Recognizing the Importance of an Urban Soil in an Open-Air City Museum: An Opportunity in the City of Madrid, Spain
Abstract
:1. Introduction
2. Material and Methods
2.1. The Study Area
2.2. Profile Site Description: The Anthropogenic Soil Profile
2.3. Analytical Methods
3. Results
4. Discussion
4.1. Geochemistry: Diversity of Heavy Metal Content
4.2. Soil Classificacion
4.3. Benefits of this Small Urban Green Space: Ecosystem Services
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anne, B.; Geoffroy, S.; Cherel, J.; Warot, G.; Marie, S.; Noël, C.J.; Louis, M.J.; Christophe, S. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 2018, 176, 1–9. [Google Scholar] [CrossRef]
- Puskás, I.; Farsang, A. Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 2009, 148, 267–281. [Google Scholar] [CrossRef]
- Marsan, F.A.; Biasioli, M. Trace Elements in Soils of Urban Areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Agenda 2030—United Nations Regional Information Centre. Available online: https://unric.org/it/agenda-2030/ (accessed on 5 May 2022).
- Battisti, L.; Corsini, F.; Gusmerotti, N.M.; Larcher, F. Management and Perception of Metropolitan Natura 2000 Sites: A Case Study of La Mandria Park (Turin, Italy). Sustainability 2019, 11, 6169. [Google Scholar] [CrossRef] [Green Version]
- Colding, J.; Barthel, S. The potential of ‘Urban Green Commons’ in the resilience building of cities. Ecol. Econ. 2013, 86, 156–166. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Pardal, J.; Malta, M.; Ferreira, C.S.; Soares, D.D.; Vilhena, J. Improving Urban Ecosystems Resilience at a City Level the Coimbra Case Study. Energy Procedia 2013, 40, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Blair, A. Perceptions and use of public green space is influenced by its relative abundance in two small towns in South Africa. Landsc. Urban Plan. 2013, 113, 104–112. [Google Scholar] [CrossRef]
- Dymén, C.; Andersson, M.; Langlais, R. Gendered dimensions of climate change response in Swedish municipalities. Local Environ. 2013, 18, 1066–1078. [Google Scholar] [CrossRef]
- Costanza, R.; Arge, A.; Groot, R.; Farberk, S.; Grasso, M.; Bruce, H.; Limburg, K.; O’Neill, R.V.; Paruelo, J.; Raskin, R.G.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Naeem, S.; Limburg, K.; Paruelo, J.; O’Neill, R.V.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MEA Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon Storage by Urban Soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, L.M.; Villarreal, M.L.; Lara-Valencia, F.; Yuan, Y.; Nie, W.; Wilson, S.; Amaya, G.; Sleeter, R. Mapping socio-environmentally vulnerable populations access and exposure to ecosystem services at the U.S.–Mexico borderlands. Appl. Geogr. 2012, 34, 413–424. [Google Scholar] [CrossRef]
- Rhea, L.; Shuster, W.; Shaffer, J.; Losco, R. Data proxies for assessment of urban soil suitability to support green infrastructure. J. Soil Water Conserv. 2014, 69, 254–265. [Google Scholar] [CrossRef]
- Doran, J.W.; Coleman, D.C.; Bezdicek, D.F.; Stewart, B.A. Defining Soil Quality for a Sustainable Environment; SSSA Spec. Publ. No. 35.; Soil Science Society of America, Inc.: Madison, WI, USA, 1994. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Craul, J.P. A description of urban soils and their desired characteristics. J. Arboric 1995, 11, 330–339. [Google Scholar] [CrossRef]
- Blume, H.-P. Classification of soils in urban agglomerations. CATENA 1989, 16, 269–275. [Google Scholar] [CrossRef]
- Bullock, P.; Gregory, P. Soils in the Urban Environment; Blackwell Scientific Publications: Oxford, UK, 1991. [Google Scholar]
- Craul, J.P. Urban Soils. Application and Practices; John Wiley and Sons: New York, NY, USA, 1992; p. 396. [Google Scholar]
- Effland, W.R.; Pouyat, R.V. The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst. 1997, 1, 217–228. [Google Scholar] [CrossRef]
- Burghardt, W. Soils in urban and industrial environments. J. Plant Nutr. Soil Sci. 1994, 157, 205–214. [Google Scholar] [CrossRef]
- Burghardt, W. Urban soil ecology—Involvement of diverse land use types. In Proceedings of the 2nd International Conference on Managing Urban Land, Stuttgart, Germany, 25–27 April 2007; pp. 345–357. Available online: http://doc.utwente.nl/80941/1/2007-Early-assessment-Jessica.pdf#page=352 (accessed on 5 May 2022).
- Norra, S.; Stüben, D. Urban soils. J. Soils Sediments 2003, 3, 230–233. [Google Scholar] [CrossRef]
- Lehmann, A.; Stahr, K. Nature and significance of anthropogenic urban soils. J. Soils Sediments 2007, 7, 247–260. [Google Scholar] [CrossRef]
- Charzyński, P.; Bednarek, R.; Greinert, A.; Hulisz, P.; Uzarowicz, Ł. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Sci. Annu. 2013, 64, 145–150. [Google Scholar] [CrossRef]
- Charzyński, P.; Hulisz, P.; Bednarek, R.; Piernik, A.; Winkler, M.; Chmurzyński, M. Edifisols—A new soil unit of technogenic soils. J. Soils Sediments 2014, 15, 1675–1686. [Google Scholar] [CrossRef]
- Hewitt, A.; Dominati, E.; Webb, T.; Cuthill, T. Soil natural capital quantification by the stock adequacy method. Geoderma 2015, 241-242, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Monturiol, F.; Alcalá, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid; CSIC: Madrid, Spain, 1990. [Google Scholar]
- Burghardt, W.; Morel, J.L.; Zhang, G.-L. Development of the soil research about urban, industrial, traffic, mining and military areas (SUITMA). Soil Sci. Plant Nutr. 2015, 61, 3–21. [Google Scholar] [CrossRef]
- IGME Mapa. Geológico de España; Escala 1:50.000, 2° Serie, 1ª edición; Hoja Madrid (559); IGME: Madrid, Spain, 1989. [Google Scholar]
- Vaudour, J. La région de Madrid, alterations, sols et paleosols. Ed. Ophrys. 1979. Available online: https://www.persee.fr/doc/rga_0035-1121_1981_num_69_3_2476_t1_0509_0000_1 (accessed on 17 November 2021).
- Jiménez Ballesta, R.; Martín, J.; García, R. Significado de la presencia de horizontes Bt en suelos de las facies de Madrid. Aproximación para explicar el contenido de arcilla en este tipo de horizontes. An. De Edafol. Y Agrobiol. 1982, XLI, 1235–1248. [Google Scholar]
- Jiménez Ballesta, R.; Cala, V.; García, R.; Martín Patino, M. Diferenciación textural en suelos de la cuenca de Madrid. Alteración Y Génesis Mineral. Bol. Geológico Y Min. 1990, 101, 593–599. [Google Scholar]
- Pérez-González, M.E.; García-Alvarado, J.M.; García-Rodríguez, M.P.; Jiménez-Ballesta, R. Evaluation of the Impact Caused by the Snowfall after Storm Filomena on the Arboreal Masses of Madrid. Land 2022, 11, 667. [Google Scholar] [CrossRef]
- Morel, J.L.; Schwartz, C.; Florentin, L.; de Kimpe, C. Soil Management and Conservation: Urban Soils; Hillel, D., Ed.; Encyclopaedia of Soils in the Environment; Academic Press: London, UK, 2005; pp. 202–208. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; Agronomy Monograph, 9; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Moore, M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- De Miguel, E.; de Grado, M.J.; Llamas, J.; Martín-Dorado, A.; Mazadiego, L. The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Sci. Total Environ. 1998, 215, 113–122. [Google Scholar] [CrossRef]
- Mingot, J.; De Miguel, E.; Chacón, E. Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere 2011, 84, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; De Miguel, E.; Ortega, M.F.; Mingot, J. Bioaccesisibility of metals and human health risk assessment in community urban gardens. Chemosphere 2015, 135, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 2015, 15, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Vigil, R.; Cala, V.; García, R.; Jiménez Ballesta, R. Clay genesis in textural contrasted soils in semiarid conditions. Mineral. Petrogr. Acta 1993, XXXV, 253–259. [Google Scholar]
- Renforth, P.; Manning, D.A.C.; Lopez-Capel, E. Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Appl. Geochem. 2009, 24, 1757–1764. [Google Scholar] [CrossRef]
- Washbourne, C.-L.; Renforth, P.; Manning, D. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Sci. Total Environ. 2012, 431, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Alexandrovskiy, A.L.; Dolgikh, A.V.; Alexandrovskaya, E.I. Pedogenetic Features of Habitation Deposits in Ancient Towns of European Russia and their Alteration under Different Natural Conditions. Bull. Soc. Geol. Mex. 2012, 64, 71–77. [Google Scholar] [CrossRef]
- Guilland, C.; Maron, P.A.; Damas, O.; Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 2018, 16, 1267–1282. [Google Scholar] [CrossRef]
- Capra, G.F.; Ganga, A.; Grilli, E.; Vacca, S.; Buondonno, A. A review on anthropogenic soils from a worldwide perspective. J. Soils Sediments 2015, 15, 1602–1618. [Google Scholar] [CrossRef]
- Park, S.-J.; Cheng, Z.; Yang, H.; Morris, E.E.; Sutherland, M.; Gardener, B.B.M.; Grewal, P.S. Differences in soil chemical properties with distance to roads and age of development in urban areas. Urban Ecosyst. 2010, 13, 483–497. [Google Scholar] [CrossRef]
- Pavao-Zuckerman, M.A. The Nature of Urban Soils and Their Role in Ecological Restoration in Cities. Restor. Ecol. 2008, 16, 642–649. [Google Scholar] [CrossRef]
- EEA—European Environment Agency. The European Environment—State and Outlook 2010—Urban Environment; EEA: Copenhagen, Denmark, 2010; p. 42.
- UN, Department of Economic and Social Affairs/Population Division. World Urbanization Prospects: The 2011 Revision; ESA/P/WP/224. United Nations Publication, 2012. Available online: http://esa.un.org/unpd/wpp/Documentation/publications.htm (accessed on 5 May 2022).
- Hulisz, P.; Charzyński, P.; Greinert, A. Urban soil resources of medium-sized cities in Poland: A comparative case study of Toruń and Zielona Góra. J. Soils Sediments 2016, 18, 358–372. [Google Scholar] [CrossRef]
- Burt, R.; Hernandez, L.; Shaw, R.; Tunstead, R.; Ferguson, R.; Peaslee, S. Trace element concentration and speciation in selected urban soils in New York City. Environ. Monit. Assess. 2013, 186, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Anderson, J.C.; Berry, K.J.; Mielke, P.W.; Chaney, R.L.; Leech, M. Lead concentrations in inner-city soils as a factor in the child lead problem. Am. J. Public Health 1983, 73, 1366–1369. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.G.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B.; et al. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, J.A.; Klimas, C.A.; Arcus, J.; DeKnock, C.; Rico, K.; Rodriguez, Y.; Vollrath, K.; Webb, E.; Williams, A. Soil Quality Assessment Is a Necessary First Step for Designing Urban Green Infrastructure. J. Environ. Qual. 2016, 45, 18–25. [Google Scholar] [CrossRef]
- Madrid, L.; Barrientos, E.D.; Reinoso, R.; Madrid, F. Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. Eur. J. Soil Sci. 2004, 55, 209–217. [Google Scholar] [CrossRef]
- Biasioli, M.; Ajmone-Marsan, F. Organic and inorganic diffuse contamination in urban soils: The case of Torino (Italy). J. Environ. Monit. 2007, 9, 862–868. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L.; Hettiarachchi, G.M. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture? J. Environ. Qual. 2016, 45, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillo, E.; Romero, A.S.; Maqueda, C.; Madrid, L.; Ajmone-Marsan, F.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Villaverde, J. Soil pollution by PAHs in urban soils: A comparison of three European cities. J. Environ. Monit. 2007, 9, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- USEPA 40 CFR Part 745, Lead: Identification of dangerous levels of lead: Final rules. Fed. Regist. 2001, 66, 1206–1240.
- IUSS Working Group WRB. World Reference Base for Soil Resources update. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794 (accessed on 5 May 2022).
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez-Lucas, I.; Jordán-Vidal, M.M.; Bech-Borras, J.; Zorpas, A.A. Urban areas, human health and technosols for the green deal. Environ. Geochem. Health 2021, 43, 5065–5086. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Burghardt, W.; Banko, G.; Hoeke, S.; Hursthouse, A.; de L’Escaille, T.; Ledin, S.; Ajmone Marsan, F.; Sauer, D.; Stahr, K.; Amann, E.; et al. Sealing soils, soils in urban areas, land use and land use planning. In Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, Volume VI—Research, Sealing and Cross-Cutting Issues; EUR 21319 EN/6; Van-Camp, L., Bujarrabal, B., Gentile, A.R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.K., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2004; p. 872. [Google Scholar]
- Cheng, Z.; Hettiarachchi, G.M.; Kim, K. Urban soils research: SUITMA 10. J. Environ. Qual. 2020, 50, 2–6. [Google Scholar] [CrossRef]
- Alexandrovskaya, E.I.; Alexandrovskiy, A.L. History of the cultural layer in Moscow and accumulation of anthropogenic substances in it. CATENA 2000, 41, 249–259. [Google Scholar] [CrossRef]
Sample Number | Horizon/Depth (cm) | Color Munsell | Artefacts (%) | Structure | Others |
---|---|---|---|---|---|
1 | Ap 0–24 | 10YR8/2 | 20 | Moderate subangular blocky medium to fine | Abundant roots |
2 | Bwp 24–73 | 10YR5/6 | 25 | Very strong in very thick angular blocks | Hardened (artifacts) |
3 | C1p 73–148 | 10YR7/4 | 5 | Very strong in very thick angular blocks | - |
4 | Apb 148–168 | 10YR5/4 | 5 | Moderate subangular blocky fine | Buried Ah |
5 | Ap 0–26 | 10YR5/2 | 25 | Strong in very thick angular blocks | - |
6 | Apb 176–202 | 10YR5/2 | 25 | Strong in very thick angular blocks | Buried Ah |
7 | Apb 170–198 | 10YR5/3 | 5 | Moderate subangular blocky medium to fine | Buried Ah |
8 | C2 >230 | 10YR7/6 | 0 | Simple, weak, particular | Arkose. No roots. Parent material |
9 | Ap 0–19 | 10YR4/3 | 10 | Moderate subangular blocky fine | Frequent roots. Possible contamination |
10 | Ap2 30–62 | 7.5YR7/4 and 5Y6/2 | 30 | Strong in medium-thick angular blocks | No roots. Possible contamination |
Parameter | Mean | Standard Deviation | Maximum Value | Minimum Values |
---|---|---|---|---|
Na2O (%) | 1.4 | 0.2 | 2.1 | 0.8 |
MgO (%) | 0.1 | 0.0 | 0.2 | 0.0 |
Al2O3 (%) | 22.3 | 1.9 | 30.6 | 13.8 |
K2O (%) | 0.8 | 0.1 | 1.6 | 0.4 |
CaO (%) | 0.5 | 0.0 | 0.8 | 0.3 |
TiO2 (%) | 0.1 | 0.0 | 0.2 | 0.0 |
MnO (%) | 0.0 | 0.0 | 0.1 | 0.0 |
Fe2O3 (%) | 1.9 | 0.3 | 4.1 | 0.9 |
SiO2 (%) | 72.9 | 2.4 | 83.3 | 60.6 |
pH | 6.9 | 0.3 | 8.2 | 4.9 |
EC (dS/m) | 0.145 | 0.05 | 0.63 | 0.024 |
Organic matter (%) | 2.9 | 1.17 | 9.6 | 0.1 |
Pb (mg kg−1) | 44.3 | 5.4 | 68.5 | 17.9 |
Cu (mg kg−1) | 12.1 | 2.1 | 21.3 | 3.74 |
Zn (mg kg−1) | 40.1 | 6.1 | 65.2 | 13.1 |
As (mg kg−1) | 2.8 | 0.5 | 7.9 | 1.3 |
Cr (mg kg−1) | 7.4 | 1.5 | 13.5 | 1.7 |
Cd (mg kg−1) | 0.2 | 0.07 | 0.8 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ballesta, R.; De Soto-García, I.S.; García-Navarro, F.J.; García-Giménez, R. Recognizing the Importance of an Urban Soil in an Open-Air City Museum: An Opportunity in the City of Madrid, Spain. Land 2022, 11, 2310. https://doi.org/10.3390/land11122310
Jiménez-Ballesta R, De Soto-García IS, García-Navarro FJ, García-Giménez R. Recognizing the Importance of an Urban Soil in an Open-Air City Museum: An Opportunity in the City of Madrid, Spain. Land. 2022; 11(12):2310. https://doi.org/10.3390/land11122310
Chicago/Turabian StyleJiménez-Ballesta, Raimundo, Isabel S. De Soto-García, Francisco Jesús García-Navarro, and Rosario García-Giménez. 2022. "Recognizing the Importance of an Urban Soil in an Open-Air City Museum: An Opportunity in the City of Madrid, Spain" Land 11, no. 12: 2310. https://doi.org/10.3390/land11122310
APA StyleJiménez-Ballesta, R., De Soto-García, I. S., García-Navarro, F. J., & García-Giménez, R. (2022). Recognizing the Importance of an Urban Soil in an Open-Air City Museum: An Opportunity in the City of Madrid, Spain. Land, 11(12), 2310. https://doi.org/10.3390/land11122310