Understanding Species–Habitat Associations: A Case Study with the World’s Bears
Abstract
:1. Introduction
2. Definitions
3. Broad Differences among Species
3.1. Dietary Patterns
3.2. General Patterns of Habitat Use
4. Methods of Studying Fine-Grained Habitat Use, Selection, and Suitability
4.1. Presence Points
4.2. Bears with Radio-Collars
5. Fine-Scale Habitat Associations within Species
5.1. Andean Bears
5.2. Sun Bears
5.3. Sloth Bears
5.4. Asiatic Black Bears
5.5. Giant Pandas
5.6. Brown Bears
5.7. American Black Bears
6. Conclusions
6.1. Adaptability of Bears
6.2. Methodological Shortcomings
6.3. Implications for Habitat Management
7. Recommendations
- Ensure that sampling is representative of the available resources and conditions. Generally, this will be the case for data from GPS collars, but biases can arise with point sampling, especially using sign (which is created and decays at different rates in different habitats), and potentially to a large extent in data repositories where the investigator has no control over the data collection. The veracity of the data should be examined, not simply assumed.
- Choose candidate covariates that have probable biological connections to the species, not just ones that fit a model. The British statistician George Box is famously quoted as saying “all models are wrong, but some are useful.” It is hard to imagine a useful model in which the predictors explained much of the variation in the model, but did not actually relate biologically to the target species.
- Test habitat availability at multiple scales. Human investigators cannot know how a bear perceives its world—what specific resources it seeks, what threats it is trying to avoid, what it knows or remembers as to where resources and threats are located, and how it weighs these various factors. The best we can do is test various spatial windows.
- Employ both ground-based and remote-sensing-based variables. Ground-based variables bring the investigator closer to what the bear perceives in its environment, especially the foods. Investigators should have a connection with their target species. One way of doing that is to examine sites used by GPS-collared bears. Remote-sensing variables enable investigators to have a wider view of environmental variables and measure things that cannot be measured at ground level.
- Search for variables that meaningfully measure risks, and distinguish selection from suitability. Human-related factors are commonly included in models, but they may be difficult to interpret. Investigators commonly measure distances to roads or settlements, and assume that negative associations imply bears’ perceptions of risk. However, in many cases, bears are attracted to human foods, or to habitats where roads are built, so their selection may be maladaptive. It is important to recognize that selection does not equate to suitability.
- Be aware that population-level associations may hide important individual-level differences. This review has pointed to a number of cases where individual bears or bears of different sex-age groups in the same area responded to resources differently, including both natural and human-related foods.
- Compare results of multiple models, explain discrepancies, and build composite models. This review highlighted a number of cases where multiple studies in the same region achieved contradictory results, but authors typically ignored these. Models are one approach for deciphering complex data, but that very complexity means that models do not mimic nature precisely. Increasing knowledge requires not just constructing more models, but understanding why results differ among models. Efforts to systematically compare individual models and build composite models are likely to increase the reliability of outcomes.
- Test model predictions. Model predictions can be compared to each other, but better yet, compared to actual bear occurrence or demography. This has been accomplished in very few cases, as this review revealed, and often key aspects of model predictions have not been upheld. A concerted effort to test predictions of published models would be highly worthwhile.
- Increase transparency to enable practitioners to utilize results. Habitat modeling papers are often written with the professed goal of benefitting bear management or conservation, but connections between research papers and actions on the ground are scarce. This disconnect may arise from the practitioners’ view that models are unreliable, not understandable, not realistic, or not clear insofar as to what actions should be taken.
- Look for associations between habitat and demography, not just relative use of different habitats. Habitat use is a potentially misleading parameter by which to judge habitat suitability. Cases were mentioned here where bears were attracted to habitats where survival is poor, or conversely, where habitats used for just a short period of time provided a crucial resource.
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Wang, M.; Wei, F.; Nie, Y. Geographic distributions shape the functional traits in a large mammalian family. Ecol. Evol. 2021, 11, 13175–13185. [Google Scholar] [CrossRef]
- Matthiopoulos, J.; Fieberg, J.; Aarts, G. Species-Habitat Associations: Spatial Data, Predictive Models, and Ecological Insights; University of Minnesota Libraries Publishing: Minneapolis, MN, USA, 2020; ISBN 978-1-946135-68-1. [Google Scholar]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Krausman, P.R.; Morrison, M.L. Another plea for standard terminology. J. Wild. Mgmt. 2016, 80, 1143–1144. [Google Scholar] [CrossRef] [Green Version]
- Darracq, A.K.; Tandy, J. Misuse of habitat terminology by wildlife educators, scientists, and organizations. J. Wild. Mgmt. 2019, 83, 782–789. [Google Scholar] [CrossRef]
- Johnson, D.H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 1980, 61, 65–71. [Google Scholar] [CrossRef]
- Nichols, G.E. The interpretation and application of certain terms and concepts in the ecological classification of plant communities. Plant World 1917, 20, 305–319. [Google Scholar] [CrossRef]
- Yapp, R.H. The concept of habitat. J. Ecol. 1922, 10, 1–17. [Google Scholar] [CrossRef]
- Garshelis, D.L. Delusions in habitat evaluation: Measuring use, selection, and importance. In Research Techniques in Animal Ecology: Controversies and Consequences; Boitani, L., Fuller, T.K., Eds.; Columbia University Press: New York, NY, USA, 2000; pp. 111–164. ISBN 978-0-231-11341-0. [Google Scholar]
- Gaillard, J.-M.; Hebblewhite, M.; Loison, A.; Fuller, M.; Powell, R.; Basille, M.; Van Moorter, B. Habitat—Performance relationships: Finding the right metric at a given spatial scale. Phil. Trans. R. Soc. B 2010, 365, 2255–2265. [Google Scholar] [CrossRef]
- Beyer, H.L.; Haydon, D.T.; Morales, J.M.; Frair, J.L.; Hebblewhite, M.; Mitchell, M.; Matthiopoulos, J. The interpretation of habitat preference metrics under use–availability designs. Phil. Trans. R. Soc. B 2010, 365, 2245–2254. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhong, H.; Hou, R.; Ayala, J.; Liu, G.; Yuan, S.; Yan, Z.; Zhang, W.; Liu, Y.; Cai, K.; et al. A diet diverse in bamboo parts is important for giant panda (Ailuropoda melanoleuca) metabolism and health. Sci. Rep. 2017, 7, 3377. [Google Scholar] [CrossRef] [Green Version]
- Swaisgood, R.R.; McShea, W.M.; Wildt, D.; Hull, V.; Zhang, J.; Owen, M.A.; Zhang, Z.; Dvornicky-Raymond, Z.; Valitutto, M.; Li, D.; et al. Giant panda (Ailuropoda melanoleuca). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 63–77. ISBN 978-1-108-48352-0. [Google Scholar]
- Vela-Vargas, I.M.; Jorgenson, J.P.; González-Maya, J.F.; Koprowski, J.L. Tremarctos ornatus (Carnivora: Ursidae). Mamm. Species 2021, 53, 78–94. [Google Scholar] [CrossRef]
- Soibelzon, L.H.; Grinspan, G.A.; Bocherens, H.; Acosta, W.G.; Jones, W.; Blanco, E.R.; Prevosti, F. South American giant short-faced bear (Arctotherium angustidens) diet: Evidence from pathology, morphology, stable isotopes, and biomechanics. J. Paleontol. 2014, 88, 1240–1250. [Google Scholar] [CrossRef] [Green Version]
- Bocherens, H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 2015, 117, 42–71. [Google Scholar] [CrossRef]
- García-Rangel, S. Andean bear Tremarctos ornatus natural history and conservation. Mammal Rev. 2012, 42, 85–119. [Google Scholar] [CrossRef]
- Velez-Liendo, X.; Jackson, D.; Ruiz-García, M.; Castellanos, A.; Espinosa, S.; Laguna, A. Andean bear (Tremarctos ornatus). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 78–87. ISBN 978-1-108-48352-0. [Google Scholar]
- Seidensticker, J.; Yoganand, K.; Johnsingh, A.J.T. Sloth bears living in seasonally dry tropical and moist broadleaf forests and their conservation. In The Ecology and Conservation of Seasonally Dry Forests in Asia; McShea, W.J., Davies, S., Bhumpakphan, N., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 217–236. [Google Scholar]
- Steinmetz, R.; Garshelis, D.L.; Choudhury, A. Adaptations and competitive interactions of tropical Asian bear species define their biogeography: Past, present, and future. In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 45–52. ISBN 978-1-108-48352-0. [Google Scholar]
- Ramesh, T.; Sankar, K.; Qureshi, Q. Additional notes on the diet of sloth bear Melursus ursinus in Mudumalai Tiger Reserve as shown by scat analysis. J. Bombay Nat. Hist. Soc. 2009, 106, 204–206. [Google Scholar]
- Baskaran, N.; Desai, A.A. Does indigestible food remains in the scats of sloth bear Melursus ursinus (Carnivora: Ursidae) represent actual contribution of various diet items? J. Threat. Taxa 2010, 2, 1387–1389. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, G.M.; Wich, S.A.; Trisno. Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biol. J. Linn. Soc. 2006, 89, 489–508. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.T.; Servheen, C.; Ambu, L. Food habits of Malayan sun bears in lowland tropical forests of Borneo. Ursus 2002, 13, 127–136. [Google Scholar]
- Fredriksson, G.M. Effects of El Niño and Large-Scale Forest Fires on the Ecology and Conservation of Malayan Sun Bears (Helarctos malayanus) in East Kalimantan, Indonesian Borneo. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2012. [Google Scholar]
- Steinmetz, R.; Garshelis, D.L.; Chutipong, W.; Seuaturien, N. The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 2011, 6, e14509. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, R.; Garshelis, D.L.; Chutipong, W.; Seuaturien, N. Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in southeast Asia. J. Mammal. 2013, 94, 1–18. [Google Scholar] [CrossRef]
- Kozakai, C.; Seryodkin, I.; Pigeon, K.E.; Yamazaki, K.; Wangchuk, S.; Koike, S.; Tsubota, T.; Jamtsho, Y. Asiatic black bear (Ursus thibetanus). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 110–121. ISBN 978-1-108-48352-0. [Google Scholar]
- Hwang, M.-H.; Garshelis, D.L.; Wang, Y. Diets of Asiatic black bears in Taiwan, with methodological and geographical comparisons. Ursus 2002, 13, 111–125. [Google Scholar]
- Narita, R.; Sugimoto, A.; Takayanagi, A. Animal components in the diet of Japanese black bears Ursus thibetanus japonicus in the Kyoto Area, Japan. Wildl. Biol. 2006, 12, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.D.; Beckmann, J.P.; Boyce, M.S.; Leopold, B.D.; Loosen, A.E.; Pelton, M.R. American black bear (Ursus americanus). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 122–138. ISBN 978-1-108-48352-0. [Google Scholar]
- Fortin, J.K.; Farley, S.D.; Rode, K.D.; Robbins, C.T. Dietary and spatial overlap between sympatric ursids relative to salmon use. Ursus 2007, 18, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Fortin, J.K.; Schwartz, C.C.; Gunther, K.A.; Teisberg, J.E.; Haroldson, M.A.; Evans, M.A.; Robbins, C.T. Dietary adjustability of grizzly bears and American black bears in Yellowstone National Park. J. Wildl. Manag. 2013, 77, 270–281. [Google Scholar] [CrossRef]
- Haroldson, M.A.; Clapham, M.; Costello, C.C.; Gunther, K.A.; Kendall, K.C.; Miller, S.D.; Pigeon, K.E.; Proctor, M.F.; Rode, K.D.; Servheen, C.; et al. Brown bear (Ursus arctos; North America). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 162–195. ISBN 978-1-108-48352-0. [Google Scholar]
- Swenson, J.E.; Ambarlı, H.; Arnemo, J.M.; Baskin, L.; Ciucci, P.; Danilov, P.I.; Delibes, M.; Elfström, M.; Evans, A.L.; Groff, C.; et al. Brown bear (Ursus arctos; Eurasia). In Bears of the World: Ecology, Conservation and Management; Penteriani, V., Melletti, M., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 139–161. ISBN 978-1-108-48352-0. [Google Scholar]
- Xu, A.; Jiang, Z.; Li, C.; Guo, J.; Wu, G.; Cai, P. Summer food habits of brown bears in Kekexili Nature Reserve, Qinghai–Tibetan Plateau, China. Ursus 2006, 17, 132–137. [Google Scholar] [CrossRef]
- Aryal, A.; Hopkins, J.B.; Raubenheimer, D.; Ji, W.; Brunton, D. Distribution and diet of brown bears in the Upper Mustang Region, Nepal. Ursus 2012, 23, 231–236. [Google Scholar] [CrossRef]
- Bojarska, K.; Selva, N. Spatial patterns in brown bear Ursus arctos diet: The role of geographical and environmental factors: Biogeographical variation in brown bear diet. Mammal Rev. 2012, 42, 120–143. [Google Scholar] [CrossRef]
- Kavčič, I.; Adamič, M.; Kaczensky, P.; Krofel, M.; Kobal, M.; Jerina, K. Fast food bears: Brown bear diet in a human-dominated landscape with intensive supplemental feeding. Wildl. Biol. 2015, 21, 1–8. [Google Scholar] [CrossRef]
- Chaulk, K.; Bondrup-Nielsen, S.; Harrington, F. Black bear, Ursus americanus, ecology on the northeast coast of Labrador. Can. Field Nat. 2005, 119, 164. [Google Scholar] [CrossRef] [Green Version]
- Bonin, M.; Dussault, C.; Côté, S.D. Increased trophic position of black bear (Ursus americanus) at the northern fringe of its distribution range. Can. J. Zool. 2020, 98, 127–133. [Google Scholar] [CrossRef]
- Environment Canada. Canada Environment Canada Recovery Strategy for the Grizzly Bear (Ursus arctos), Prairie Population, in Canada; Environment Canada: Ottawa, ON, Canada, 2009.
- Bjornlie, D.D.; Haroldson, M.A. Grizzly bear occupied range in the Greater Yellowstone Ecosystem, 1990–2020. In Yellowstone Grizzly Bear Investigations: Annual Report of the Interagency Grizzly Bear Study Team, 2020; van Manen, F.T., Haroldson, M.A., Karabensh, B.E., Eds.; U.S. Geological Survey: Bozeman, MT, USA, 2021; pp. 24–27. [Google Scholar]
- Yamazaki, K.; Kozakai, C.; Koike, S.; Morimoto, H.; Goto, Y.; Furubayashi, K. Myrmecophagy of Japanese black bears in the grasslands of the Ashio area, Nikko National Park, Japan. Ursus 2012, 23, 52–64. [Google Scholar] [CrossRef]
- Izumiyama, S.; Shiraishi, T. Seasonal changes in elevation and habitat use of the Asiatic black bear (Ursus thibetanus) in the Northern Japan Alps. Mammal Study 2004, 29, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.R.; Garshelis, D.L.; Smith, J.L.D. Home ranges of sloth bears in Nepal: Implications for conservation. J. Wildl. Manag. 1995, 59, 204. [Google Scholar] [CrossRef]
- Tumendemberel, O.; Proctor, M.; Reynolds, H.; Boulanger, J.; Luvsamjamba, A.; Tserenbataa, T.; Batmunkh, M.; Craighead, D.; Yanjin, N.; Paetkau, D. Gobi bear abundance and inter-oases movements, Gobi Desert, Mongolia. Ursus 2015, 26, 129–142. [Google Scholar] [CrossRef]
- Appleton, R.D.; Van Horn, R.C.; Noyce, K.V.; Spady, T.J.; Swaisgood, R.R.; Arcese, P. Phenotypic plasticity in the timing of reproduction in Andean bears. J. Zool. 2018, 305, 196–202. [Google Scholar] [CrossRef]
- Ghadirian, T.; Qashqaei, A.T.; Soofi, M.; Abolghasemi, H.; Ghoddousi, A. Diet of Asiatic black bear in its westernmost distribution range, Southern Iran. Ursus 2017, 28, 15–19. [Google Scholar] [CrossRef]
- Mosnier, A.; Ouellet, J.-P.; Courtois, R. Black bear adaptation to low productivity in the boreal forest. Écoscience 2008, 15, 485–497. [Google Scholar] [CrossRef]
- Romain, D.A.; Obbard, M.E.; Atkinson, J.L. Temporal variation in food habits of the american black bear (Ursus americanus) in the boreal forest of Northern Ontario. Can. Field Nat. 2013, 127, 118. [Google Scholar] [CrossRef] [Green Version]
- Stenset, N.E.; Lutnæs, P.N.; Bjarnadóttir, V.; Dahle, B.; Fossum, K.H.; Jigsved, P.; Johansen, T.; Neumann, W.; Opseth, O.; Rønning, O.; et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of Southcentral Sweden. Wildl. Biol. 2016, 22, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Garshelis, D.; Noyce, K. Seeing the world through the nose of a bear—Diversity of foods fosters behavioral and demographic stability. In Frontiers in Wildlife Science: Linking Ecological Theory and Management Applications; Fulbright, T., Hewitt, D., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 139–163. ISBN 978-0-8493-7487-6. [Google Scholar]
- Beston, J.A. Variation in life history and demography of the American black bear: Life history of black bears. J. Wildl. Manag. 2011, 75, 1588–1596. [Google Scholar] [CrossRef]
- Tumbelaka, L.; Fredriksson, G. The status of sun bears in Indonesia. In Understanding Bears to Save Their Future; Japan Bear Network: Ibaraki, Japan, 2006; pp. 73–78. [Google Scholar]
- Crudge, B.; Lees, C.; Hunt, M.; Steinmetz, R.; Fredriksson, G. Sun Bears: Global Status Review & Conservation Action Plan, 2019–2028; IUCN SSC Bear Specialist Group/IUCN SSC Conservation Planning Specialist Group/Free the Bears/TRAFFIC: 2019. Available online: http://www.cbsg.org/content/sun-bears-global-status-review-conservation-action-plan-2019-2028 (accessed on 20 December 2021).
- Wong, S.T.; Servheen, C.; Ambu, L.; Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 2005, 21, 627–639. [Google Scholar] [CrossRef]
- Garshelis, D.L.; Joshi, A.R.; Smith, J.L.D. Estimating density and relative abundance of sloth bears. Ursus 1999, 11, 87–98. [Google Scholar]
- Ratnayeke, S.; van Manen, F.T.; Pieris, R.; Pragash, V.S.J. Landscape characteristics of sloth bear range in Sri Lanka. Ursus 2007, 18, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Uddin, M.; Aziz, M.A.; Muzaffar, S.B.; Chakma, S.; Chowdhury, S.U.; Chowdhury, G.W.; Rashid, M.A.; Mohsanin, S.; Jahan, I.; et al. Status of bears in Bangladesh: Going, going, gone? Ursus 2013, 24, 83–90. [Google Scholar] [CrossRef]
- Mayor, S.J.; Schneider, D.C.; Schaefer, J.A.; Mahoney, S.P. Habitat selection at multiple scales. Écoscience 2009, 16, 238–247. [Google Scholar] [CrossRef]
- McGarigal, K.; Wan, H.Y.; Zeller, K.A.; Timm, B.C.; Cushman, S.A. Multi-scale habitat selection modeling: A review and outlook. Landsc. Ecol. 2016, 31, 1161–1175. [Google Scholar] [CrossRef]
- Davis, H.; Weir, R.D.; Hamilton, A.N.; Deal, J.A. Influence of phenology on site selection by female American black bears in Coastal British Columbia. Ursus 2006, 17, 41–51. [Google Scholar] [CrossRef]
- Liu, F.; McShea, W.; Garshelis, D.; Zhu, X.; Wang, D.; Gong, J.; Chen, Y. Spatial distribution as a measure of conservation needs: An example with Asiatic black bears in South-Western China. Divers. Distrib. 2009, 15, 649–659. [Google Scholar] [CrossRef]
- Ngoprasert, D.; Steinmetz, R. Differentiating Asiatic black bears and sun bears from camera-trap photographs. Int. Bear News 2012, 21, 18–19. [Google Scholar]
- Sharp, T.; Dharaiya, N.A.; Garshelis, D.L. Differentiating sloth bears and Asiatic black bears in camera-trap photos. Int. Bear News 2016, 25, 10–12. [Google Scholar]
- Hwang, M.; Ditmer, M.A.; Teo, S.; Wong, S.T.; Garshelis, D.L. Sun bears use 14-year-old previously logged forest more than primary forest in Sabah, Malaysia. Ecosphere 2021, 12, e03769. [Google Scholar] [CrossRef]
- Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: New York, NY, USA, 2017; ISBN 978-1-108-50849-0. [Google Scholar]
- Fieberg, J.R.; Forester, J.D.; Street, G.M.; Johnson, D.H.; ArchMiller, A.A.; Matthiopoulos, J. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models. Ecography 2018, 41, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Nazeri, M.; Jusoff, K.; Madani, N.; Mahmud, A.R.; Bahman, A.R.; Kumar, L. Predictive modeling and mapping of Malayan sun bear (Helarctos malayanus) distribution using maximum entropy. PLoS ONE 2012, 7, e48104. [Google Scholar] [CrossRef] [Green Version]
- Lozier, J.D.; Aniello, P.; Hickerson, M.J. Predicting the distribution of Sasquatch in Western North America: Anything goes with ecological niche modelling. J. Biogeogr. 2009, 36, 1623–1627. [Google Scholar] [CrossRef]
- Kim, T.-G.; Yang, D.; Cho, Y.; Song, K.-H.; Oh, J.-G. Habitat distribution change prediction of Asiatic black bears (Ursus thibetanus) using Maxent modeling approach. Korean J. Ecol. Environ. 2016, 49, 197–207. [Google Scholar] [CrossRef]
- Wolf, C.; Ripple, W.J. Rewilding the world’s large carnivores. R. Soc. Open Sci. 2018, 5, 172235. [Google Scholar] [CrossRef] [Green Version]
- Northrup, J.M.; Hooten, M.B.; Anderson, C.R.; Wittemyer, G. Practical guidance on characterizing availability in resource selection functions under a use—availability design. Ecology 2013, 94, 1456–1463. [Google Scholar] [CrossRef]
- Martin, J.; Calenge, C.; Quenette, P.-Y.; Allainé, D. Importance of movement constraints in habitat selection studies. Ecol. Model. 2008, 213, 257–262. [Google Scholar] [CrossRef]
- Fieberg, J.; Matthiopoulos, J.; Hebblewhite, M.; Boyce, M.S.; Frair, J.L. Correlation and studies of habitat selection: Problem, red herring or opportunity? Phil. Trans. R. Soc. B 2010, 365, 2233–2244. [Google Scholar] [CrossRef] [Green Version]
- Thurfjell, H.; Ciuti, S.; Boyce, M.S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2014, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Garshelis, D.; Steinmtez, R. Publication gradient among bear species tied to conservation needs. Int. Bear News 2015, 24, 7–9. [Google Scholar]
- Peyton, B. Criteria for assessing habitat quality of the spectacled bear in Machu Picchu, Peru. Bears Biol. Manag. 1987, 7, 135. [Google Scholar] [CrossRef]
- Peyton, B. Habitat components of the spectacled bear in Machu Picchu, Peru. Bears Biol. Manag. 1987, 7, 127. [Google Scholar] [CrossRef]
- Cuesta, F.; Peralvo, M.F.; van Manen, F.T. Andean bear habitat use in the Oyacachi River Basin. Ecuador 2003, 14, 198–209. [Google Scholar]
- Peralvo, M.F.; Cuesta, F.; van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in Northern Ecuador. Ursus 2005, 16, 222–233. [Google Scholar] [CrossRef]
- Garshelis, D.L. Andean bear density and abundance estimates—How reliable and useful are they? Ursus 2011, 22, 47–64. [Google Scholar] [CrossRef]
- Ríos-Uzeda, B.; Gómez, H.; Wallace, R.B. Habitat preferences of the Andean bear (Tremarctos ornatus) in the Bolivian Andes. J. Zool. 2006, 268, 271–278. [Google Scholar] [CrossRef]
- Velez–Liendo, X.; Strubbe, D.; Matthysen, E. Effects of variable selection on modelling habitat and potential distribution of the Andean bear in Bolivia. Ursus 2013, 24, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Velez–Liendo, X.; Adriaensen, F.; Matthysen, E. Landscape assessment of habitat suitability and connectivity for Andean bears in the Bolivian Tropical Andes. Ursus 2014, 25, 172–187. [Google Scholar] [CrossRef]
- Meza Mori, G.; Barboza Castillo, E.; Torres Guzmán, C.; Cotrina Sánchez, D.A.; Guzman Valqui, B.K.; Oliva, M.; Bandopadhyay, S.; Salas López, R.; Rojas Briceño, N.B. Predictive modelling of current and future potential distribution of the spectacled bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals 2020, 10, 1816. [Google Scholar] [CrossRef]
- Morrell, N.; Appleton, R.D.; Arcese, P. Roads, forest cover, and topography as factors affecting the occurrence of large carnivores: The case of the Andean bear (Tremarctos ornatus). Glob. Ecol. Conserv. 2021, 26, e01473. [Google Scholar] [CrossRef]
- Scotson, L.; Fredriksson, G.; Ngoprasert, D.; Wong, W.-M.; Fieberg, J. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE 2017, 12, e0185336. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Ziegler, T.; Kolter, L. Thermoregulation in Malayan sun bears (Helarctos malayanus) and its consequences for in situ conservation. J. Therm. Biol. 2020, 91, 102646. [Google Scholar] [CrossRef]
- Lindsell, J.A.; Lee, D.C.; Powell, V.J.; Gemita, E. Availability of large seed-dispersers for restoration of degraded tropical forest. Trop. Conserv. Sci. 2015, 8, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Sethy, J.; Chauhan, N.P.S. Assessing habitat use by sun bears in Namdapha Tiger Reserve, Arunachal Pradesh, India. Appl. Ecol. Env. Res. 2016, 14, 215–236. [Google Scholar] [CrossRef]
- Lee, D.C.; Powell, V.J.; Lindsell, J.A. Understanding landscape and plot-scale habitat utilisation by Malayan sun bear (Helarctos malayanus) in degraded lowland forest. Acta Oecologica 2019, 96, 1–9. [Google Scholar] [CrossRef]
- Guharajan, R.; Arnold, T.W.; Bolongon, G.; Dibden, G.H.; Abram, N.K.; Teoh, S.W.; Magguna, M.A.; Goossens, B.; Wong, S.T.; Nathan, S.K.S.S.; et al. Survival strategies of a frugivore, the sun bear, in a forest-oil palm landscape. Biodivers Conserv. 2018, 27, 3657–3677. [Google Scholar] [CrossRef]
- Guharajan, R.; Mohamed, A.; Wong, S.T.; Niedballa, J.; Petrus, A.; Jubili, J.; Lietz, R.; Clements, G.R.; Wong, W.-M.; Kissing, J.; et al. Sustainable forest management is vital for the persistence of sun bear Helarctos malayanus populations in Sabah, Malaysian Borneo. For. Ecol. Manag. 2021, 493, 119270. [Google Scholar] [CrossRef]
- Tilker, A.; Abrams, J.F.; Mohamed, A.; Nguyen, A.; Wong, S.T.; Sollmann, R.; Niedballa, J.; Bhagwat, T.; Gray, T.N.E.; Rawson, B.M.; et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2019, 2, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abidin, K.Z.; Lihan, T.; Taher, T.M.; Nazri, N.; Zaini, I.-H.A.; Mansor, M.S.; Topani, R.; Nor, S.M. Predicting potential conflict areas of the Malayan sun bear (Helarctos malayanus) in Peninsular Malaysia using maximum entropy model. Mammal Study 2019, 44, 193. [Google Scholar] [CrossRef]
- Normua, F.; Higashi, S.; Ambu, L.; Mohamed, M. Notes on oil palm plantation use and seasonal spatial relationships of sun bears in Sabah, Malaysia. Ursus 2004, 15, 227–231. [Google Scholar] [CrossRef]
- Cheah, C.P.I. The Ecology of Malayan Sun Bears (Helarctos malayanus) at the Krau Wildlife Reserve, Pahang, Malaysia and Adjacent Plantations. Ph.D. Thesis, University Putra Malaysia, Selangor, Malaysia, 2013. [Google Scholar]
- Tee, T.L.; van Manen, F.T.; Kretzschmar, P.; Sharp, S.P.; Wong, S.T.; Gadas, S.; Ratnayeke, S. Anthropogenic edge effects in habitat selection by sun bears in a protected area. Wildl. Biol. 2021, 2021, wlb.00776. [Google Scholar] [CrossRef]
- Kunde, M.N.; Martins, R.F.; Premier, J.; Fickel, J.; Förster, D.W. Population and landscape genetic analysis of the Malayan sun bear Helarctos malayanus. Conserv. Genet. 2020, 21, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Guharajan, R.; Abram, N.K.; Magguna, M.A.; Goossens, B.; Wong, S.T.; Nathan, S.K.S.S.; Garshelis, D.L. Does the vulnerable sun bear Helarctos malayanus damage crops and threaten people in oil palm plantations? Oryx 2019, 53, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, D.; Thapa, T.B. Distribution and habitat preference of sloth bear in Chitwan National Park, Nepal. J. Nat. Hist. Mus. 2015, 28, 9–17. [Google Scholar] [CrossRef]
- Ratnayeke, S.; van Manen, F.T.; Padmalal, U.K.G.K. Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka. Wildl. Biol. 2007, 13, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Singh Bargali, H.; Chauhan, N.P.S. Sloth bear habitat use in disturbed and unprotected areas of Madhya Pradesh, India. Ursus 2004, 15, 203–211. [Google Scholar] [CrossRef]
- Akhtar, N.; Bargali, H.S.; Chauhan, N.P.S. Characteristics of sloth bear day dens and use in disturbed and unprotected habitat of North Bilaspur Forest Division, Chhattisgarh, central India. Ursus 2007, 18, 203–208. [Google Scholar] [CrossRef]
- Dutta, T.; Sharma, S.; Maldonado, J.E.; Panwar, H.S.; Seidensticker, J. Genetic variation, structure, and gene flow in a sloth bear (Melursus ursinus) meta-population in the Satpura-Maikal landscape of central India. PLoS ONE 2015, 10, e0123384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatte, P.; Chandramouli, A.; Tyagi, A.; Patel, K.; Baro, P.; Chhattani, H.; Ramakrishnan, U. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 2020, 26, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Puri, M.; Srivathsa, A.; Karanth, K.K.; Kumar, N.S.; Karanth, K.U. Multiscale distribution models for conserving widespread species: The case of sloth bear Melursus ursinus in India. Divers. Distrib. 2015, 21, 1087–1100. [Google Scholar] [CrossRef]
- Srivathsa, A.; Puri, M.; Kumar, N.S.; Jathanna, D.; Karanth, K.U. Substituting space for time: Empirical evaluation of spatial replication as a surrogate for temporal replication in occupancy modelling. J Appl Ecol 2018, 55, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, T.; Kalle, R.; Sankar, K.; Qureshi, Q. Factors affecting habitat patch use by sloth bears in Mudumalai Tiger Reserve, Western Ghats, India. Ursus 2012, 23, 78–85. [Google Scholar] [CrossRef]
- Carr, M.M.; Yoshizaki, J.; van Manen, F.T.; Pelton, M.R.; Huygens, O.C.; Hayashi, H.; Maekawa, M. A multi-scale assessment of habitat use by Asiatic black bears in central Japan. Ursus 2002, 13, 1–9. [Google Scholar]
- Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.G.; Ichinose, T.; Chen, W.; Skidmore, A.K. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol. Model. 2011, 222, 748–761. [Google Scholar] [CrossRef]
- Takahata, C.; Nishino, S.; Kido, K.; Izumiyama, S. An evaluation of habitat selection of Asiatic black bears in a season of prevalent conflicts. Ursus 2013, 24, 16–26. [Google Scholar] [CrossRef]
- Takahata, C.; Nielsen, S.E.; Takii, A.; Izumiyama, S. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape. PLoS ONE 2014, 9, e86181. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.-H.; Garshelis, D.L.; Wu, Y.-H.; Wang, Y. Home ranges of Asiatic black bears in the Central Mountains of Taiwan: Gauging whether a reserve is big enough. Ursus 2010, 21, 81–96. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, M.; Wang, D.; Shen, X.; Li, S. Using an integrative mapping approach to identify the distribution range and conservation needs of a large threatened mammal, the Asiatic black bear, in China. Glob. Ecol. Conserv. 2021, 31, e01831. [Google Scholar] [CrossRef]
- Bista, M.; Panthi, S.; Weiskopf, S.R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 2018, 13, e0203697. [Google Scholar] [CrossRef] [PubMed]
- Goursi, U.H.; Anwar, M.; Bosso, L.; Nawaz, M.A.; Kabir, M. Spatial distribution of the threatened Asiatic black bear in northern Pakistan. Ursus 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Awan, M.N.; Awan, M.S.; Nawaz, M.A.; Hameed, S.; Kabir, M.; Lee, D.C. Landscape associations of Asiatic black bears in Kashmir Himalaya, Pakistan. Ursus 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Zahoor, B.; Liu, X.; Kumar, L.; Dai, Y.; Tripathy, B.R.; Songer, M. Projected shifts in the distribution range of Asiatic black bear (Ursus thibetanus) in the Hindu Kush Himalaya due to climate change. Ecol. Inform. 2021, 63, 101312. [Google Scholar] [CrossRef]
- Su, H.; Bista, M.; Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 2021, 11, 14135. [Google Scholar] [CrossRef]
- Ngoprasert, D.; Steinmetz, R.; Reed, D.H.; Savini, T.; Gale, G.A. Influence of fruit on habitat selection of Asian bears in a Tropical Forest. J. Wildl. Manag. 2011, 75, 588–595. [Google Scholar] [CrossRef]
- Scotson, L.; Ross, S.; Arnold, T.W. Monitoring sun bears and Asiatic black bears with remotely sensed predictors to inform conservation management. Oryx 2021, 55, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Almasieh, K.; Kaboli, M.; Beier, P. Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus 2016, 27, 18–30. [Google Scholar] [CrossRef]
- Farashi, A.; Erfani, M. Modeling of habitat suitability of Asiatic black bear (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecol. Sin. 2018, 38, 9–14. [Google Scholar] [CrossRef]
- Morovati, M.; Karami, P.; Bahadori Amjas, F. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran. PLoS ONE 2020, 15, e0242432. [Google Scholar] [CrossRef]
- Swaisgood, R.R.; Wang, D.; Wei, F. Panda downlisted but not out of the woods. Cons. Lett. 2017, 11, e12355. [Google Scholar] [CrossRef] [Green Version]
- Hull, V.; Roloff, G.; Zhang, J.; Liu, W.; Zhou, S.; Huang, J.; Xu, W.; Ouyang, Z.; Zhang, H.; Liu, J. A synthesis of giant panda habitat selection. Ursus 2014, 25, 148–162. [Google Scholar] [CrossRef]
- Zhang, Z.; Swaisgood, R.R.; Zhang, S.; Nordstrom, L.A.; Wang, H.; Gu, X.; Hu, J.; Wei, F. Old-growth forest is what giant pandas really need. Biol. Lett. 2011, 7, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, X.; Skidmore, A.K. Potential solar radiation pattern in relation to the monthly distribution of giant pandas in Foping Nature Reserve, China. Ecol. Model. 2011, 222, 645–652. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheppard, J.K.; Swaisgood, R.R.; Wang, G.; Nie, Y.; Wei, W.; Zhao, N.; Wei, F. Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integr. Zool. 2014, 9, 46–60. [Google Scholar] [CrossRef]
- Hull, V.; Zhang, J.; Huang, J.; Zhou, S.; Viña, A.; Shortridge, A.; Li, R.; Liu, D.; Xu, W.; Ouyang, Z.; et al. Habitat use and selection by giant pandas. PLoS ONE 2016, 11, e0162266. [Google Scholar] [CrossRef]
- Bai, W.; Huang, Q.; Zhang, J.; Stabach, J.; Huang, J.; Yang, H.; Songer, M.; Connor, T.; Liu, J.; Zhou, S.; et al. Microhabitat selection by giant pandas. Biol. Conserv. 2020, 247, 108615. [Google Scholar] [CrossRef]
- Wei, W.; Swaisgood, R.R.; Dai, Q.; Yang, Z.; Yuan, S.; Owen, M.A.; Pilfold, N.W.; Yang, X.; Gu, X.; Zhou, H.; et al. Giant panda distributional and habitat-use shifts in a changing landscape. Conserv. Lett. 2018, 11, e12575. [Google Scholar] [CrossRef]
- Yang, H.; Viña, A.; Tang, Y.; Zhang, J.; Wang, F.; Zhao, Z.; Liu, J. Range-wide evaluation of wildlife habitat change: A demonstration using giant pandas. Biol. Conserv. 2017, 213, 203–209. [Google Scholar] [CrossRef]
- Li, C.; Connor, T.; Bai, W.; Yang, H.; Zhang, J.; Qi, D.; Zhou, C. Dynamics of the giant panda habitat suitability in response to changing anthropogenic disturbance in the Liangshan mountains. Biol. Conserv. 2019, 237, 445–455. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Dayananda, B.; Jeffree, R.A.; Tian, C.; Zhang, Y.-Y.; Yu, B.; Zheng, Y.; Jing, Y.; Si, P.-Y.; Li, J.-Q. Giant panda distribution and habitat preference: The influence of sympatric large mammals. Glob. Ecol. Conserv. 2020, 24, e01221. [Google Scholar] [CrossRef]
- Hull, V.; Zhang, J.; Zhou, S.; Huang, J.; Viña, A.; Liu, W.; Tuanmu, M.-N.; Li, R.; Liu, D.; Xu, W.; et al. Impact of livestock on giant pandas and their habitat. J. Nat. Conserv. 2014, 22, 256–264. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Connor, T.A.; Bai, W.; Zhang, J.; Wei, W.; Zhang, Z.; Liu, D.; Zhou, C. Impact of livestock grazing on biodiversity and giant panda habitat. J. Wildl. Manag. 2019, 83, 1592–1597. [Google Scholar] [CrossRef]
- Li, B.V.; Kim, M.J.; Xu, W.; Jiang, S.; Yu, L. Increasing livestock grazing, the unintended consequence of community development funding on giant panda habitat. Biol. Conserv. 2021, 257, 109074. [Google Scholar] [CrossRef]
- Qi, D.; Xu, C.; Hou, R.; Chen, P.; Owens, J.R.; Zhang, Z.; Gu, X.; Yang, Z.; Chen, L. Using habitat models to evaluate protected area designing for giant pandas. Folia Zool. 2015, 64, 56–64. [Google Scholar] [CrossRef]
- Zhao, C.; Yue, B.; Ran, J.; Moermond, T.; Hou, N.; Yang, X.; Gu, X. Relationship between human disturbance and endangered giant panda Ailuropoda melanoleuca habitat use in the Daxiangling Mountains. Oryx 2017, 51, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Ruan, T.; Han, H.; Wei, W.; Qiu, L.; Hong, M.; Tang, J.; Zhou, H.; Zhang, Z. Habitat suitability evaluation for giant panda in Liziping National Nature Reserve, Sichuan Province. Glob. Ecol. Conserv. 2021, 30, e01780. [Google Scholar] [CrossRef]
- Kang, D.; Zhao, Z.; Chen, X.; Lin, Y.; Wang, X.; Li, J. Evaluating the effects of roads on giant panda habitat at two scales in a typical nature reserve. Sci. Total Environ. 2020, 710, 136351. [Google Scholar] [CrossRef]
- Kang, D. A review of the impacts of four identified major human disturbances on the habitat and habitat use of wild giant pandas from 2015 to 2020. Sci. Total Environ. 2021, 763, 142975. [Google Scholar] [CrossRef]
- Qiu, L.; Han, H.; Zhou, H.; Hong, M.; Zhang, Z.; Yang, X.; Gu, X.; Zhang, W.; Wei, W.; Dai, Q. Disturbance control can effectively restore the habitat of the giant panda (Ailuropoda melanoleuca). Biol. Conserv. 2019, 238, 108233. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathewson, P.D.; Zhang, Q.; Porter, W.P.; Ran, J. An ecophysiological perspective on likely giant panda habitat responses to climate change. Glob. Change Biol. 2018, 24, 1804–1816. [Google Scholar] [CrossRef]
- Huang, Q.; Lothspeich, A.; Hernández-Yáñez, H.; Mertes, K.; Liu, X.; Songer, M. What drove giant panda Ailuropoda melanoleuca expansion in the Qinling mountains? An analysis comparing the influence of climate, bamboo, and various landscape variables in the past decade. Environ. Res. Lett. 2020, 15, 084036. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, Q.; McShea, W.J.; Songer, M.; Huang, Q.; Zhang, X.; Zhou, L. Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conserv. Lett. 2018, 11, e12592. [Google Scholar] [CrossRef]
- Han, H.; Wei, W.; Hu, Y.; Nie, Y.; Ji, X.; Yan, L.; Zhang, Z.; Shi, X.; Zhu, L.; Luo, Y.; et al. Diet evolution and habitat contraction of giant pandas via stable isotope analysis. Curr. Biol. 2019, 29, 664–669.e2. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Long, Z.; Jia, J. A multi-scale maxent approach to model habitat suitability for the giant pandas in the Qionglai Mountain, China. Glob. Ecol. Conserv. 2021, 30, e01766. [Google Scholar] [CrossRef]
- Farashi, A. Identifying key habitats to conserve the threatened brown bear in northern Iran. Russ. J. Ecol. 2018, 49, 449–455. [Google Scholar] [CrossRef]
- Kouchali, F.; Nezami, B.; Goshtasb, H.; Rayegani, B.; Ramezani, J. Brown bear (Ursus arctos) habitat suitability modelling in the Alborz Mountains. IJESB 2019, 12, 45–54. [Google Scholar] [CrossRef]
- Habibzadeh, N.; Ashrafzadeh, M.R. Habitat suitability and connectivity for an endangered brown bear population in the Iranian Caucasus. Wildl. Res. 2018, 45, 602. [Google Scholar] [CrossRef]
- Ahmadipari, M.; Yavari, A.; Ghobadi, M. Ecological monitoring and assessment of habitat suitability for brown bear species in the Oshtorankooh Protected Area, Iran. Ecol. Indic. 2021, 126, 107606. [Google Scholar] [CrossRef]
- Almasieh, K.; Rouhi, H.; Kaboodvandpour, S. Habitat suitability and connectivity for the brown bear (Ursus arctos) along the Iran-Iraq border. Eur. J. Wildl. Res. 2019, 65, 57. [Google Scholar] [CrossRef]
- Ansari, H.M.; Ghoddousi, A. Water availability limits brown bear distribution at the southern edge of its global range. Ursus 2018, 29, 13–24. [Google Scholar] [CrossRef]
- Mohammadi, A.; Almasieh, K.; Nayeri, D.; Ataei, F.; Khani, A.; López-Bao, J.V.; Penteriani, V.; Cushman, S.A. Identifying priority core habitats and corridors for effective conservation of brown bears in Iran. Sci. Rep. 2021, 11, 1044. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.-R.; Khosravi, R.; Ahmadi, M.; Kaboli, M. Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae). Mamm. Biol. 2018, 93, 64–75. [Google Scholar] [CrossRef]
- Suel, H. Brown bear (Ursus arctos) habitat suitability modelling and mapping. Appl. Ecol. Env. Res. 2019, 17, 4245–4255. [Google Scholar] [CrossRef]
- Cozzi, G.; Chynoweth, M.; Kusak, J.; Çoban, E.; Çoban, A.; Ozgul, A.; Şekercioğlu, Ç.H. Anthropogenic Food resources foster the coexistence of distinct life history strategies: Year-round sedentary and migratory brown bears. J. Zool. 2016, 300, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Aryal, A.; Hegab, I.M.; Shrestha, U.B.; Coogan, S.C.P.; Sathyakumar, S.; Dalannast, M.; Dou, Z.; Suo, Y.; Dabu, X.; et al. Decreasing brown bear (Ursus arctos) habitat due to climate change in central Asia and the Asian highlands. Ecol. Evol. 2018, 8, 11887–11899. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Hacker, C.E.; Zhang, Y.; Li, W.; Zhang, Y.; Liu, H.; Zhang, J.; Ji, Y.; Xue, Y.; Li, D. Identifying climate refugia and its potential impact on Tibetan brown bear (Ursus arctos pruinosus) in Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 13278–13293. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Hacker, C.E.; Zhang, Y.; Li, W.; Li, J.; Zhang, Y.; Bona, G.; Liu, H.; Li, Y.; Xue, Y.; et al. Identifying the risk regions of house break-ins caused by Tibetan brown bears (Ursus arctos pruinosus) in the Sanjiangyuan region, China. Ecol. Evol. 2019, 9, 13979–13990. [Google Scholar] [CrossRef] [Green Version]
- Dar, S.A.; Singh, S.K.; Wan, H.Y.; Kumar, V.; Cushman, S.A.; Sathyakumar, S. Projected climate change threatens Himalayan brown bear habitat more than human land use. Anim. Conserv. 2021, 24, 659–676. [Google Scholar] [CrossRef]
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.V.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarzo-Arias, A.; Delgado, M.d.M.; Ordiz, A.; García Díaz, J.; Cañedo, D.; González, M.A.; Romo, C.; Vázquez García, P.; Bombieri, G.; Bettega, C.; et al. Brown bear behaviour in human-modified landscapes: The case of the endangered Cantabrian population, NW Spain. Glob. Ecol. Conserv. 2018, 16, e00499. [Google Scholar] [CrossRef]
- Martin, J.; Revilla, E.; Quenette, P.-Y.; Naves, J.; Allainé, D.; Swenson, J.E. Brown bear habitat suitability in the Pyrenees: Transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 2012, 49, 621–631. [Google Scholar] [CrossRef]
- Piédallu, B.; Quenette, P.-Y.; Bombillon, N.; Gastineau, A.; Miquel, C.; Gimenez, O. Determinants and patterns of habitat use by the brown bear Ursus arctos in the French Pyrenees revealed by occupancy modelling. Oryx 2019, 53, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Mateo Sánchez, M.C.; Cushman, S.A.; Saura, S. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian range (NW Spain). Int. J. Geogr. Inf. Sci. 2014, 28, 1531–1546. [Google Scholar] [CrossRef]
- Posillico, M.; Meriggi, A.; Pagnin, E.; Lovari, S.; Russo, L. A Habitat model for brown bear conservation and land use planning in the central Apennines. Biol. Conserv. 2004, 118, 141–150. [Google Scholar] [CrossRef]
- Falcucci, A.; Ciucci, P.; Maiorano, L.; Gentile, L.; Boitani, L. Assessing habitat quality for conservation using an integrated occurrence-mortality model. J. Appl. Ecol. 2009, 46, 600–609. [Google Scholar] [CrossRef]
- Maiorano, L.; Boitani, L.; Monaco, A.; Tosoni, E.; Ciucci, P. Modeling the distribution of Apennine brown bears during hyperphagia to reduce the impact of wild boar hunting. Eur. J. Wildl. Res. 2015, 61, 241–253. [Google Scholar] [CrossRef]
- Peters, W.; Hebblewhite, M.; Cavedon, M.; Pedrotti, L.; Mustoni, A.; Zibordi, F.; Groff, C.; Zanin, M.; Cagnacci, F. Resource selection and connectivity reveal conservation challenges for reintroduced brown bears in the Italian Alps. Biol. Conserv. 2015, 186, 123–133. [Google Scholar] [CrossRef]
- de Gabriel Hernando, M.; Karamanlidis, A.; Grivas, K.; Krambokoukis, L.; Papakostas, G.; Beecham, J. Habitat use and selection patterns inform habitat conservation priorities of an endangered large carnivore in southern Europe. Endang. Species. Res. 2021, 44, 203–215. [Google Scholar] [CrossRef]
- De Angelis, D.; Huber, D.; Reljic, S.; Ciucci, P.; Kusak, J. Factors affecting the home range of dinaric-pindos brown bears. J. Mammal. 2021, 102, 481–493. [Google Scholar] [CrossRef]
- Penteriani, V.; Lamamy, C.; Kojola, I.; Heikkinen, S.; Bombieri, G.; del Mar Delgado, M. Does artificial feeding affect large carnivore behaviours? The case study of brown bears in a hunted and tourist exploited subpopulation. Biol. Conserv. 2021, 254, 108949. [Google Scholar] [CrossRef]
- Skuban, M.; Finďo, S.; Kajba, M. Human impacts on bear feeding habits and habitat selection in the Poľana Mountains, Slovakia. Eur. J. Wildl. Res. 2016, 62, 353–364. [Google Scholar] [CrossRef]
- Martin, J.; Basille, M.; Van Moorter, B.; Kindberg, J.; Allainé, D.; Swenson, J.E. Coping with human disturbance: Spatial and temporal tactics of the brown bear (Ursus arctos). Can. J. Zool. 2010, 88, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, M.; Vander Wal, E.; Zedrosser, A.; Swenson, J.E.; Kindberg, J.; Pelletier, F. Quantifying consistent individual differences in habitat selection. Oecologia 2016, 180, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Hertel, A.G.; Leclerc, M.; Warren, D.; Pelletier, F.; Zedrosser, A.; Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 2019, 147, 91–104. [Google Scholar] [CrossRef]
- Schwartz, C.C.; Haroldson, M.A.; White, G.C.; Harris, R.B.; Cherry, S.; Keating, K.A.; Moody, D.; Servheen, C. Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem. Wildl. Monogr. 2006, 161, 1–68. [Google Scholar] [CrossRef]
- Costello, C.M.; Manen, F.T.; Haroldson, M.A.; Ebinger, M.R.; Cain, S.L.; Gunther, K.A.; Bjornlie, D.D. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem. Ecol. Evol. 2014, 4, 2004–2018. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Boyce, M.S.; Stenhouse, G.B. Grizzly bears and forestry. For. Ecol. Manag. 2004, 199, 51–65. [Google Scholar] [CrossRef]
- Pigeon, K.E.; Cardinal, E.; Stenhouse, G.B.; Côté, S.D. Staying cool in a changing landscape: The influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 2016, 181, 1101–1116. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.P.; Nelson, T.A.; Laberee, K.; Nielsen, S.E.; Wulder, M.A.; Stenhouse, G. Quantifying grizzly bear selection of natural and anthropogenic edges: Grizzly bear edge selection. J. Wild. Mgmt. 2013, 77, 957–964. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Shafer, A.B.A.; Boyce, M.S.; Stenhouse, G.B. Does learning or instinct shape habitat selection? PLoS ONE 2013, 8, e53721. [Google Scholar] [CrossRef] [PubMed]
- Denny, C.K.; Stenhouse, G.B.; Nielsen, S.E. Scales of selection and perception: Landscape heterogeneity of an important food resource influences habitat use by a large omnivore. Wildl. Biol. 2018, 2018, wlb.00409. [Google Scholar] [CrossRef] [Green Version]
- Ciarniello, L.M.; Boyce, M.S.; Seip, D.R.; Heard, D.C. Grizzly bear habitat selection is scale dependent. Ecol. Appl. 2007, 17, 1424–1440. [Google Scholar] [CrossRef] [Green Version]
- Apps, C.D.; McLellan, B.N.; Woods, J.G.; Proctor, M.F. Estimating grizzly bear distribution and abundance relative to habitat and human influence. J. Wildl. Manag. 2004, 68, 138–152. [Google Scholar] [CrossRef]
- Nams, V.O.; Mowat, G.; Panian, M.A. Determining the spatial scale for conservation purposes—An example with grizzly bears. Biol. Conserv. 2006, 128, 109–119. [Google Scholar] [CrossRef]
- McLoughlin, P.D.; Case, R.L.; Gau, R.J.; Cluff, D.H.; Mulders, R.; Messier, F. Hierarchical habitat selection by barren-ground grizzly bears in the central Canadian arctic. Oecologia 2002, 132, 102–108. [Google Scholar] [CrossRef]
- Gould, M.J.; Gould, W.R.; Cain, J.W.; Roemer, G.W. Validating the performance of occupancy models for estimating habitat use and predicting the distribution of highly-mobile species: A case study using the American black bear. Biol. Conserv. 2019, 234, 28–36. [Google Scholar] [CrossRef]
- Sollmann, R.; Gardner, B.; Belant, J.L.; Wilton, C.M.; Beringer, J. Habitat associations in a recolonizing, low-density black bear population. Ecosphere 2016, 7, e01406. [Google Scholar] [CrossRef]
- Welfelt, L.S.; Beausoleil, R.A.; Wielgus, R.B. Factors associated with black bear density and implications for management. J. Wild. Mgmt. 2019, 83, 1527–1539. [Google Scholar] [CrossRef]
- Poor, E.E.; Scheick, B.K.; Mullinax, J.M. Multiscale consensus habitat modeling for landscape level conservation prioritization. Sci. Rep. 2020, 10, 17783. [Google Scholar] [CrossRef]
- Obbard, M.E.; Coady, M.B.; Pond, B.A.; Schaefer, J.A.; Burrows, F.G. A distance-based analysis of habitat selection by American black bears (Ursus americanus) on the Bruce Peninsula, Ontario, Canada. Can. J. Zool. 2010, 88, 1063–1076. [Google Scholar] [CrossRef]
- Karelus, D.L.; McCown, J.W.; Scheick, B.K.; Oli, M.K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 2018, 13, e00367. [Google Scholar] [CrossRef]
- Onorato, D.P.; Hellgren, E.C.; Mitchell, F.S.; Skiles, J.R. Home range and habitat use of American black bears on a desert montane island in Texas. Ursus 2003, 14, 120–129. [Google Scholar]
- Ditmer, M.A.; Noyce, K.V.; Fieberg, J.R.; Garshelis, D.L. Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 2018, 387, 205–219. [Google Scholar] [CrossRef]
- Duquette, J.F.; Belant, J.L.; Wilton, C.M.; Fowler, N.; Waller, B.W.; Beyer, D.E.; Svoboda, N.J.; Simek, S.L.; Beringer, J. Black bear (Ursus americanus) functional resource selection relative to intraspecific competition and human risk. Can. J. Zool. 2017, 95, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, V.; Ouellet, J.-P.; Courtois, R.; Fortin, D. Habitat selection by black bears in an intensively logged boreal forest. Can. J. Zool. 2008, 86, 1307–1316. [Google Scholar] [CrossRef]
- Rettler, S.J.; Tri, A.N.; St-Louis, V.; Forester, J.D.; Garshelis, D.L. Three decades of declining natural foods alters bottom-up pressures on American black bears. For. Ecol. Manag. 2021, 493, 119267. [Google Scholar] [CrossRef]
- Garneau, D.E.; Boudreau, T.; Keech, M.; Post, E. Habitat use by black bears in relation to conspecifics and competitors. Mamm. Biol. 2008, 73, 48–57. [Google Scholar] [CrossRef]
- Garneau, D.E.; Boudreau, T.; Keech, M.; Post, E. Black bear movements and habitat use during a critical period for moose calves. Mamm. Biol. 2008, 73, 85–92. [Google Scholar] [CrossRef]
- Latham, A.D.M.; Latham, M.C.; Boyce, M.S. Habitat selection and spatial relationships of black bears (Ursus americanus) with woodland caribou (Rangifer tarandus caribou) in northeastern Alberta. Can. J. Zool. 2011, 89, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Bastille-Rousseau, G.; Rayl, N.D.; Ellington, E.H.; Schaefer, J.A.; Peers, M.J.L.; Mumma, M.A.; Mahoney, S.P.; Murray, D.L. Temporal variation in habitat use, co-occurrence, and risk among generalist predators and a shared prey. Can. J. Zool. 2016, 94, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Rayl, N.D.; Fuller, T.K.; Organ, J.F.; Mcdonald, J.E.; Otto, R.D.; Bastille-Rousseau, G.; Soulliere, C.E.; Mahoney, S.P. Spatiotemporal variation in the distribution of potential predators of a resource pulse: Black bears and caribou calves in Newfoundland. J. Wild. Mgmt. 2015, 79, 1041–1050. [Google Scholar] [CrossRef]
- Karelus, D.L.; McCown, J.W.; Scheick, B.K.; Kerk, M.; van de Oli, M.K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast. Nat. 2016, 15, 346. [Google Scholar] [CrossRef]
- Tri, A.N.; Edwards, J.W.; Strager, M.P.; Petty, J.T.; Ryan, C.W.; Carpenter, C.P.; Ternent, M.A.; Carr, P.C. Habitat use by American black bears in the urban–wildland interface of the Mid-Atlantic, USA. Ursus 2016, 27, 45–56. [Google Scholar] [CrossRef]
- Fecske, D.M.; Barry, R.E.; Precht, F.L.; Quigley, H.B.; Bittner, S.L.; Webster, T. Habitat use by female black bears in western Maryland. Southeast. Nat. 2002, 1, 77–92. [Google Scholar] [CrossRef]
- Carter, N.H.; Brown, D.G.; Etter, D.R.; Visser, L.G. American black bear habitat selection in northern Lower Peninsula, Michigan, USA, using discrete-choice modeling. Ursus 2010, 21, 57–71. [Google Scholar] [CrossRef]
- Sadeghpour, M.H.; Ginnett, T.F. Habitat selection by female American black bears in northern Wisconsin. Ursus 2011, 22, 159–166. [Google Scholar] [CrossRef]
- Benson, J.F.; Chamberlain, M.J. Space use and habitat selection by female Louisiana black bears in the Tensas River Basin of Louisiana. J. Wildl. Manag. 2007, 71, 117–126. [Google Scholar] [CrossRef]
- Smith, J.B.; Nielsen, C.K.; Hellgren, E.C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 2016, 50, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Gantchoff, M.; Conlee, L.; Belant, J. Conservation implications of sex-specific landscape suitability for a large generalist carnivore. Divers. Distrib. 2019, 25, 1488–1496. [Google Scholar] [CrossRef] [Green Version]
- Delfín-Alfonso, C.A.; López-González, C.A.; Equihua, M. Potential distribution of American black bears in northwest Mexico and implications for their conservation. Ursus 2012, 23, 65–77. [Google Scholar] [CrossRef]
- Rojas-Martínez, A.E.; Juárez-Casillas, L.A. First record of American black bear (Ursus americanus) from Hidalgo, Mexico. Rev. Mex. De Biodivers. 2013, 84, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-López, M.; Monter-Vargas, J.L.; Cornejo-Latorre, C.; Hernández-Saintmartin, A. First photo evidence of the American black bear (Ursus americanus) in the southwestern limit of its distribution. West. North Am. Nat. 2019, 79, 124–129. [Google Scholar] [CrossRef]
- Monroy-Vilchis, O.; Castillo-Huitrón, N.M.; Zarco-González, M.M.; Rodríguez-Soto, C. Potential distribution of Ursus americanus in Mexico and its persistence: Implications for conservation. J. Nat. Conserv. 2016, 29, 62–68. [Google Scholar] [CrossRef]
- Ditmer, M.A.; Iannarilli, F.; Tri, A.N.; Garshelis, D.L.; Carter, N.H. Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population. J. Anim. Ecol. 2021, 90, 330–342. [Google Scholar] [CrossRef]
- Ditmer, M.A.; Rettler, S.J.; Fieberg, J.R.; Iaizzo, P.A.; Laske, T.G.; Noyce, K.V.; Garshelis, D.L. American black bears perceive the risks of crossing roads. Behav. Ecol. 2018, 29, 667–675. [Google Scholar] [CrossRef]
- Corradini, A.; Peters, W.; Pedrotti, L.; Hebblewhite, M.; Bragalanti, N.; Tattoni, C.; Ciolli, M.; Cagnacci, F. Animal movements occurring during COVID-19 lockdown were predicted by connectivity models. Glob. Ecol. Conserv. 2021, 32, e01895. [Google Scholar] [CrossRef]
- Issam, H. The syrian bear still lives in Syria. Int. Bear News 2011, 20, 7–11. [Google Scholar]
- Deacy, W.; Leacock, W.; Armstrong, J.B.; Stanford, J.A. Kodiak brown bears surf the salmon red wave: Direct evidence from GPS collared individuals. Ecology 2016, 97, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Deacy, W.W.; Leacock, W.B.; Stanford, J.A.; Armstrong, J.B. Variation in spawning phenology within salmon populations influences landscape-level patterns of brown bear activity. Ecosphere 2019, 10, e02575. [Google Scholar] [CrossRef]
- Deacy, W.W.; Armstrong, J.B.; Leacock, W.B.; Robbins, C.T.; Gustine, D.D.; Ward, E.J.; Erlenbach, J.A.; Stanford, J.A. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl. Acad. Sci. USA 2017, 114, 10432–10437. [Google Scholar] [CrossRef] [Green Version]
- Nellemann, C.; Støen, O.-G.; Kindberg, J.; Swenson, J.E.; Vistnes, I.; Ericsson, G.; Katajisto, J.; Kaltenborn, B.P.; Martin, J.; Ordiz, A. Terrain use by an expanding brown bear population in relation to age, recreational resorts and human settlements. Biol. Conserv. 2007, 138, 157–165. [Google Scholar] [CrossRef]
- Hertel, A.G.; Steyaert, S.M.J.G.; Zedrosser, A.; Mysterud, A.; Lodberg-Holm, H.K.; Gelink, H.W.; Kindberg, J.; Swenson, J.E. Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behav. Ecol. Sociobiol. 2016, 70, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.E.; Stenhouse, G.B.; Boyce, M.S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 2006, 130, 217–229. [Google Scholar] [CrossRef]
- Ciarniello, L.M.; Boyce, M.S.; Heard, D.C.; Seip, D.R. Components of grizzly bear habitat selection: Density, habitats, roads, and mortality risk. J. Wildl. Manag. 2007, 71, 1446–1457. [Google Scholar] [CrossRef]
- Lamb, C.T.; Mowat, G.; McLellan, B.N.; Nielsen, S.E.; Boutin, S. Forbidden fruit: Human settlement and abundant fruit create an ecological trap for an apex omnivore. J. Anim. Ecol. 2017, 86, 55–65. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Vaz, U.L.; Cunha, H.F.; Nabout, J.C. Trends and biases in global scientific literature about ecological niche models. Braz. J. Biol. 2015, 75, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Aubry, K.B.; Raley, C.M.; McKelvey, K.S. The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLoS ONE 2017, 12, e0179152. [Google Scholar] [CrossRef] [Green Version]
- Ashrafzadeh, M.R.; Khosravi, R.; Adibi, M.A.; Taktehrani, A.; Wan, H.Y.; Cushman, S.A. A multi-scale, multi-species approach for assessing effectiveness of habitat and connectivity conservation for endangered felids. Biol. Conserv. 2020, 245, 108523. [Google Scholar] [CrossRef]
- Qin, A.; Jin, K.; Batsaikhan, M.-E.; Nyamjav, J.; Li, G.; Li, J.; Xue, Y.; Sun, G.; Wu, L.; Indree, T.; et al. Predicting the current and future suitable habitats of the main dietary plants of the Gobi bear using Maxent modeling. Glob. Ecol. Conserv. 2020, 22, e01032. [Google Scholar] [CrossRef]
- Bucklin, D.N.; Basille, M.; Benscoter, A.M.; Brandt, L.A.; Mazzotti, F.J.; Romañach, S.S.; Speroterra, C.; Watling, J.I. Comparing species distribution models constructed with different subsets of environmental predictors. Divers. Distrib. 2015, 21, 23–35. [Google Scholar] [CrossRef]
- Nielsen, S.E.; McDermid, G.; Stenhouse, G.B.; Boyce, M.S. Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biol. Conserv. 2010, 143, 1623–1634. [Google Scholar] [CrossRef]
- Boulanger, J.; Nielsen, S.E.; Stenhouse, G.B. Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta. Sci. Rep. 2018, 8, 5204. [Google Scholar] [CrossRef] [Green Version]
- Lamb, C.T.; Mowat, G.; Reid, A.; Smit, L.; Proctor, M.; McLellan, B.N.; Nielsen, S.E.; Boutin, S. Effects of habitat quality and access management on the density of a recovering grizzly bear population. J. Appl. Ecol. 2018, 55, 1406–1417. [Google Scholar] [CrossRef] [Green Version]
- Mowat, G.; Heard, D.C.; Schwarz, C.J. Predicting grizzly bear density in Western North America. PLoS ONE 2013, 8, e82757. [Google Scholar] [CrossRef]
- Stetz, J.B.; Mitchell, M.S.; Kendall, K.C. Using spatially-explicit capture–recapture models to explain variation in seasonal density patterns of sympatric ursids. Ecography 2019, 42, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, J.; Cattet, M.; Nielsen, S.E.; Stenhouse, G.; Cranston, J. Use of multi-state models to explore relationships between changes in body condition, habitat and survival of grizzly bears Ursus arctos horribilis. Wildl. Biol. 2013, 19, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Scharf, A.K.; Fernández, N. Up-scaling local-habitat models for large-scale conservation: Assessing suitable areas for the brown bear comeback in Europe. Divers. Distrib. 2018, 24, 1573–1582. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, L.; Cushman, S.A.; Bai, D.; Wang, J.; Chen, P.; Shi, K.; Riordan, P. Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. Ecol. Evol. 2020, 10, 7686–7712. [Google Scholar] [CrossRef]
- Lee-Yaw, J.A.; McCune, J.L.; Pironon, S.; Sheth, S.N. Species distribution models rarely predict the biology of real populations. Ecography, 2021; Early View. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Cianfrani, C.; Le Lay, G.; Hirzel, A.H.; Loy, A. Do habitat suitability models reliably predict the recovery areas of threatened species? J. Appl. Ecol. 2010, 47, 421–430. [Google Scholar] [CrossRef]
- Knight, A.T.; Cowling, R.M.; Rouget, M.; Balmford, A.; Lombard, A.T.; Campbell, B.M. Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 2008, 22, 610–617. [Google Scholar] [CrossRef]
- Cook, C.N.; Mascia, M.B.; Schwartz, M.W.; Possingham, H.P.; Fuller, R.A. Achieving conservation science that bridges the knowledge–action boundary. Conserv. Biol. 2013, 27, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Villero, D.; Pla, M.; Camps, D.; Ruiz-Olmo, J.; Brotons, L. Integrating species distribution modelling into decision-making to inform conservation actions. Biodivers Conserv. 2017, 26, 251–271. [Google Scholar] [CrossRef]
- Sofaer, H.R.; Jarnevich, C.S.; Pearse, I.S.; Smyth, R.L.; Auer, S.; Cook, G.L.; Edwards, T.C.; Guala, G.F.; Howard, T.G.; Morisette, J.T.; et al. Development and delivery of species distribution models to inform decision-making. BioScience 2019, 69, 544–557. [Google Scholar] [CrossRef]
- Ferraz, K.M.P.M.d.B.; Morato, R.G.; Bovo, A.A.A.; Costa, C.O.R.; Ribeiro, Y.G.G.; Paula, R.C.; Desbiez, A.L.J.; Angelieri, C.S.C.; Traylor-Holzer, K. Bridging the gap between researchers, conservation planners, and decision makers to improve species conservation decision-making. Conserv. Sci. Pr. 2021, 3, e330. [Google Scholar] [CrossRef]
- Proctor, M.F.; Nielsen, S.E.; Kasworm, W.F.; Servheen, C.; Radandt, T.G.; Machutchon, A.G.; Boyce, M.S. Grizzly bear connectivity mapping in the Canada–United States trans-border region. J. Wild. Mgmt. 2015, 79, 544–558. [Google Scholar] [CrossRef]
- Proctor, M.F.; Kasworm, W.F.; Annis, K.M.; MacHutchon, A.G.; Teisberg, J.E.; Radant, T.G.; Servheen, C. Conservation of threatened Canada–USA trans-border grizzly bears linked to comprehensive conflict reduction. Hum.–Wildl. Interact. 2018, 12, 348–372. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garshelis, D.L. Understanding Species–Habitat Associations: A Case Study with the World’s Bears. Land 2022, 11, 180. https://doi.org/10.3390/land11020180
Garshelis DL. Understanding Species–Habitat Associations: A Case Study with the World’s Bears. Land. 2022; 11(2):180. https://doi.org/10.3390/land11020180
Chicago/Turabian StyleGarshelis, David Lance. 2022. "Understanding Species–Habitat Associations: A Case Study with the World’s Bears" Land 11, no. 2: 180. https://doi.org/10.3390/land11020180
APA StyleGarshelis, D. L. (2022). Understanding Species–Habitat Associations: A Case Study with the World’s Bears. Land, 11(2), 180. https://doi.org/10.3390/land11020180