14.92 | 1.90 | 0.94 | 3.00 | 15.05 |
Vegetation | 2.60 | 1.45 | 38.79 | 15.80 | 6.08 | 20.09 | 10.06 | 5.13 |
Forest | 0.31 | 1.8 | 4.89 | 65.48 | 3.13 | 13.65 | 6.13 | 4.61 |
Agriculture | 0.45 | 0.21 | 2.34 | 4.56 | 51.80 | 24.60 | 11.90 | 4.14 |
Horticulture | 0.11 | 0.07 | 1.78 | 2.54 | 1.67 | 89.09 | 3.79 | 0.95 |
Urban | 0.06 | 0.34 | 2.56 | 3.45 | 4.13 | 9.79 | 78.98 | 0.69 |
Fallow land | 0.67 | 0.35 | 4.89 | 7.90 | 10.62 | 16.57 | 24.89 | 34.11 |
Water | Snow | Vegetation | Forest | Agriculture | Horticulture | Urban | Fallow Land | Total | |
---|---|---|---|---|---|---|---|---|---|
Water | 48.79 | 0.24 | 5.45 | 2.78 | 3.12 | 0.67 | 1.45 | 5.50 | 68.00 |
Snow | 11.11 | 286.81 | 14.45 | 17.89 | 0.87 | 1.22 | 0.08 | 24.57 | 357.00 |
Vegetation | 0.56 | 0.09 | 1299.54 | 4.67 | 1.23 | 5.67 | 3.34 | 0.46 | 1315.00 |
Forest | 0.12 | 1.32 | 2.34 | 1662.97 | 12.78 | 21.09 | 5.67 | 1.83 | 1708.00 |
Agriculture | 0.23 | 0.067 | 8.98 | 12.34 | 1313.08 | 98.99 | 37.98 | 12.56 | 1484.00 |
Horticulture | 0.56 | 0.012 | 1.56 | 4.67 | 2.30 | 370.1 | 21.89 | 1.47 | 402.00 |
Urban | 1.14 | 0.01 | 12.30 | 6.23 | 14.13 | 36.09 | 846.34 | 2.90 | 918.00 |
Fallow land | 3.89 | 5.3 | 12.34 | 20.09 | 39.36 | 93.21 | 34.70 | 515 | 720.00 |
Total | 66.40 | 293.85 | 1356.96 | 1731.64 | 1386.87 | 627.04 | 951.45 | 564.29 | 6972 |
Water | Snow | Vegetation | Forest | Agriculture | Horticulture | Urban | Fallow Land | |
---|---|---|---|---|---|---|---|---|
Water | 53.70 | 2.43 | 7.89 | 2.09 | 9.18 | 2.21 | 12.40 | 10.10 |
Snow | 9.89 | 34.6 | 10.01 | 10.09 | 3.79 | 0.24 | 1.33 | 30.05 |
Vegetation | 3.17 | 2.31 | 49.89 | 10.23 | 6.24 | 17.09 | 7.06 | 4.01 |
Forest | 1.43 | 2.19 | 5.80 | 60.16 | 7.88 | 17.21 | 3.12 | 2.21 |
Agriculture | 1.80 | 0.08 | 0.52 | 2.12 | 42.69 | 36.60 | 15.05 | 1.14 |
Horticulture | 0.17 | 0.01 | 2.48 | 1.09 | 3.67 | 85.09 | 7.24 | 0.25 |
Urban | 1.10 | 0.06 | 1.50 | 4.67 | 3.45 | 13.45 | 74.97 | 0.80 |
Fallow land | 1.63 | 0.57 | 1.22 | 3.12 | 8.00 | 25.57 | 17.37 | 42.52 |
Land Cover Class | Projected Area Coverage (km2) | Area Proportion (%) |
---|---|---|
Water | 63 | 0.90 |
Snow | 317 | 4.55 |
Vegetation | 1345 | 19.29 |
Forest | 1630 | 23.38 |
Agriculture | 1393 | 19.98 |
Horticulture | 670 | 9.61 |
Urban | 1034 | 14.83 |
Fallow land | 520 | 7.46 |
Total | 6972 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, O.; Bangroo, S.A.; Guo, W.; Meraj, G.; T. Ayele, G.; Naikoo, N.B.; Shafai, S.; Singh, P.; Muslim, M.; Taddese, H.; et al. Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis. Land 2022, 11, 2276. https://doi.org/10.3390/land11122276
Bashir O, Bangroo SA, Guo W, Meraj G, T. Ayele G, Naikoo NB, Shafai S, Singh P, Muslim M, Taddese H, et al. Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis. Land. 2022; 11(12):2276. https://doi.org/10.3390/land11122276
Chicago/Turabian StyleBashir, Owais, Shabir Ahmad Bangroo, Wei Guo, Gowhar Meraj, Gebiaw T. Ayele, Nasir Bashir Naikoo, Shahid Shafai, Perminder Singh, Mohammad Muslim, Habitamu Taddese, and et al. 2022. "Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis" Land 11, no. 12: 2276. https://doi.org/10.3390/land11122276
APA StyleBashir, O., Bangroo, S. A., Guo, W., Meraj, G., T. Ayele, G., Naikoo, N. B., Shafai, S., Singh, P., Muslim, M., Taddese, H., Gani, I., & Rahman, S. U. (2022). Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis. Land, 11(12), 2276. https://doi.org/10.3390/land11122276