Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand
Abstract
:1. Introduction
- What are the differences in the matching of supply and demand and spatial patterns of various facilities?
- What are the patterns in the matching of the supply and demand of public service facilities between cities?
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Facilities Supply Assessment
2.4. Facilities Demand Estimation
2.5. Analysis of the Supply and Demand Match
3. Results
3.1. The Characteristics of the Facility Accessibility
3.2. The Characteristics of the Population Carrying Pressure on Facilities
3.3. Spatial Distribution Characteristics of Typical Residential and Facilities Level
3.3.1. Analysis of the Match between Facility Supply and Demand
3.3.2. Analysis of Characteristics of Typical Human Settlement Space
3.4. Clustering Identification of Facility Supply and Demand Balance Level
4. Discussion
4.1. Different Levels of Matching of Supply and Demand for Each Type of Facility
4.2. Level Gaps Causing Demand Pressure Transmission between Cities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dajani, J.S. Cost Studies of Urban Public Services. Land Econ. 1973, 49, 479. [Google Scholar] [CrossRef]
- Knox, P.; Pinch, S. Urban Social Geography: An Introduction, 6th ed.; Routledge: London, UK, 2009. [Google Scholar]
- Wang, W.; Zhou, Z.; Chen, J.; Cheng, W.; Chen, J. Analysis of Location Selection of Public Service Facilities Based on Urban Land Accessibility. Int. J. Environ. Res. Public Health 2021, 18, 516. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, J.; Shen, P. Revealing the Correlation between Population Density and the Spatial Distribution of Urban Public Service Facilities with Mobile Phone Data. ISPRS Int. J. Geo-Inf. 2020, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, H.; Hazarie, S.; Dickinson, B.; Bassolas, A.; Frank, A.; Kautz, H.; Sadilek, A.; Ramasco, J.J.; Ghoshal, G. Uncovering the socioeconomic facets of human mobility. Sci. Rep. 2021, 11, 8616. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; He, S.; Luo, Y.; Su, S.; Xin, J.; Weng, M. A social-media-based approach to assessing the effectiveness of equitable housing policy in mitigating education accessibility induced social inequalities in Shanghai, China. Land Use Policy 2020, 94, 104513. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Shi, W.; Deng, Z.; Wang, H. Residential clustering and spatial access to public services in Shanghai. Habitat Int. 2015, 6, 119–129. [Google Scholar] [CrossRef]
- Meijers, E. Summing Small Cities Does Not Make a large City: Polycentric Urban Regions and the Provision of Cultural, Leisure and Sports Amenities. Urban Stud. 2008, 45, 2323–2342. [Google Scholar] [CrossRef]
- Stanley, B.W.; Dennehy, T.J.; Smith, M.E.; Stark, B.L.; York, A.M.; Cowgill, G.L.; Novic, J.; Ek, J. Service Access in Premodern Cities: An Exploratory Comparison of Spatial Equity. J. Urban Hist. 2016, 42, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Ze, Q.; Hong, L. Accessibility of Medical Facilities in Multiple Traffic Modes: A Study in Guangzhou, China. Complexity 2020, 2020, 8819836. [Google Scholar]
- He, J.; Dang, Y.; Zhang, W.; Chen, L. Perception of Urban Public Safety of Floating Population with Higher Edu-cation Background: Evidence from Urban China. Int. J. Environ. Res. Public Health 2020, 17, 8663. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, X.; Zhang, K.; Ke, Z. COVID-19, Urbanization Pattern and Economic Recovery: An Analysis of Hubei, China. Int. J. Environ. Res. Public Health 2020, 17, 9577. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Garg, A. Urban commons service generation, delivery, and management: A conceptual framework. Ecol. Econ. 2017, 135, 280–287. [Google Scholar] [CrossRef]
- Deruyter, G.; Fransen, K.; Verrecas, N.; De Maeyer, P. Evaluating spatial inequality in pre-schools in Ghent, Belgium by accessibility and service area analysis with GIS. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference-SGEM, Albena, Bulgary, 16–22 June 2013; Volume 1, p. 717. [Google Scholar]
- Lu, C.; Zhang, Z.; Lan, X. Impact of China’s referral reform on the equity and spatial accessibility of healthcare re-sources: A case study of Beijing. Soc. Sci. Med. 2019, 235, 112386. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Song, W.; Li, C.; Lu, J. The Spatial Equity of Nursing Homes in Changchun: A Multi-Trip Modes Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Lu, M. Measures of Spatial and Demographic Disparities in Access to Urban Green Space in Harbin, China. Complexity 2020, 2020, 11. [Google Scholar] [CrossRef]
- Chen, T.; Hui, E.C.-M.; Lang, W.; Tao, L. People, recreational facility and physical activity: New-type urbanization planning for the healthy communities in China. Habitat Int. 2016, 58, 12–22. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Lin, T.; Liu, X.; Liu, J.; Lin, M.; Ye, H.; Kong, L. Towards Sustainable Urban Communities: A Composite Spatial Accessibility Assessment for Residential Suitability Based on Network Big Data. Sustainability 2018, 10, 4767. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Chen, L.; Sun, R.; Feng, Z.; Li, J.; Khan, M.S.; Jing, Y. The Distribution and Accessibility of Urban Parks in Beijing, China: Implications of Social Equity. Int. J. Environ. Res. Public Health 2019, 16, 4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Liu, Y.; Wang, Y.; Tong, D.; Zhang, J. Investigating Public Facility Characteristics from a Spatial Interaction Perspective: A Case Study of Beijing Hospitals Using Taxi Data. ISPRS Int. J. Geo-Inf. 2017, 6, 38. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Zhou, D.; Kang, Y. Two-Step Floating Catchment Area Model-Based Evaluation of Community Care Facilities’ Spatial Accessibility in Xi’an, China. Int. J. Environ. Res. Public Health 2020, 17, 5086. [Google Scholar] [CrossRef]
- Jing, C.; Zhu, Y.; Du, M.; Liu, X. Visualizing spatiotemporal patterns of city service demand through aspace-time exploratory approach. Trans. GIS 2021, 25, 1766–1783. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Shao, L.; Sun, S. Evaluation of spatial matching between urban green space and population: Dynamics analysis of winter population data in Xi’an. J. Urban Plan. Dev. 2021, 147, 05021012. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Yan, W. Exploring Spatial Distribution of Urban Park Service Areas in Shanghai Based on Travel Time Estimation: A Method Combining Multi-Source Data. ISPRS Int. J. Geo-Inf. 2021, 10, 608. [Google Scholar] [CrossRef]
- Karra, M.; Fink, G.; Canning, D. Facility distance and child mortality: A multi-country study of health facility access, service utilization, and child health outcomes. Int. J. Epidemiol. 2017, 46, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Vadrevu, L.; Kanjilal, B. Measuring spatial equity and access to maternal health services using enhanced two step floating catchment area method (E2SFCA)—A case study of the Indian Sundarbans. Int. J. Equity Health 2016, 15, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyasi, R.; Phillips, D.; Buor, D. The Role of a Health Protection Scheme in Health Services Utilization Among Community-Dwelling Older Persons in Ghana. J. Gerontol. Ser. B 2020, 75, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Kapologwe, N.A.; Kibusi, S.M.; Borghi, J.; Gwajima, D.O.; Kalolo, A. Assessing health system responsiveness in primary health care facilities in Tanzania. BMC Health Serv. Res. 2020, 20, 104. [Google Scholar] [CrossRef] [PubMed]
- Almohamad, H.; Knaack, A.L.; Habib, B.M. Assessing Spatial Equity and Accessibility of Public Green Spaces in Aleppo City, Syria. Forests 2018, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Comber, A.; Brunsdon, C.; Green, E. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landsc. Urban Plan. 2008, 86, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Liu, B.; Tian, Y.; Xu, D. Equity to Urban Parks for Elderly Residents: Perspectives of Balance between Supply and Demand. Int. J. Environ. Res. Public Health 2020, 17, 8506. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, C. Spatial Balance Analysis on Urban Public Service in Beijing City. Areal Res. Dev. 2017, 36, 1003–2363. [Google Scholar]
- Zhang, L.; Zhou, T.; Mao, C. Does the Difference in Urban Public Facility Allocation Cause Spatial Inequality in Housing Prices? Evidence from Chongqing, China. Sustainability 2019, 11, 6090. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, L. The influence of medical facility accessibility on residents’ health seeking behaviors from the perspective of age stratification: A case study of shanghai Chongming island. Hum. Geogr. 2021, 36, 46–54. [Google Scholar]
- Deng, Z.; Li, Z.; Zhou, Y.; Chen, X.; Liang, S. Measurement and spatial spillover effects of port comprehensive strength: Empirical evidence from China. Transp. Policy 2020, 99, 288–298. [Google Scholar]
- Tan, X.; Huang, D.; Zhao, X.; Yu, Y.; Leng, B.; Feng, L. Jobs housing balance based on Baidu thermodynamic diagram. J. Beijing Norm. Univ. (Nat. Sci.) 2016, 52, 622–627. [Google Scholar]
- Li, J.; Li, J.; Yuan, Y.; Li, G. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China. Cities 2019, 86, 62–70. [Google Scholar] [CrossRef]
- Rezaee, M.; Lelieveldt, B.; Reiber, J. A new cluster validity index for the fuzzy c-mean. Pattern Recognit. Lett. 1998, 19, 237–246. [Google Scholar] [CrossRef]
- Liu, H.; Remme, R.; Hamel, P.; Nong, H.F.; Ren, H. Supply and demand assessment of urban recreation service and its implication for greenspace planning-A case study on Guangzhou. Landsc. Urban Plan. 2020, 203, 103898. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Yang, H.Y. Supply and demand spatial patterns of park cultural services in megalopolis area of Shenzhen, China. Ecol. Indic. 2021, 121, 107066. [Google Scholar] [CrossRef]
- Cao, G.Z.; Chen, S.C.; Liu, T. Changing spatial patterns of internal migration to five major urban agglomerations in China. Acta Geogr. Sin. 2021, 76, 1334–1349. [Google Scholar]
- Fang, C.L. New structure and new trend of formation and development of urban agglomerations in china. Sci. Geogr. Sin. 2011, 31, 1025–1034. [Google Scholar]
- Huang, L.; Yan, L.; Wu, J. Assessing urban sustainability of Chinese megacities: 35 years after the economic reform and open-door policy. Landsc. Urban Plan. 2016, 145, 57–70. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Rostami, F.; Alizadeh, B. Is inequality in the distribution of urban facilities inequitable? Exploring a method for identifying spatial inequity in an Iranian city. Cities 2016, 52, 159–172. [Google Scholar] [CrossRef]
AHP Judgment Matrix | AHP Result of the Hierarchical Analysis | Result of Consistency Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H-H Community | H-M Community | H-L Community | L-H Community | L-M Community | L-L Community | Feature Vector | Weight | Maximum Characteristic Root | CI | RI | CR | |
H-H community | 1 | 3 | 5 | 5 | 7 | 9 | 4.096 | 0.4565 | 6.256 | 0.051 | 1.26 | 0.041 |
H-M community | 1/3 | 1 | 3 | 3 | 5 | 7 | 2.172 | 0.2421 | ||||
H-L community | 1/5 | 1/3 | 1 | 1 | 3 | 5 | 1.000 | 0.1115 | ||||
L-H community | 1/5 | 1/3 | 1 | 1 | 3 | 5 | 1.000 | 0.1115 | ||||
L-M community | 1/7 | 1/5 | 1/3 | 1/3 | 1 | 3 | 0.460 | 0.5130 | ||||
L-L community | 1/9 | 1/7 | 1/5 | 1/5 | 1/3 | 1 | 0.244 | 0.2720 |
City | Kindergarten | Primary School | Medical Service Facilities | Library | Aged-Care Facilities | Disabled Facilities | Comprehensive Supply and Demand Matching Level |
---|---|---|---|---|---|---|---|
Beijing | 0.3762 | 0.4171 | 0.4009 | 0.1561 | 0.2259 | 0.1503 | 1.7264 |
Shanghai | 0.2984 | 0.3760 | 0.2824 | 0.1133 | 0.1569 | 0.1329 | 1.3599 |
Tianjin | 0.2382 | 0.2611 | 0.2824 | 0.0716 | 0.1542 | 0.0479 | 1.0553 |
Chongqing | 0.2453 | 0.3064 | 0.2494 | 0.0578 | 0.1324 | 0.0958 | 1.0870 |
Shenyang | 0.2653 | 0.4041 | 0.3115 | 0.1046 | 0.2080 | 0.1201 | 1.4136 |
Wuhan | 0.3145 | 0.3908 | 0.3257 | 0.1290 | 0.1746 | 0.1280 | 1.4625 |
Nanjing | 0.3388 | 0.3944 | 0.3058 | 0.1402 | 0.1876 | 0.0734 | 1.4401 |
Guangzhou | 0.2714 | 0.2947 | 0.2224 | 0.0729 | 0.0851 | 0.0400 | 0.9866 |
Chengdu | 0.2176 | 0.2574 | 0.3513 | 0.0484 | 0.1048 | 0.0663 | 1.0457 |
Xi’an | 0.2613 | 0.3086 | 0.2011 | 0.0672 | 0.0606 | 0.0986 | 0.9975 |
Hangzhou | 0.2999 | 0.3710 | 0.3052 | 0.1225 | 0.1723 | 0.1205 | 1.3913 |
Shenzhen | 0.3033 | 0.3557 | 0.1620 | 0.0830 | 0.0833 | 0.0769 | 1.0642 |
Harbin | 0.2345 | 0.3816 | 0.2577 | 0.1427 | 0.2269 | 0.1340 | 1.3772 |
Changchun | 0.1957 | 0.3551 | 0.1829 | 0.1243 | 0.1715 | 0.1062 | 1.1358 |
Xiamen | 0.2665 | 0.3372 | 0.1809 | 0.0647 | 0.0621 | 0.0688 | 0.9802 |
Jinan | 0.2890 | 0.3817 | 0.2102 | 0.0925 | 0.1153 | 0.1191 | 1.2079 |
Ningbo | 0.2051 | 0.3412 | 0.2117 | 0.0608 | 0.0827 | 0.0782 | 0.9797 |
Qingdao | 0.3327 | 0.3783 | 0.3544 | 0.0920 | 0.2395 | 0.1279 | 1.5249 |
Dalian | 0.2887 | 0.3327 | 0.2767 | 0.1243 | 0.1955 | 0.0677 | 1.2856 |
Average value | 0.2759 | 0.3497 | 0.2671 | 0.0983 | 0.1494 | 0.0975 | 1.2380 |
City | Kindergarten | Primary School | Medical Service Facilities | Library | Aged-Care Facilities | Disabled Facilities |
---|---|---|---|---|---|---|
Beijing | 2 | 3 | 2 | 3 | 3 | 1 |
Shanghai | 2 | 5 | 3 | 5 | 3 | 1 |
Tianjin | 3 | 3 | 3 | 3 | 5 | 2 |
Chongqing | 3 | 3 | 3 | 4 | 3 | 2 |
Shenyang | 2 | 3 | 3 | 3 | 3 | 1 |
Wuhan | 2 | 3 | 3 | 3 | 5 | 1 |
Nanjing | 2 | 3 | 3 | 3 | 3 | 4 |
Guangzhou | 3 | 3 | 3 | 3 | 3 | 3 |
Chengdu | 4 | 3 | 3 | 3 | 3 | 4 |
Xi’an | 3 | 3 | 3 | 3 | 3 | 3 |
Hangzhou | 2 | 3 | 3 | 3 | 3 | 3 |
Shenzhen | 3 | 3 | 3 | 4 | 3 | 4 |
Harbin | 2 | 5 | 3 | 5 | 3 | 1 |
Changchun | 2 | 3 | 3 | 3 | 3 | 3 |
Xiamen | 3 | 3 | 3 | 3 | 5 | 1 |
Jinan | 2 | 3 | 3 | 3 | 3 | 3 |
Ningbo | 2 | 3 | 3 | 4 | 4 | 3 |
Qingdao | 2 | 3 | 2 | 5 | 3 | 1 |
Dalian | 2 | 3 | 3 | 3 | 3 | 4 |
Clustering Classification | Minimum | Maximum | Mean | Standard Deviation | City | |
---|---|---|---|---|---|---|
Kindergarten | 1 | 0.3710 | 0.4171 | 0.3883 | 0.0148 | Beijing, Shanghai, Shenyang, Wuhan, Nanjing, Hangzhou, Harbin, Jinan, Qingdao |
2 | 0.3327 | 0.3557 | 0.3444 | 0.0105 | Shenzhen, Changchun, Xiamen, Ningbo, Dalian | |
3 | 0.2947 | 0.3086 | 0.3032 | 0.0075 | Chongqing, Guangzhou, Xi’an | |
4 | 0.2574 | 0.2611 | 0.2592 | 0.0026 | Tianjin, Chengdu | |
Primary school | 1 | 0.3762 | 0.3762 | 0.3762 | - | Beijing |
2 | 0.2887 | 0.3388 | 0.3082 | 0.0190 | Shanghai, Wuhan, Nanjing, Hangzhou, Shenzhen, Jinan, Qingdao, Dalian | |
3 | 0.2345 | 0.2714 | 0.2546 | 0.0150 | Tianjin, Chongqing, Shenyang, Guangzhou, Xi’an, Harbin, Xiamen | |
4 | 0.1957 | 0.2176 | 0.2062 | 0.0110 | Chengdu, Changchun, Ningbo | |
Medical service facilities | 1 | 0.4009 | 0.4009 | 0.4009 | - | Beijing |
2 | 0.3052 | 0.3544 | 0.3256 | 0.0224 | Shenyang, Wuhan, Nanjing, Chengdu, Hangzhou, Qingdao | |
3 | 0.2494 | 0.2824 | 0.2697 | 0.0152 | Shanghai, Tianjin, Chongqing, Harbin, Dalian | |
4 | 0.1620 | 0.2224 | 0.1959 | 0.0213 | Guangzhou, Xi’an, Shenzhen, Changchun, Xiamen, Jinan, Ningbo | |
Library | 1 | 0.1402 | 0.1561 | 0.1463 | 0.0086 | Beijing, Nanjing, Harbin |
2 | 0.1046 | 0.1290 | 0.1197 | 0.0090 | Shanghai, Shenyang, Wuhan, Hangzhou, Changchun, Dalian | |
3 | 0.0716 | 0.0925 | 0.0824 | 0.0100 | Tianjin, Guangzhou, Shenzhen, Jinan, Qingdao | |
4 | 0.0484 | 0.0672 | 0.0598 | 0.0073 | Chongqing, Chengdu, Xi’an, Xiamen, Ningbo | |
Aged-care facilities | 1 | 0.2080 | 0.2395 | 0.2251 | 0.0129 | Ningbo, Shenyang, Shenyang, Qingdao |
2 | 0.1542 | 0.1955 | 0.1732 | 0.0149 | Shanghai, Tianjin, Wuhan, Nanjing, Hangzhou, Changchun, Dalian | |
3 | 0.1048 | 0.1324 | 0.1175 | 0.0139 | Chongqing, Chengdu, Jinan | |
4 | 0.0606 | 0.0851 | 0.0748 | 0.0123 | Guangzhou, Xi’an, Shenzhen, Ningbo, Xiamen | |
Disabled facilities | 1 | 0.1279 | 0.1503 | 0.1346 | 0.0092 | Beijing, Shanghai, Wuhan, Harbin, Qingdao |
2 | 0.0958 | 0.1205 | 0.1101 | 0.0113 | Chongqing, Shenyang, Xi’an, Hangzhou, Changchun, Jinan | |
3 | 0.0663 | 0.0782 | 0.0719 | 0.0050 | Nanjing, Chengdu, Shenzhen, Xiamen, Ningbo, Dalian | |
4 | 0.0400 | 0.0479 | 0.0440 | 0.0056 | Tianjin, Guangzhou |
Clustering Classification | Matching Level Classification | Minimum | Maximum | Mean | Standard Deviation | City |
---|---|---|---|---|---|---|
1 | Primary school | 0.3762 | 0.3762 | 0.3762 | - | Beijing |
Kindergarten | 0.4171 | 0.4171 | 0.4171 | - | ||
Medical service facilities | 0.4009 | 0.4009 | 0.4009 | - | ||
Library | 0.1561 | 0.1561 | 0.1561 | - | ||
Aged-care facilities | 0.2259 | 0.2259 | 0.2259 | - | ||
Disabled facilities | 0.1503 | 0.1503 | 0.1503 | - | ||
Comprehensive matching level | 1.7264 | 1.7264 | 1.7264 | - | ||
2 | Primary school | 0.2345 | 0.3388 | 0.2977 | 0.0371 | Shanghai, Shenyang, Wuhan, Nanjing, Hangzhou, Harbin, Qingdao |
Kindergarten | 0.3710 | 0.4041 | 0.3852 | 0.0117 | ||
Medical service facilities | 0.2577 | 0.3544 | 0.3061 | 0.0307 | ||
Library | 0.0920 | 0.1427 | 0.1206 | 0.0186 | ||
Aged-care facilities | 0.1569 | 0.2395 | 0.1951 | 0.0306 | ||
Disabled facilities | 0.0734 | 0.1340 | 0.1195 | 0.0211 | ||
Comprehensive matching level | 1.3599 | 1.5249 | 1.4242 | 0.0569 | ||
3 | Primary school | 0.1957 | 0.2890 | 0.2578 | 0.0538 | Dalian, Jinan, Changchun |
Kindergarten | 0.3327 | 0.3817 | 0.3565 | 0.0245 | ||
Medical service facilities | 0.1829 | 0.2767 | 0.2233 | 0.0483 | ||
Library | 0.0925 | 0.1243 | 0.1137 | 0.0183 | ||
Aged-care facilities | 0.1153 | 0.1955 | 0.1608 | 0.0412 | ||
Disabled facilities | 0.0677 | 0.1191 | 0.0977 | 0.0268 | ||
Comprehensive matching level | 1.1358 | 1.2856 | 1.2098 | 0.0749 | ||
4 | Primary school | 0.2051 | 0.3033 | 0.2511 | 0.0314 | Tianjin, Chongqing, Guangzhou, Chengdu, Xi’an, Shenzhen, Xiamen, Ningbo |
Kindergarten | 0.2574 | 0.3557 | 0.3078 | 0.0362 | ||
Medical service facilities | 0.1620 | 0.3513 | 0.2327 | 0.0610 | ||
Library | 0.0484 | 0.0830 | 0.0658 | 0.0105 | ||
Aged-care facilities | 0.0606 | 0.1542 | 0.0956 | 0.0330 | ||
Disabled facilities | 0.0400 | 0.0986 | 0.0716 | 0.0206 | ||
Comprehensive matching level | 0.9797 | 1.0870 | 1.0245 | 0.0431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Ren, X.; Guo, S. Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand. Land 2022, 11, 149. https://doi.org/10.3390/land11020149
Wei W, Ren X, Guo S. Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand. Land. 2022; 11(2):149. https://doi.org/10.3390/land11020149
Chicago/Turabian StyleWei, Wei, Xiwen Ren, and Shiyi Guo. 2022. "Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand" Land 11, no. 2: 149. https://doi.org/10.3390/land11020149
APA StyleWei, W., Ren, X., & Guo, S. (2022). Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand. Land, 11(2), 149. https://doi.org/10.3390/land11020149