Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Profile Sampling, Analyses, and Evaluation Methods
3. Results and Discussion
3.1. Soil Properties
3.2. Redox Concentrations
3.3. SFCC System and MSI Soil Rating Implementation to P2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cline, M.G. Basic principles of soil classification. Soil Sci. 1949, 67, 81–92. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service; U.S. Department of Agriculture Handbook 436; U.S. Department of Agriculture: Washington, DC, USA, 2021. [Google Scholar]
- IUSS Working Group WRB. World Reference Base or Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2005. [Google Scholar]
- Latham, M. Evaluation of the Soil and Land Resource. In Soil Science and Sustainable Land Management in the Tropics; Syers, J.K., Rimmer, D.L., Eds.; Cab International in Association with the British Society of Soil Science: Wallingford, UK, 1994. [Google Scholar]
- Kairis, O.; Dimitriou, V.; Aratzioglou, C.; Gasparatos, D.; Yassoglou, N.; Kosmas, C.; Moustakas, N. A Comparative Analysis of a Detailed and Semi-Detailed Soil Mapping for Sustainable Land Management Using Conventional and Currently Applied Methodologies in Greece. Land 2020, 9, 154. [Google Scholar] [CrossRef]
- Sanchez, P.; Couto, W.; Buol, S. The fertility capability soil classification system: Interpretation, applicability and modification. Geoderma 1982, 27, 283–309. [Google Scholar] [CrossRef]
- Sanchez, P.; Palm, C.; Buol, S. Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma 2003, 114, 157–185. [Google Scholar] [CrossRef]
- Orimoloye, J. Fertility Capability Classification of Some Flood Plain Soils in Kogi State, Central Nigeria. Life Sci. 2016, 13, 48–55. [Google Scholar] [CrossRef]
- Chandrakala, M.; Bhoora, P.; Niranjana, K.V.; Sujatha, K.; Rajendra, H.; Chandran, P. Application of Soil Fertility Capability Classification (FCC) in Dry Semi Arid Land of South Telangana Plateau, Andhra Pradesh. Commun. Soil Sci. Plant Anal. 2021, 52, 161–171. [Google Scholar] [CrossRef]
- Amaresh, D. Soil fertility capability classification as management options to remediate plant growth and production related constraints of some subtropical soils on varying parent materials and altitude. Int. J. Agric. Sci. Res. 2015, 5, 115–124. [Google Scholar]
- Minh, V. The Rice Soil Fertility Capability Classification System. Int. J. Environ. Rural. Dev. 2011, 2-1, 7–12. [Google Scholar]
- Storie, R.E. An Index for Rating the Agricultural Value of Soils, Agricultural Experiment, Station Bulletin 556; University of California Agricultural Experiment Station: Berkley, CA, USA, 1933. [Google Scholar]
- Storie, R.E. Storie Index Soil Rating. Division of Agricultural Science, 1978, University of California. Available online: http://anrcatalog.ucanr.edu/pdf/3203.pdf (accessed on 15 November 2021).
- El Ghonamey, Y. Evaluation of some soils in North Western Paris oasis (egypt) using Storie index and Sys models. Egypt. J. Agric. Res. 2015, 93, 1–23. [Google Scholar] [CrossRef]
- El-Gammal, M.; Ali, R.; Eissa, R. Land use assessment of barren areas in Damietta Governorate, Egypt using remote sensing. Egypt. J. Basic Appl. Sci. 2014, 1, 151–160. [Google Scholar] [CrossRef] [Green Version]
- O’Geen, A.T.; Southard, S.B. A revised Storie Index modeled in NASIS. Soil Surv. Horiz. 2005, 46, 98–108. [Google Scholar] [CrossRef]
- Emad, M.; Ahmed, S.; Abdalsamad, A. Land Capability Classification of Wadi Jerafi Basin, North Sinai Egypt. Alex. Sci. Exch. J. 2019, 40, 43–59. [Google Scholar] [CrossRef]
- Storie, R.E.; Weir, W.W. Generalized Soil Map of California, Manual 6; Division of Agriculture and Natural Resources, University of California College of Agriculture: Los Angeles, CA, USA, 1951; p. 61. [Google Scholar]
- Vepraskas, M.J.; Lindbo, D.L. Redoximorphic Features as Related to Soil Hydrology and Hydric Soils. In Hydropedology: Synergistic Integration of Soil Science and Hydrology; Lin, H., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK; Amsterdam, The Netherlands, 2012; pp. 143–172. [Google Scholar]
- Wiederhold, J.G.; Teutsch, N.; Kraemer, S.M.; Halliday, A.N.; Kretzschmar, R. Iron isotope fractionation during pedogenesis in redoximorphic soils. Soil Sci. Soc. Am. J. 2007, 71, 1840–1850. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel Soil Science, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Dorau, K.; Wessel-Bothe, S.; Milbert, G.; Schrey, H.P.; Elhaus, D.; Mansfeldt, T. Climate change and redoximorphosis in a soil with stagnic properties. Catena 2020, 190, 104528. [Google Scholar] [CrossRef]
- IGME (Institute of Geology and Mineral Exploration) Geological Map of Greece, Scale 1:500,000, Greece, 1983. Available online: https://shop.geospatial.com/product/03-GRAC-Greece-50000-Geological-Maps (accessed on 10 November 2021).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Gasparatos, D.; Haidouti, C.; Tarenidis, D. Characterization of iron oxides in Fe-rich concretions from an imperfectly drained Greek soil: A study by selective-dissolution techniques and X-ray diffraction. Arch. Agron. Soil. Sci. 2004, 50, 485–493. [Google Scholar] [CrossRef]
- Phillippe, W.R.; Blevins, R.L.; Barnhisel, R.I.; Bailey, H.H. Distribution of concretions from selected soils of the inner bluegrass region of Kentucky. Soil Sci. Soc. Am. Proc. 1972, 36, 171–173. [Google Scholar] [CrossRef]
- Smyth, A.; Dumanski, J. A framework for evaluating sustainable land management. Can. J. Soil Sci. 1995, 75, 401–406. [Google Scholar] [CrossRef]
- Thomasson, A.J.; Bullock, P. Pedology and hydrology of some surface water gley soils. Soil Sci. 1975, 119, 341–348. [Google Scholar] [CrossRef]
- Świtoniak, M.; Mroczek, P.; Bednarek, R. Luvisols or Cambisols? Micromorphological Study of Soil Truncation in Young Morainic Landscapes—Case Study: Brodnica and Chełmno Lake Districts (North Poland). Catena 2016, 137, 583–595. [Google Scholar] [CrossRef]
- Ortiz, I.; Simón, M.; Dorronsoro, C.; Martín, F.; García, I. Soil Evolution over the Quaternary Period in a Mediterranean Climate (SE Spain). Catena 2002, 48, 131–148. [Google Scholar] [CrossRef]
- Jaworska, H.; Dąbkowska-Naskręt, H.; Kobierski, M. Iron oxides as weathering indicator and the origin of Luvisols from the Vistula glaciation region in Poland. J. Soils Sediments 2016, 16, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, N.K.; Barouchas, P.E. Free oxide distribution in poorly and well drained soils developed on calcareous alluvial deposits. Pedosphere 2003, 13, 345–351. [Google Scholar]
- Vepraskas, M.J.; Craft, C.B. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Richardson, J.L.; Hole, F.D. Mottling and iron distribution in a glossoboralf-haplaquoll hydrosequence on a glacial moraine in northwestern Wisconsin. Soil Sci. Soc. Am. J. 1979, 43, 552–558. [Google Scholar] [CrossRef]
- Zhang, M.; Karathanasis, A.D. Characterization of iron-manganese concretions in Kentuky alfisols with perched water tables. Clays Clay Min. 1997, 45, 428–439. [Google Scholar] [CrossRef]
- Jiang, Z.D.; Wang, Q.B.; Libohova, Z.; Adhikari, K.; Brye, K.R.; Sun, Z.X.; Sun, F.J.; Jiang, Y.Y.; Owens, P.R. Fe–Mn concentrations in upland loess soils in mid-continental North America: A step towards dynamic soil survey. Catena 2021, 202, 105273. [Google Scholar] [CrossRef]
- Rhoton, F.E.; Bigham, J.M.; Schulze, D.G. Properties of iron-manganese nodules from a sequence of eroded fragipan soils. Soil Sci. Soc. Am. J. 1993, 57, 1386–1392. [Google Scholar] [CrossRef]
- Childs, C.W.; Leslie, D.M. Interelement relationships in iron-manganese concretions from a catenary sequence of yellow-grey earth soils in loess. Soil Sci. 1977, 123, 369–376. [Google Scholar] [CrossRef]
- Gasparatos, D. Genesis of Fe–Mn Concretions and Nodules in Alfisols of Thessaly. Ph.D. Thesis, Agricultural University of Athens, Athens, Greece, 2007; p. 275. [Google Scholar]
- Von Liebig, J. Die Grundsa¨tze der Agricultur-Chemie mit Rucksicht auf die in England angestellten Untersuchungen. In England: The Relations of Chemistry to Agriculture and the Agricultural Experiments of Mr. J.B. Lawes., 1st and 2nd eds.; Friedrich Vieweg und Sohn Publ. Co.: Braunschweig, Germany, 1855. [Google Scholar]
- Jasper, C.D. Using the fertility capability classification system in soil survey reports. Soil Surv. Horiz. 2004, 45, 137–143. [Google Scholar] [CrossRef] [Green Version]
Horizon | Depth (cm) | Description |
---|---|---|
Ap | 0–19 | Dark grayish brown (10YR 4/2) slightly moist; loam (L); weak, fine, granular (1fgr); no effervescent; abrupt boundary |
BE | 19–35 | Dark grayish brown (10YR 4/2) slightly moist; loam (L); moderate, medium, subangular blocky (2msbk); no effervescent; clear boundary |
Bt1 | 35–58 | Brown (10YR 5/3) slightly moist; clay—clay loam (C-CL); moderate, medium, angular blocky (2mabk); no effervescent; gradual boundary |
Bt2 | 58–96 | Brown (10YR 5/3) slightly moist; siltyclay—silty clay loam (SiC-SiCL); strong, medium, angular blocky (3mabk); no effervescent; clear boundary |
BC | 96–112 | Yellowish brown (10YR 5/4) slightly moist; silty clay—silty clay loam (SiC-SiCL); weak, medium, subangular blocky (1mabk); slightly effervescent; clear boundary |
Ck1 | 112–148 | Pale brown (10YR 6/3) slightly moist; clay loam (CL); weak, medium, subangular blocky (1msbk); violently effervescent; diffuse boundary |
C2 | 148–170 | Yellowish brown (10YR 5/6) slightly moist; clay loam—loam (CL-L); weak, medium, subangular blocky (1msbk); slightly effervescent |
Horizon | Soil Texture | Redoximorphic Features # | Clay Coatings | CaCO3 (%) | pH | Organic Matter (%) | CEC | Exchangeable K | Exchangeable Ca | Exchangeable Mg | Exchangeable Na | Base Saturation (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Characterization | ||||||||||||
Ap | 29.5 | 47.7 | 22.8 | L | f1p 5 YR 6/8 | - | - | 6.5 | 1.27 | 17.73 | 0.6 | 5.85 | 5.31 | 0.63 | 70 |
BE | 28.8 | 45.2 | 26 | L | f1p 5 YR 6/8 | + | - | 6.4 | 1.32 | 18.42 | 0.46 | 5.4 | 5.73 | 0.68 | 67 |
Bt1 | 23 | 37 | 40 | C-CL | m3f 10 YR 6/8 | +++ | - | 6.5 | 0.64 | 22.96 | 0.48 | 5 | 13.13 | 0.98 | 65 |
Bt2 | 19.1 | 40.9 | 40 | SiC-SiCL | m2f 10 YR 6/8 | +++ | - | 6.9 | 0.3 | 29.02 | 0.52 | 5.65 | 12.73 | 0.98 | 68 |
BC | 19.5 | 40.7 | 39.8 | SiC-SiCL | - | + | traces | 7.9 | 0.24 | 29.96 | 0.43 | 13.01 | 13.92 | 1.27 | 96 |
Ck1 | 24.7 | 44.5 | 30.8 | CL | - | - | 16.4 | 8 | 0.24 | 29.96 | 0.39 | 32.98 | 13.33 | 1.27 | 100 |
C2 | 28.5 | 44.7 | 26.8 | CL-L | - | - | traces | 7.9 | 0.03 | 25.43 | 0.32 | 10.01 | 13.69 | 1.04 | 99 |
SFCC System Parameters | MSI Soil Rating Chart Parameters | ||
---|---|---|---|
L | loamy topsoil: <35% clay but not loamy sand or sand | Factor A: Soils on older alluvial fans. alluvial plains. or terraces having moderately developed profiles (moderately dense subsoils) | 80–95% |
C | clayey subsoil: texture as in type | Factor B: loam | 100% |
g | aquic soil moisture regime; mottles ≤ 2 chroma within 50 cm for surface and below all A horizons or soil saturated with water for >60 days in most years. | Factor C: nearly level (0–2%) | 100% |
b | free CaCO3 within 50 cm (fizzing with HCl), or pH > 7.3 | Factor X: moderately waterlogged | 40–80% |
(0–2%) | where desirable place range in % slope (i.e., 0–15%; 15–30%; >30%) | Factor X: fair nutrient (fertility) level | 95–100% |
Soil Grading Classes | Rate between (%) |
---|---|
Grade 1 (excellent): Soils that are suitable for a wide range of crops including alfalfa, orchard, truck and field crops. | 80 and 100 |
Grade 2 (good): Soils that are suitable for most crops. Yields generally good to excellent. | 60 and 79 |
Grade 3 (fair): Soils that are generally of fair quality. with less wide range of suitability than grades 1 and 2. Soils in this grade may give good results with certain specialized crops. | 40 and 59 |
Grade 4 (poor): Soils that have a narrow range in their agricultural possibilities. For example, a few soils in this grade may be good for rice but not good for many other uses. | 20 and 39 |
Grade 5 (very poor): Soils of limited use except for pasture because of adverse conditions such as shallowness roughness and alkali content. | 10 and 19 |
Grade 6 (nonagricultural): Soils include for example soils of high alkali content and steep broken land. | less than 10 |
Horizon | Depth (cm) | Sand Fractions (%) | Total Sand (%) | ||||
---|---|---|---|---|---|---|---|
2.00–1.00 (mm) | 1.00–0.50 (mm) | 0.50–0.250 (mm) | 0.250–0.100 (mm) | 0.100–0.050 (mm) | |||
Ap | 0–19 | - | 1.62 | 4.10 | 9.10 | 14.68 | 29.5 |
BE | 19–35 | - | 1.64 | 4.03 | 9.30 | 13.83 | 28.8 |
Bt1 | 35–58 | - | 1.14 | 3.22 | 7.60 | 11.04 | 23.0 |
Bt2 | 58–96 | - | 0.62 | 2.48 | 7.00 | 9.00 | 19.1 |
BC | 96–112 | - | 0.53 | 2.48 | 6.40 | 10.09 | 19.5 |
Ck1 | 112–148 | - | 0.65 | 1.26 | 7.10 | 15.69 | 24.7 |
C2 | 148–170 | 0.43 | 2.89 | 10.00 | 15.18 | 28.5 | |
Horizon | Depth (cm) | Silt fractions (%) | Total silt (%) | ||||
50–20 (μm) | 20–5 (μm) | 5–2 (μm) | |||||
Ap | 0–19 | 30.51 | 10.00 | 7.20 | 47.7 | ||
BE | 19–35 | 23.61 | 11.60 | 10.00 | 45.2 | ||
Bt1 | 35–58 | 12.21 | 17.20 | 7.69 | 37.0 | ||
Bt2 | 58–96 | 18.51 | 13.20 | 9.20 | 40.9 | ||
BC | 96–112 | 13.71 | 18.80 | 8.19 | 40.7 | ||
Ck1 | 112–148 | 22.91 | 19.60 | 2.00 | 44.5 | ||
C2 | 148–170 | 22.31 | 16.40 | 6.00 | 44.7 | ||
Horizon | Depth (cm) | Clay fractions (%) | Total clay (%) | ||||
2–0.2 (μm) | <0.2 (μm) | ||||||
Ap | 0–19 | 12.01 | 10.79 | 22.8 | |||
BE | 19–35 | 14.00 | 12.00 | 26.0 | |||
Bt1 | 35–58 | 16.41 | 23.59 | 40.0 | |||
Bt2 | 58–96 | 17.61 | 22.39 | 40.0 | |||
BC | 96–112 | 22.60 | 17.20 | 39.8 | |||
Ck1 | 112–148 | 19.21 | 11.59 | 30.8 | |||
C2 | 148–170 | 15.20 | 11.60 | 26.8 |
Horizon | Depth (cm) | Fe Forms (%) | |||
---|---|---|---|---|---|
Fet | Fed | Feo | Fep | ||
Ap | 0–19 | 4.46 | 1.31 | 0.33 | 0.045 |
BE | 19–35 | 4.43 | 1.37 | 0.34 | 0.046 |
Bt1 | 35–58 | 5.86 | 1.64 | 0.22 | 0.027 |
Bt2 | 58–96 | 5.76 | 1.44 | 0.16 | 0.018 |
BC | 96–112 | 5.81 | 1.24 | 0.16 | 0.015 |
Ck1 | 112–148 | 5.96 | 1.15 | 0.12 | 0.014 |
C2 | 148–170 | 6.15 | 1.45 | 0.19 | 0.015 |
Horizon | Depth (cm) | Fractions of Fe–Mn Concretions (g/100 g Soil) | Total | ||||
---|---|---|---|---|---|---|---|
>4.76 (mm) | 4.76–2.00 (mm) | 2.00–1.00 (mm) | 1.00–0.50 (mm) | 0.50–0.25 (mm) | |||
Ap | 0–19 | - | 1.31 | 1.27 | 0.48 | 0.40 | 3.46 |
BE | 19–35 | 0.05 | 1.40 | 1.26 | 0.46 | 0.37 | 3.54 |
Bt1 | 35–58 | - | 0.56 | 0.50 | 0.26 | 0.28 | 1.60 |
Bt2 | 58–96 | - | 0.52 | 0.42 | 0.22 | 0.22 | 1.38 |
BC | 96–112 | - | 0.15 | 0.11 | 0.20 | 0.24 | 0.70 |
Ck1 | 112–148 | - | - | - | 0.20 | 0.23 | 0.43 |
C2 | 148–170 | - | - | 0.02 | 0.08 | 0.11 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparatos, D.; Kairis, O. Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece. Land 2022, 11, 182. https://doi.org/10.3390/land11020182
Gasparatos D, Kairis O. Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece. Land. 2022; 11(2):182. https://doi.org/10.3390/land11020182
Chicago/Turabian StyleGasparatos, Dionisios, and Orestis Kairis. 2022. "Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece" Land 11, no. 2: 182. https://doi.org/10.3390/land11020182
APA StyleGasparatos, D., & Kairis, O. (2022). Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece. Land, 11(2), 182. https://doi.org/10.3390/land11020182