Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and SOCD Data Acquisition
2.2. Environmental Variables
2.3. Geographical Detector Methods
2.3.1. Factor and Risk Detectors
2.3.2. Interaction Detector
2.3.3. Data Preprocessing for Geographical Detectors
3. Results
3.1. Descriptive Statistics of SOCD and SOCDSR
3.2. Factor and Risk Detectors
3.3. Interaction Detector
4. Discussion
4.1. Influencing Factors of SOCD and SOCDSR
4.2. Interaction Effects of Environmental Variables on SOCD and SOCDSR
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, F.; Palosuo, T.; Valkama, E.; Mäkipää, R. Cropland soils in China have a large potential for carbon sequestration based It on literature survey. Soil Tillage Res. 2019, 186, 70–78. [Google Scholar] [CrossRef]
- Li, X.; Shang, B.; Wang, D.; Wang, Z.; Wen, X.; Kang, Y. Mapping soil organic carbon and total nitrogen in croplands of the Corn Belt of Northeast China based on geographically weighted regression kriging model. Comput. Geosci. 2020, 135, 104392. [Google Scholar] [CrossRef]
- Mayer, S.; Kühnel, A.; Burmeister, J.; Kögel-Knabner, I.; Wiesmeier, M. Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil Tillage Res. 2019, 192, 22–32. [Google Scholar] [CrossRef]
- Canadell, J.G. Land use effects on terrestrial carbon sources and sinks. Sci. China Ser. C-Life Sci. 2002, 45, 1–9. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Kätterer, T.; Bolinder, M.A.; Berglund, K.; Kirchmann, H. Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agric. Scand. Sect. A-Anim. Sci. 2012, 62, 181–198. [Google Scholar] [CrossRef]
- Frank, S.; Schmid, E.; Havlík, P.; Schneider, U.A.; Böttcher, H.; Balkovič, J.; Obersteiner, M. The dynamic soil organic carbon mitigation potential of European cropland. Glob. Environ. Chang. 2015, 35, 269–278. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Zhao, M.; Qin, F.; Liu, X. Regional simulation of soil organic carbon dynamics for dry farmland in Northeast China using the CENTURY model. PLoS ONE 2021, 16, e0245040. [Google Scholar] [CrossRef]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Chang. Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Mayer, S.; Burmeister, J.; Hübner, R.; Kögel-Knabner, I. Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 2020, 369, 114333. [Google Scholar] [CrossRef]
- Wise, L.; Marland, E.; Marland, G.; Hoyle, J.; Kowalczyk, T.; Ruseva, T.; Colby, J.; Kinlaw, T. Optimizing sequestered carbon in forest offset programs: Balancing accounting stringency and participation. Carbon Balance Manag. 2019, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Shi, X.; Zhao, Y.; Xu, S.; Wang, M.; Zhang, G.; Wu, J.; Huang, B.; Kong, C. Environmental and anthropogenic factors driving changes in paddy soil organic matter: A case study in the middle and lower Yangtze River Plain of China. Pedosphere 2017, 27, 926–937. [Google Scholar] [CrossRef]
- Pittarello, M.; Dal Ferro, N.; Chiarini, F.; Morari, F.; Carletti, P. Influence of tillage and crop rotations in organic and conventional farming systems on soil organic matter, bulk density and enzymatic activities in a short-term field experiment. Agronomy 2021, 11, 724. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils-A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Dong, W.; Wu, T.; Luo, J.; Sun, Y.; Xia, L. Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China. Geoderma 2019, 340, 234–248. [Google Scholar] [CrossRef]
- Fallahzade, J.; Hajabbasi, M.A. The effects of irrigation and cultivation on the quality of desert soil in central Iran. Land Degrad. Dev. 2012, 23, 53–61. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 118, pp. 1–47. [Google Scholar]
- Sindayihebura, A.; Ottoy, S.; Dondeyne, S.; van Meirvenne, M.; van Orshoven, J. Comparing digital soil mapping techniques for organic carbon and clay content: Case study in Burundi’s central plateaus. Catena 2017, 156, 161–175. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, A.; Yang, X.; Wu, P.; Fan, M.; Wu, J.; Zhang, M.; Gao, C. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 2019, 352, 150–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Wang, S.; Huang, X. Change in SOC content in a small karst basin for the past 35 years and its influencing factors. Arch. Agron. Soil Sci. 2018, 64, 2019–2029. [Google Scholar] [CrossRef]
- Chen, D.; Xue, M.; Duan, X.; Feng, D.; Huang, Y.; Rong, L. Changes in topsoil organic carbon from 1986 to 2010 in a mountainous plateau region in Southwest China. Land Degrad. Dev. 2020, 31, 734–747. [Google Scholar] [CrossRef]
- Lu, W.; Lu, D.; Wang, G.; Wu, J.; Huang, J.; Li, G. Examining soil organic carbon distribution and dynamic change in a hickory plantation region with Landsat and ancillary data. Catena 2018, 165, 576–589. [Google Scholar] [CrossRef]
- Zhou, Y.; Biswas, A.; Ma, Z.; Lu, Y.; Chen, Q.; Shi, Z. Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain. Geoderma 2016, 271, 71–79. [Google Scholar] [CrossRef]
- Wang, D.; Yan, Y.; Li, X.; Shi, X.; Zhang, Z.; Weindorf, D.C.; Wang, H.; Xu, S. Influence of climate on soil organic carbon in Chinese paddy soils. Chin. Geogr. Sci. 2017, 27, 351–361. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Y.; Xu, X.; Kiely, G. Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Appl. Geochem. 2011, 26, 1239–1248. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S.; Yang, Y.; Zhao, R.; Shi, Z.; Rossel, R.A.V. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980′s China. Geoderma 2019, 335, 47–56. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, Z.; Hu, B.; Zhang, X.; Hou, Q.; Xia, X.; Yu, T. Soil organic carbon and the response to climate change in Hebei Plains. Res. Agric. Mod. 2016, 37, 809–816. [Google Scholar]
- Liu, Y.L.; Wu, Z.H.; Chen, Y.Y.; Wang, B.Z. Soil carbon mapping in low relief areas with combined land use types and percentages. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-3, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wu, J.; Guo, S.; Huang, D.; Zhu, Q.; Ge, T.; Lei, T. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena 2014, 120, 64–72. [Google Scholar] [CrossRef]
- Xu, L.; Cao, S.; Wang, J.; Lu, A. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem? Int. J. Environ. Res. Public Health 2016, 13, 510. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Lu, A.; Wang, J.; Huo, L. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Sci. Total Environ. 2017, 580, 430–439. [Google Scholar] [CrossRef]
- Schillaci, C.; Perego, A.; Valkama, E.; Märker, M.; Saia, S.; Veronesi, F.; Lipani, A.; Lombardo, L.; Tadiello, T.; Gamper, H.A.; et al. New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems. Sci. Total Environ. 2021, 780, 146609. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Y.; Kuang, L.; Han, Y.; Xu, Z.; Guo, X. Predicting spatial distribution of soil organic carbon and total nitrogen in a typical human impacted area. Geocarto Int. 2021, 1–19. [Google Scholar] [CrossRef]
- Shaffer, J.P. The Gauss-Markov theorem and random regressors. Am. Stat. 1991, 45, 269–273. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Du, Z.; Gao, B.; Ou, C.; Du, Z.; Yang, J.; Batsaikhan, B.; Dorjgotov, B.; Yun, W.; Zhu, D. A Quantitative Analysis of Factors Influencing Organic Matter Concentration in the Topsoil of Black Soil in Northeast China Based on Spatial Heterogeneous Patterns. ISPRS Int. J. Geo-Inf. 2021, 10, 348. [Google Scholar] [CrossRef]
- Xie, E.; Zhang, Y.; Huang, B.; Zhao, Y.; Shi, X.; Hu, W.; Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 2021, 205, 104763. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H. Temporal analysis on quantitative attribution of karst soil erosion: A case study of a peak-cluster depression basin in Southwest China. Catena 2019, 172, 369–377. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Y.; Wang, H.; Zuo, L. Identification of Dominant Factors Affecting Soil Erosion and Water Yield within Ecological Red Line Areas. Remote Sens. 2020, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Shoaib, M.; Wang, Y.; Jiao, L.; Zhang, Y. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Sci. Total Environ. 2021, 779, 146474. [Google Scholar] [CrossRef]
- Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [Google Scholar] [CrossRef]
- Qi, X.; Gao, B.; Pan, Y.; Yang, J.; Gao, Y. Influence factor analysis of heavy metal pollution in large-scale soil based on the geographical detector. J. Agro-Environ. Sci. 2019, 38, 2476–2486. [Google Scholar]
- Hao, J.; Ren, J.; Fang, H.; Tao, L. Identification sources and high-risk areas of sediment heavy metals in the Yellow River by geographical detector method. Water 2021, 13, 1103. [Google Scholar] [CrossRef]
- CERN. A dataset of topsoil organic carbon density for agricultural ecosystem field stations of Chinese Ecosystem Research Network (2005–2015) [DB/OL]. Sci. Data Bank 2019. [CrossRef]
- Li, B.; Tang, H.; Wu, L.; Li, Q.; Zhou, C. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environ. Earth Sci. 2012, 65, 195–202. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L. A rapid and accurate procedure for estimation of organic carbon in soils. Proc. Indiana Acad. Sci. 1974, 84, 456–462. [Google Scholar]
- Schwartz, D.; Namri, M. Mapping the total organic carbon in the soils of the Congo. Glob. Planet. Chang. 2002, 33, 77–93. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Li, J.Q.; Li, Z.L.; Jiang, G.F.; Cheng, H.; Fang, C.M. A study on soil organic carbon in plough layer of China’s arable land. J. Fudan Univ. 2016, 55, 247–266. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Wang, Z.M.; Song, K.S.; Zhang, B.; Liu, D.W.; Li, X.Y.; Ren, C.Y.; Zhang, S.M.; Luo, L.; Zhang, C.H. Spatial variability and affecting factors of soil nutrients in croplands of Northeast China: A case study in Dehui County. Plant Soil Environ. 2009, 55, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Zhang, J.; Li, S. Spatial Variability of Soil Organic Carbon in a Watershed on the Loess Plateau. Pedosphere 2009, 19, 486–495. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhao, Z.; Zhou, Y.; Zhang, J.; Wu, Q. Spatiotemporal Variability and Related Factors of Soil Organic Carbon in Henan Province. Vadose Zone J. 2018, 17, 180109. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, S.; Ninkov, J.; Milić, S.; Vasin, J.; Banjac, D.; Jakšić, D.; Živanov, M. The state of soil organic carbon in vineyards as affected by soil types and fertilization strategies (Tri Morave Region, Serbia). Agronomy 2021, 11, 9. [Google Scholar] [CrossRef]
- Wang, H.; Ren, T.; Mueller, K.; Van Zwieten, L.; Wang, H.; Feng, H.; Xu, C.; Yun, F.; Ji, X.; Yin, Q.; et al. Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. Sci. Total Environ. 2021, 753, 141645. [Google Scholar] [CrossRef]
- Luo, M.; Guo, L.; Zhang, H.; Wang, S.; Liang, P. Characterization of spatial distribution of soil organic carbon in China based on environmental variables. Acta Pedol. Sin. 2020, 57, 48–59. [Google Scholar] [CrossRef]
- Xu, X.W.; Pan, G.X.; Wang, Y.L.; Cao, Z.H. Research of changing characteristics and control factors of farmland topsoil organic carbon in China. Geogr. Res. 2009, 28, 601–612. [Google Scholar]
- Zhao, D.; Dong, J.; Ji, S.; Huang, M.; Quan, Q.; Liu, J. Effects of Contemporary Land Use Types and Conversions from Wetland to Paddy Field or Dry Land on Soil Organic Carbon Fractions. Sustainability 2020, 12, 2094. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jin, Z.; Li, Q. Changes in land use and their effects on soil properties in Huixian Karst wetland system. Pol. J. Environ. Stud. 2017, 26, 699–707. [Google Scholar] [CrossRef]
- Sheng, M.; Han, X.; Long, J.; Li, N. Characterization of soil organic matter in different regions of China. Soils Crops 2019, 8, 320–330. [Google Scholar]
- Zhang, J.; Li, M.; Ao, Z.; Deng, M.; Yang, C.; Wu, Y. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China. J. Arid. Land Resour. Environ. 2018, 32, 132–137. [Google Scholar]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Razafimbelo, T.M.; Albrecht, A.; Oliver, R.; Chevallier, T.; Chapuis-Lardy, L.; Feller, C. Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res. 2008, 98, 140–149. [Google Scholar] [CrossRef]
- Meersmans, J.; Martin, M.P.; De Ridder, F.; Lacarce, E.; Wetterlind, J.; De Baets, S.; Le Bas, C.; Louis, B.P.; Orton, T.G.; Bispo, A.; et al. A novel soil organic C model using climate, soil type and management data at the national scale in France. Agron. Sustain. Dev. 2012, 32, 873–888. [Google Scholar] [CrossRef] [Green Version]
- Vos, C.; Don, A.; Hobley, E.U.; Prietz, R.; Heidkamp, A.; Freibauer, A. Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. Eur. J. Soil Sci. 2019, 70, 550–564. [Google Scholar] [CrossRef]
- Alidoust, E.; Afyuni, M.; Hajabbasi, M.A.; Mosaddeghi, M.R. Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena 2018, 171, 62–71. [Google Scholar] [CrossRef]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; McLeod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.L.; et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Chang. Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Cosby, B.J.; Henrys, P.; Emmett, B. Patterns and trends of topsoil carbon in the UK: Complex interactions of land use change, climate and pollution. Sci. Total Environ. 2020, 729, 138330. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Zhang, P.; Zhao, C.; Li, X. Effects of warming and rainfall pulses on soil respiration in a biological soil crust-dominated desert ecosystem. Geoderma 2021, 381, 114683. [Google Scholar] [CrossRef]
- Rey, A.; Carrascal, L.M.; Báez, C.G.-G.; Raimundo, J.; Oyonarte, C.; Pegoraro, E. Impact of climate and land degradation on soil carbon fluxes in dry semiarid grasslands in SE Spain. Plant Soil 2021, 461, 323–339. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Stohlgren, T.; Zheng, D.; Bachelet, D.; Prince, S.; Hibbard, K.; Olson, R. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 2008, 89, 2117–2126. [Google Scholar] [CrossRef]
- Follett, R.F.; Stewart, C.E.; Pruessner, E.G.; Kimble, J.M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 2012, 67, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Niu, B.; Hu, Y.; Luo, T.; Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 2020, 714, 136787. [Google Scholar] [CrossRef]
- Brye, K.R.; McMullen, R.L.; Silveira, M.L.; Motschenbacher, J.M.D.; Smith, S.F.; Gbur, E.E.; Helton, M.L. Environmental controls on soil respiration across a southern US climate gradient: A meta-analysis. Geoderma Reg. 2016, 7, 110–119. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Morgan, J.A. Chapter 27—Elevated CO2 and Warming Effects on Soil Carbon Sequestration and Greenhouse Gas Exchange in Agroecosystems: A Review. In Managing Agricultural Greenhouse Gases; Liebig, M.A., Franzluebbers, A.J., Follett, R.F., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 467–486. [Google Scholar]
- Chen, Y.; Feng, J.; Yuan, X.; Zhu, B. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis. Geoderma 2020, 370, 114363. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Cao, H.; Li, S.; Yu, S. Effect of Gradients of Precipitation and Temperature and Fertilization on Light Fraction Organic Carbon and Nitrogen of Soils in Northeastern China. J. Soil Sci. 2009, 40, 1014–1017. [Google Scholar]
- Chen, S.; Huang, Y.; Zou, J.; Shi, Y.; Lu, Y.; Zhang, W.; Hu, Z. Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Sci. China-Earth Sci. 2012, 55, 2091–2098. [Google Scholar] [CrossRef]
- Morais, V.A.; Ferreira, G.W.D.; de Mello, J.M.; Silva, C.A.; de Mello, C.R.; Araújo, E.J.G.; David, H.C.; da Silva, A.C.; Scolforo, J.R.S. Spatial distribution of soil carbon stocks in the Cerrado biome of Minas Gerais, Brazil. Catena 2020, 185. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, Q.; Zhao, Q.; He, Y.; Yu, D.; Shi, X.; Xing, S. Uncertainty of organic carbon dynamics in Tai-Lake paddy soils of China depends on the scale of soil maps. Agric. Ecosyst. Environ. 2016, 222, 13–22. [Google Scholar] [CrossRef]
- Alvarez, R.; Lavado, R.S. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 1998, 83, 127–141. [Google Scholar] [CrossRef]
- Wang, D.-D.; Shi, X.-Z.; Wang, H.-J.; Weindorf, D.C.; Yu, D.-S.; Sun, W.-X.; Ren, H.-Y.; Zhao, Y.-C. Scale effect of climate on soil organic carbon in the Uplands of Northeast China. J. Soils Sediments 2010, 10, 1007–1017. [Google Scholar] [CrossRef]
- Wang, M.; Shi, X.; Yu, D.; Xu, S.; Tan, M.; Sun, W.; Zhao, Y. Regional Differences in the Effect of Climate and Soil Texture on Soil Organic Carbon. Pedosphere 2013, 23, 799–807. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Dong, Y.; Zhao, H.; Dong, S.; Zhao, S.; Beazley, R. The spatio-temporal patterns of the topsoil organic carbon density and its influencing factors based on different estimation models in the grassland of Qinghai-Tibet Plateau. PLoS ONE 2019, 14, e0225952. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhang, R.; Cao, H.; Tan, W. Factor contribution to soil organic and inorganic carbon accumulation in the Loess Plateau: Structural equation modeling. Geoderma 2019, 352, 116–125. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, S.L.; Zhao, M.; Du, L.L.; Li, R.J.; Jiang, J.S.; Wang, R.; Li, N.N. Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau. Biogeosciences 2015, 12, 3655–3664. [Google Scholar] [CrossRef] [Green Version]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Livsey, J.; Alavaisha, E.; Tumbo, M.; Lyon, S.W.; Canale, A.; Cecotti, M.; Lindborg, R.; Manzoni, S. Soil carbon, nitrogen and phosphorus contents along a gradient of agricultural intensity in the Kilombero Valley, Tanzania. Land 2020, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shengzhe, E.; Wang, Y.; Su, S.; Bai, L.; Wu, C.; Zeng, X. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, S.; Lu, C.; Li, X.; Li, F.; Wang, T. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice-wheat rotation system. Soil Tillage Res. 2021, 212, 105071. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Y.; Xu, X.; Hai, N.; Huang, B.; Deng, W. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 2015, 204, 40–50. [Google Scholar] [CrossRef]
- Joshi, S.K.; Bajpai, R.K.; Kumar, P.; Tiwari, A.; Bachkaiya, V.; Manna, M.C.; Sahu, A.; Bhattacharjya, S.; Rahman, M.M.; Wanjari, R.H.; et al. Soil organic carbon dynamics in a Chhattisgarh Vertisol after use of a rice-wheat system for 16 Years. Agron. J. 2017, 109, 2556–2569. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Yu, X.; Zhang, W. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant Soil 2015, 397, 189–200. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Y.; Xu, X.; Huang, B.; Sun, W.; Shi, X.; Deng, W. A meta-analysis of field experiment data for characterizing the topsoil organic carbon changes under different fertilization treatments in uplands of China. Acta Ecol. Sin. 2014, 34, 3735–3743. [Google Scholar]
- Gillabel, J.; Denef, K.; Brenner, J.; Merckx, R.; Paustian, K. Carbon sequestration and soil aggregation in center-pivot irrigated and dryland cultivated farming systems. Soil Sci. Soc. Am. J. 2007, 71, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tian, C.; Zhang, R.; Mohamed, I.; Liu, Y.; Zhang, G.; Pan, J.; Chen, F. Plastic mulching with drip irrigation increases soil carbon stocks of natrargid soils in arid areas of northwestern China. Catena 2015, 133, 179–185. [Google Scholar] [CrossRef]
- Li, X.; Liang, Z.; Li, Y.; Zhu, Y.; Tian, X.; Shi, J.; Wei, G. Short-term effects of combined organic amendments on soil organic carbon sequestration in a rain-fed winter wheat system. Agron. J. 2021, 113, 2150–2164. [Google Scholar] [CrossRef]
- Kan, Z.; Virk, A.L.; He, C.; Liu, Q.; Qi, J.; Dang, Y.P.; Zhao, X.; Zhang, H. Characteristics of carbon mineralization and accumulation under long-term conservation tillage. Catena 2020, 193, 104636. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, C.; Duan, X.; Chen, H.; Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 2019, 353, 340–346. [Google Scholar] [CrossRef]
- Shirale, A.O.; Kharche, V.K.; Zadode, R.S.; Meena, B.P.; Rajendiran, S. Soil biological properties and carbon dynamics subsequent to organic amendments addition in sodic black soils. Arch. Agron. Soil Sci. 2017, 63, 2023–2034. [Google Scholar] [CrossRef]
- Song, X.; Wu, H.; Ju, B.; Liu, F.; Yang, F.; Li, D.; Zhao, Y.; Yang, J.; Zhang, G. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 2020, 363, 114145. [Google Scholar] [CrossRef]
Factors | Range | Cutting Value | Method |
---|---|---|---|
Groundwater depth | 0.57–84.48 m | 3, 8, 16 | Quantile |
Clay content | 4–37% | 14, 30 | Quantile |
Cropping duration | 9–29 a | 12, 19 | Quantile |
Initial SOCD | 0.34–5.19 kg/m2 | 1.58, 2.59 | Quantile |
Elevation | 3–3688 m | 200, 500 | Manual |
MAT | 2 °C–18.2 °C | 6, 10, 15 | Manual |
MAP | 39.3–1696 mm | 400, 800 | Manual |
Influencing Factors | q Value of SOCD | q Value of SOCDSR | |
---|---|---|---|
natural factors | elevation | 0.117 | 0.007 |
groundwater depth | 0.312 *** | 0.182 ** | |
soil type | 0.357 *** | 0.084 | |
clay content | 0.286 *** | 0.060 | |
MAT | 0.403 *** | 0.164 * | |
MAP | 0.264 *** | 0.078 | |
human activities | cropping duration | 0.290 ** | - |
initial SOCD | - | 0.077 | |
cropping system | 0.102 | 0.080 | |
irrigation | 0.049 | 0.019 | |
fertilization | 0.047 | 0.142 ** | |
residual management | 0.014 | 0.001 |
Influencing Factors | SOCD | SOCDSR | ||||
---|---|---|---|---|---|---|
Interactions | q Value | Types | Interactions | q Value | Types | |
natural factors | ST∩MAT | 0.748 | Bi-E | ST∩GD | 0.305 | Nonlinear-E |
ST∩Elev | 0.725 | Nonlinear-E | ST∩MAT | 0.287 | Nonlinear-E | |
ST∩Clay | 0.702 | Nonlinear-E | GD∩MAT | 0.274 | Nonlinear-E | |
natural and human factors | MAT∩CD | 0.630 | Bi-E | GD∩Fert | 0.424 | Nonlinear-E |
MAT∩CS | 0.614 | Nonlinear-E | MAT∩Fert | 0.389 | Nonlinear-E | |
ST∩CD | 0.602 | Nonlinear-E | MAT∩CS | 0.311 | Nonlinear-E | |
human activities | CD∩CS | 0.451 | Nonlinear-E | Fert∩CS | 0.374 | Nonlinear-E |
CD∩Fert | 0.366 | Nonlinear-E | IS∩CS | 0.312 | Nonlinear-E | |
CD∩Irri | 0.358 | Nonlinear-E | Fert∩IS | 0.293 | Nonlinear-E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Liu, Y.; Li, G.; Han, Y.; Li, X.; Chen, Y. Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics. Land 2022, 11, 208. https://doi.org/10.3390/land11020208
Wu Z, Liu Y, Li G, Han Y, Li X, Chen Y. Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics. Land. 2022; 11(2):208. https://doi.org/10.3390/land11020208
Chicago/Turabian StyleWu, Zihao, Yaolin Liu, Guie Li, Yiran Han, Xiaoshun Li, and Yiyun Chen. 2022. "Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics" Land 11, no. 2: 208. https://doi.org/10.3390/land11020208
APA StyleWu, Z., Liu, Y., Li, G., Han, Y., Li, X., & Chen, Y. (2022). Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics. Land, 11(2), 208. https://doi.org/10.3390/land11020208