Deforestation in Continental Ecuador with a Focus on Protected Areas
Abstract
:1. Introduction
- Where are the accumulated areas of deforestation (hotspots) in Ecuador between 1990 and 2018?
- Which are the most significant driving forces of deforestation in Ecuador on national and biome level; and especially in protected areas?
- Which patterns of deforestation occur in and around protected areas? Do these patterns differ in buffer zones (5 km and 10 km buffer) and in protected areas of different protection status?
- Is the current protection system effective to maintain forest in protected areas?
2. Methods and Study Area
2.1. Ecuador
2.2. Selection of Data
2.3. Selection of Protected Areas Categories
2.4. Analyses
2.4.1. Deforestation Hotspots
2.4.2. Deforestation Rates and Patterns Inside Protected Areas and Buffer Zones
2.4.3. Analysis of the Main Drivers of Deforestation
3. Results
3.1. Deforestation Hotspots
3.2. Deforestation Rates and Patterns Inside Protected Areas and Buffer Zones
3.3. Analysis of the Main Drivers of Deforestation
4. Discussion
4.1. Deforestation and Protected Areas in Ecuador
4.2. Methodological Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Basic Data | Preprocessing | Input for the Model | Spatial Resolution | Pixel Values |
---|---|---|---|---|
Deforestation from 1990–2018 shape file | First, this shape file was transformed into a raster (100 m) with the “feature to raster” tool from ArcGIS 10.8.1. This deforestation raster contained pixel values of 0: no deforestation and 1: deforestation. Second, this binary raster was aggregated to a spatial resolution of 500 m to obtain pixel values of deforestation rate (continuous values from 0 to 1). Later, this raster (500 m) was resampled at spatial resolution of 100 m. Finally, this raster (100 m) was reclassified into 11 classes from 0 to 10. | Deforestation from 1990–2018 raster file (Deforestation) | 100 m | Deforestation rate (continuous values from 0 to 1) |
Land Use/Land Cover from 2018 shape file: Settlements | First, the settlement class was extracted from the LULC shape file using ArcGIS 10.8.1. Second, the raster of the distance to urban settlements was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to settlements raster file (Settlements) | 100 m | Distance to settlements in meters |
Land Use/Land Cover from 2018 shape file: Agriculture | First, the agricultural land class was extracted from the LULC shape file using ArcGIS 10.8.1. Second, the raster of the distance to agricultural areas was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to agricultural areas raster file (Agriculture) | 100 m | Distance to agricultural areas in meters |
Land Use/Land Cover from 2018 shape file: Plantations | First, the forest plantation class was extracted from the LULC shape file using ArcGIS 10.8.1. Second, the raster of the distance to forest plantations was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to forest plantations raster file (Plantations) | 100 m | Distance to forest plantations in meters |
Road shape file | The raster of the distance to roads was calculated using the “Euclidean distance” tool. | Distance to roads raster file (Roads) | 100 m | Distance to roads in meters |
River shape file | First, permanent rivers were extracted from the complete shape file using ArcGIS 10.8.1. Second, the raster of the distance to rivers was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to rivers raster file (Rivers) | 100 m | Distance to rivers in meters |
Lake shape file | The raster of the distance to lakes was calculated using the “Euclidean distance” tool. | Distance to lakes raster file (Lakes) | 100 m | Distance to lakes in meters |
Mining concession shape files | First, only mines that are already registered have been extracted from the complete shape file using ArcGIS 10.8.1. Second, the raster of the distance to mines was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to mines raster file (Mines) | 100 m | Distance to mines in meters |
Touristic infrastructure shape file | First, touristic places that do not intersect with urban settlements were extracted from the complete shape file using ArcGIS 10.8.1. Second, the raster of the distance to tourist places was calculated using the previous shape file and the “Euclidean distance” tool. | Distance to touristic places raster file (Tourist) | 100 m | Distance to tourist places in meters |
Slope raster file (topography) | This raster was resampled from 30 m to 100 m using the “resample” tool from ArcGIS 10.8.1. | Slope raster file (Slope) | 100 m | Percentage |
Coefficients | Explanatory Share | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|---|
Roads | 0.11 | −7.404 × 105 | 1.111 × 105 | −6.665 | 2.67 × 1011 *** |
Settlements | 0.05 | 4.807 × 105 | 3.901 × 106 | 12.323 | <2 × 1016 *** |
Agriculture | 0.20 | −5.359 × 104 | 1.665 × 105 | −32.190 | <2 × 1016 *** |
Plantations | 0.07 | −1.742 × 105 | 1.755 × 106 | −9.926 | <2 × 1016 *** |
Rivers | 0.01 | 5.727 × 105 | 5.248 × 106 | 10.913 | <2 × 1016 *** |
Lakes | 0.15 | 1.200 × 105 | 5.152 × 107 | 23.303 | <2 × 1016 *** |
Touristic infrastructure | 0.06 | 2.140 × 105 | 1.566 × 106 | 13.666 | <2 × 1016 *** |
Mining concessions | 0.06 | −2.318 × 105 | 1.449 × 106 | −15.991 | <2 × 1016 *** |
Slope (topography) | 0.06 | 1.867 × 102 | 1.583 × 103 | 11.791 | <2 × 1016 *** |
Coefficients | Explanatory Share | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|---|
Roads | 0.01 | −7.026 × 105 | 8.850 × 106 | −7.939 | 2.07 × 1015 *** |
Settlements | 0.07 | 9.506 × 105 | 3.458 × 106 | 27.491 | <2 × 1016 *** |
Agriculture | 0.31 | −1.315 × 103 | 2.053 × 105 | −64.056 | <2 × 1016 *** |
Plantations | 0.13 | 6.764 × 105 | 1.850 × 106 | 36.567 | <2 × 1016 *** |
Rivers | 0.09 | −4.125 × 104 | 1.926 × 105 | −21.416 | <2 × 1016 *** |
Lakes | 0.13 | 6.943 × 106 | 6.488 × 107 | 10.701 | <2 × 1016 *** |
Touristic infrastructure | 0.04 | −3.166 × 105 | 1.837 × 106 | −17.236 | <2 × 1016 *** |
Mining concessions | 0.13 | −8.439 × 105 | 3.581 × 106 | −23.565 | <2 × 1016 *** |
Slope (topography) | 0.06 | −5.248 × 103 | 1.251 × 103 | −4.195 | 2.74 × 105 *** |
Coefficients | Explanatory Share | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|---|
Roads | 0.36 | −7.404 × 105 | 1.111 × 105 | −6.665 | 2.67 × 1011 *** |
Settlements | 0.33 | 4.807 × 105 | 3.901 × 106 | 12.323 | <2 × 1016 *** |
Agriculture | 0.41 | −5.359 × 104 | 1.665 × 105 | −32.190 | <2 × 1016 *** |
Plantations | 0.06 | −1.742 × 105 | 1.755 × 106 | −9.926 | <2 × 1016 *** |
Rivers | 0.02 | 5.727 × 105 | 5.248 × 106 | 10.913 | <2 × 1016 *** |
Lakes | 0.06 | 1.200 × 105 | 5.152 × 107 | 23.303 | <2 × 1016 *** |
Touristic infrastructure | 0.32 | 2.140 × 105 | 1.566 × 106 | 13.666 | <2 × 1016 *** |
Mining concessions | 0.30 | −2.318 × 105 | 1.449 × 106 | −15.991 | <2 × 1016 *** |
Slope (topography) | 0.08 | 1.867 × 102 | 1.583 × 103 | 11.791 | <2 × 1016 *** |
Designation | Name | Date of Establishment | Zone | Average | Fragmentation Level | ||
---|---|---|---|---|---|---|---|
In PAs | 5 km | 10 km | |||||
SNAP | Antisana | 1993 | 0.38 | 0.42 | 0.43 | 0.41 | Low |
Arenillas | 1994 | 0.19 | 0.46 | 0.33 | 0.33 | Low | |
Cajas | 1977 | 0.3 | 0.68 | 0.79 | 0.59 | Low | |
Cayambe Coca | 1970 | 1.13 | 0.98 | 0.52 | 0.88 | Low | |
Cerro Plateado | 2010 | 0.27 | 0.26 | 0.3 | 0.28 | Low | |
Chimborazo | 1987 | 0.27 | 0.42 | 0.47 | 0.39 | Low | |
Cofan Bermejo | 2002 | 0.48 | 0.46 | 0.24 | 0.39 | Low | |
Colonso Chalupas | 2014 | 0.49 | 0.29 | 0.23 | 0.34 | Low | |
Cotacachi Cayapas | 1968 | 0.69 | 1.35 | 1.57 | 1.20 | Medium | |
Cotopaxi | 1975 | 0.3 | 0.29 | 0.41 | 0.33 | Low | |
Cuyabeno | 1979 | 0.7 | 0.67 | 1.03 | 0.80 | Low | |
El Angel | 1992 | 0.22 | 0.54 | 0.54 | 0.43 | Low | |
El Boliche | 1979 | 0 | 0.03 | 0 | 0.01 | Low | |
El Condor | 1999 | 0.08 | 0.43 | 0.27 | 0.26 | Low | |
El Pambilar | 2010 | 0.1 | 0.25 | 0.27 | 0.21 | Low | |
El Quimi | 2006 | 0.3 | 0.28 | 0.36 | 0.31 | Low | |
El Zarza | 2006 | 0.11 | 0.23 | 0.31 | 0.22 | Low | |
Isla Santay | 2010 | 0.09 | 0.03 | 0 | 0.04 | Low | |
Islas Corazon y Las Islas Fragatas | 2002 | 0.13 | 0.32 | 0.26 | 0.24 | Low | |
La Bonita | 2017 | 0.36 | 0.32 | 0.16 | 0.28 | Low | |
La Chiquita | 2003 | 0.12 | 0.35 | 0.45 | 0.31 | Low | |
Limoncocha | 1985 | 0.18 | 0.29 | 0.24 | 0.24 | Low | |
Llanganates | 1996 | 0.52 | 0.69 | 0.4 | 0.54 | Low | |
Los Ilinizas | 1996 | 1.1 | 1.45 | 1.05 | 1.20 | Medium | |
Los Samanes | 2010 | 0 | 0.09 | 0.17 | 0.09 | Low | |
Machalilla | 1979 | 0.62 | 0.55 | 0.48 | 0.55 | Low | |
Mache Chindul | 1996 | 1.09 | 1.15 | 0.95 | 1.06 | Medium | |
Manglares Cayapas Mataje | 1995 | 0.4 | 0.45 | 0.3 | 0.38 | Low | |
Manglares Churute | 1979 | 0.22 | 0.24 | 0.12 | 0.19 | Low | |
Manglares El Morro | 2007 | 0.11 | 0.35 | 0.46 | 0.31 | Low | |
Manglares El Salado | 2003 | 0.15 | 0.31 | 0.26 | 0.24 | Low | |
Manglares Estuario del Rio Esmeraldas | 2008 | 0.04 | 0.14 | 0.2 | 0.13 | Low | |
Manglares Estuario del Rio Muisne | 2008 | 0.4 | 0.75 | 0.29 | 0.48 | Low | |
Pacoche | 2008 | 0.33 | 0.3 | 0.37 | 0.33 | Low | |
Parque Lago | 2003 | 0.17 | 0.21 | 0.29 | 0.22 | Low | |
Pasochoa | 1996 | 0.8 | 0.75 | 0.79 | 0.78 | Low | |
Plazas de Villamil | 2011 | 0 | 0.29 | 0.56 | 0.28 | Low | |
Podocarpus | 1982 | 0.64 | 1.25 | 0.93 | 0.94 | Low | |
Pululahua | 1966 | 0.12 | 0.31 | 0.32 | 0.25 | Low | |
Quimsacocha | 2012 | 0.11 | 0.38 | 0.57 | 0.35 | Low | |
Rio Negro Sopladora | 2018 | 0.24 | 0.44 | 0.46 | 0.38 | Low | |
Samama Mumbes | 2016 | 0.06 | 0.21 | 0.15 | 0.14 | Low | |
Sangay | 1975 | 1.14 | 1.9 | 1.66 | 1.57 | Medium | |
Siete Iglesias | 2012 | 0.2 | 0.67 | 0.81 | 0.56 | Low | |
Sumaco Napo-Galeras | 1994 | 0.65 | 0.78 | 0.84 | 0.76 | Low | |
Tambillo | 2018 | 0.13 | 0.29 | 0.46 | 0.29 | Low | |
Yacuri | 2010 | 0.41 | 0.65 | 0.46 | 0.51 | Low | |
Yasuni | 1979 | 1.35 | 0.71 | 0.83 | 0.96 | Low | |
IDAs | BR Yasuni | 1989 | 1 | 0.18 | 0.3 | 0.49 | Low |
BR Sumaco | 2000 | 1.48 | 0.43 | 0.21 | 0.71 | Low | |
BR Podocarpus El Condor | 2007 | 1.79 | 0.47 | 0.25 | 0.84 | Low | |
BR Macizo Del Cajas | 2013 | 1.59 | 0.22 | 0.22 | 0.68 | Low | |
BR Choco Andino | 2018 | 0.66 | 0.44 | 0.23 | 0.44 | Low | |
BR Bosque Seco | 2014 | 1.26 | 0.98 | 0.83 | 1.02 | Medium | |
RAM Yacuri | 2012 | 0.68 | 0.87 | 0.74 | 0.76 | Low | |
RAM Tembladera | 2011 | 0.06 | 0.18 | 0.46 | 0.23 | Low | |
RAM Segua | 2000 | 0.13 | 0.16 | 0.19 | 0.16 | Low | |
RAM Santay | 2000 | 0.22 | 0.2 | 0.15 | 0.19 | Low | |
RAM Podocarpus | 2012 | 0.68 | 1.6 | 1.48 | 1.25 | Medium | |
RAM Nucanchi Turupamba | 2006 | 1.04 | 0.71 | 0.72 | 0.82 | Low | |
RAM Machalilla | 1990 | 0.33 | 0.97 | 0.65 | 0.65 | Low | |
RAM Llanganati | 2008 | 0.75 | 0.78 | 0.73 | 0.75 | Low | |
RAM Limoncocha | 1998 | 0.3 | 0.48 | 0.58 | 0.45 | Low | |
RAM El Angel | 2012 | 0.67 | 0.86 | 0.89 | 0.81 | Low | |
RAM Don Goyo | 2012 | 0.29 | 0.44 | 0.41 | 0.38 | Low | |
RAM Cuyabeno Lagartococha Yasuni | 2017 | 2.33 | 1.3 | 1.17 | 1.60 | Medium | |
RAM Cube | 2002 | 0.2 | 0.41 | 0.7 | 0.44 | Low | |
RAM Churute | 1990 | 0.57 | 0.43 | 0.28 | 0.43 | Low | |
RAM Cayapas Mataje | 2003 | 0.75 | 0.72 | 0.57 | 0.68 | Low | |
RAM Cajas | 2002 | 1.19 | 1.12 | 1.46 | 1.26 | Medium | |
RAM Abras De Mantequilla | 2000 | 0 | 0.14 | 0.05 | 0.06 | Low |
References
- Daily, G.C. (Ed.) Nature’s Services: Societal Dependence On Natural Ecosystems; Island Press: Washington, DC, USA; Covelo, CA, USA, 1997. [Google Scholar]
- Galicia, L.; Zarco-Arista, A.E. Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 275–288. [Google Scholar] [CrossRef]
- García-Nieto, A.P.; García-Llorente, M.; Iniesta-Arandia, I.; Martín-López, B. Mapping forest ecosystem services: From providing units to beneficiaries. Ecosyst. Serv. 2013, 4, 126–138. [Google Scholar] [CrossRef]
- Myers, N. The world’s forests and their ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA; Covelo, CA, USA, 1997. [Google Scholar]
- UN Environment Programme (UNEP); Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Forests: Forests, Biodiversity and People; UNEP: Rome, Italy, 2020. [Google Scholar]
- Jencso, K.G.; McGlynn, B.L.; Gooseff, M.N.; Wondzell, S.M.; Bencala, K.E.; Marshall, L.A. Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale. Water Resour. Res. 2009, 45, W04428. [Google Scholar] [CrossRef] [Green Version]
- Vié, J.-C.; Hilton-Taylor, C.; Stuart, S.N. Wildlife in a Changing World—An Analysis of the 2008 IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2009; 157p. [Google Scholar]
- Brook, B.W.; Sodhi, N.S.; Ng, P.K.L. Catastrophic extinctions follow deforestation in Singapore. Nature 2003, 424, 420–426. [Google Scholar] [CrossRef]
- Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 5775–5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eva, H.D.; Achard, F.; Beuchle, R.; de Miranda, E.; Carboni, S.; Seliger, R.; Vollmar, M.; Holler, W.A.; Oshiro, O.T.; Barrena Arroyo, V.; et al. Forest Cover Changes in Tropical South and Central America from 1990 to 2005 and Related Carbon Emissions and Removals. Remote Sens. 2012, 4, 1369–1391. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Cueva, P.; Fries, A.; Montesinos, P.; Rodríguez-Díaz, J.A.; Boll, J. Spatial Estimation of Soil Erosion Risk by Land-cover Change in the Andes OF Southern Ecuador. Land Degrad. Develop. 2015, 26, 565–573. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Berry, J.A.; Smith, D.D.; Sperry, J.S.; Anderegg, L.D.L.; Field, C.B. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl. Acad. Sci. USA 2012, 109, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Creeden, E.P.; Hicke, J.A.; Buotte, P.C. Climate, weather, and recent mountain pine beetle outbreaks in the western United States. For. Ecol. Manag. 2014, 312, 239–251. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Barber, C.P. Climate change, human land use and future fires in the Amazon. Glob. Chang. Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IUCN. The IUCN Red List of Threatened Species, Version 2021-1; Available online: https://www.iucnredlist.org/statistics (accessed on 15 November 2021).
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Cardille, J. Agricultural land-use change in Brazilian Amazônia between 1980 and 1995: Evidence from integrated satellite and census data. Remote Sens. Environ. 2003, 87, 551–562. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 2008, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Walker, W.S.; Gorelik, S.R.; Baccini, A.; Aragon-Osejo, J.L.; Josse, C.; Meyer, C.; Macedo, M.N.; Augusto, C.; Rios, S.; Katan, T.; et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. USA 2020, 117, 3015–3025. [Google Scholar] [CrossRef] [Green Version]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef]
- Naughton-Treves, L.; Alvarez-Berríos, N.; Brandon, K.; Bruner, A.; Holland, M.B.; Ponce, C.; Saenz, M.; Suarez, L.; Treves, A. Expanding protected areas and incorporating human resource use: A study of 15 forest parks in Ecuador and Peru. Sustain. Sci. Pract. Policy 2006, 2, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Amazon Geo-Referenced Socio-Environmental Information Network (RAISG). Pressures on and Threats to Protected Areas and Indigenous Territories in Amazonia (RAISG, São Paulo, Brasil, 2018). 2018. Available online: https://www.amazoniasocioambiental.org/en (accessed on 31 August 2021).
- Lovejoy, T.E. Biodiversity Conservation Targets: How to Allocate Resources. One Earth 2020, 2, 415–416. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhang, Y.; Wu, X.; Shimabukuro, Y.; Arai, E.; Biradar, C.; Wang, J.; Zou, Z.; et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2019, 2, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, A.; Robalino, J.; Lima, E.; Sandoval, C.; Herrera, L.D. Governance, Location and Avoided Deforestation from Protected Areas: Greater Restrictions Can Have Lower Impact, Due to Differences in Location. World Dev. 2014, 55, 7–20. [Google Scholar] [CrossRef]
- Schleicher, J.; Peres, C.A.; Amano, T.; Llactayo, W.; Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 2017, 7, 11318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessmann, J.; Fajardo, J.; Muñoz, J.; Bonaccorso, E. Large expansion of oil industry in the Ecuadorian Amazon: Biodiversity vulnerability and conservation alternatives. Ecol. Evol. 2016, 6, 4997–5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beech, E.; Rivers, M.; Oldfield, S.; Smith, P.P. GlobalTreeSearch: The first complete global database of tree species and country distributions. J. Sustain. For. 2017, 36, 454–489. [Google Scholar] [CrossRef]
- Calderón, M.G.S.; Reyes, C.G.P. Ecuador: Revisión a las Principales Características del Recurso Forestal y de la Deforestación; Revista Científica y Tecnológica UPSE, 2015; Available online: https://incyt.upse.edu.ec/ciencia/revistas/index.php/rctu/article/view/70/pdf_1 (accessed on 15 November 2021).
- Curatola Fernández, G.; Obermeier, W.; Gerique, A.; López Sandoval, M.; Lehnert, L.; Thies, B.; Bendix, J. Land Cover Change in the Andes of Southern Ecuador—Patterns and Drivers. Remote Sens. 2015, 7, 2509–2542. [Google Scholar] [CrossRef] [Green Version]
- Ministerio del Ambiente del Ecuador (MAE). Estadísticas forestales 2011–2014 Subsecretaría de Patrimonio Natural. Dirección Nacional Forestal del Ministerio del Ambiente; MAE: Quito, Ecuador, 2015.
- Andrade-Núñez, M.J.; Aide, T.M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2020, 2, 21002. [Google Scholar] [CrossRef]
- Noh, J.K.; Echeverria, C.; Kleemann, J.; Koo, H.; Fürst, C.; Cuenca, P. Warning about conservation status of forest ecosystems in tropical Andes: National assessment based on IUCN criteria. PLoS ONE 2020, 15, e0237877. [Google Scholar] [CrossRef]
- Sierra, R.; Campos, F.; Chamberlin, J. Assessing biodiversity conservation priorities: Ecosystem risk and representativeness in continental Ecuador. Landsc. Urban Plan. 2002, 59, 95–110. [Google Scholar] [CrossRef]
- Sierra, R.; Calva, O.; Guevara, A. La Deforestación en el Ecuador, 1990–2018: Factores Promotores y Tendencias Recientes: En el Marco de la Implementación del Programa Integral Amazónico de Conservación de Bosques y Producción Sostenible; Programa Integral Amazónico de Conservación de Bosques, Producción Sostenible PROAmazonía, Iniciativa Liderada por el Ministerio del Ambiente y Agua (MAAE): Quito, Ecuador; Ministerio de Agricultura y Ganadería (MAG): Quito, Ecuador; con apoyo del Programa de las Naciones Unidas para el Desarrollo (PNUD): Quito, Ecuador; Ministerio de Ambiente y Agua del Ecuador: Quito, Ecuador, 2021.
- González-Jaramillo, V.; Fries, A.; Rollenbeck, R.; Paladines, J.; Oñate-Valdivieso, F.; Bendix, J. Assessment of deforestation during the last decades in Ecuador using NOAA-AVHRR satellite data. Erdkunde 2016, 70, 217–235. [Google Scholar] [CrossRef]
- Rivas, C.A.; Guerrero-Casado, J.; Navarro-Cerillo, R.M. Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: Impact on conservation. For. Ecosyst. 2021, 8, 46. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Espinosa, C.I.; Leuschner, C.; de La Cruz, M. Deforestation and Forest Fragmentation in South Ecuador since the 1970s—Losing a Hotspot of Biodiversity. PLoS ONE 2015, 10, e0133701. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, Y. The potential of protected areas to halt deforestation in Ecuador. Environ. Conserv. 2017, 44, 124–130. [Google Scholar] [CrossRef]
- Cuenca, P.; Echeverria, C. How do protected landscapes associated with high biodiversity and population levels change? PLoS ONE 2017, 12, e0180537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministerio del Ambiente del Ecuador (MAE); Food and Agriculture Organization of the United Nations (FAO). Resultados de la Evaluación Nacional Forestal—Ecuador; MAE: Quito, Ecuador, 2014.
- López-Sandoval, M.; Maldonado, P. Change, Collective Action, and Cultural Resilience in Páramo Management in Ecuador. Mt. Res. Dev. 2019, 39, R1. [Google Scholar] [CrossRef]
- Encyclopædia Britannica Inc. Ecuador. Available online: https://www.britannica.com/place/Ecuador#ref25836 (accessed on 24 November 2021).
- Roy, B.A.; Zorrilla, M.; Endara, L.; Thomas, D.C.; Vandegrift, R.; Rubenstein, J.M.; Policha, T.; Ríos-Touma, B.; Read, M. New Mining Concessions Could Severely Decrease Biodiversity and Ecosystem Services in Ecuador. Trop. Conserv. Sci. 2018, 11, 194008291878042. [Google Scholar] [CrossRef]
- Ortega-Andrade, H.M.; Rodes Blanco, M.; Cisneros-Heredia, D.F.; Guerra Arévalo, N.; López de Vargas-Machuca, K.G.; Sánchez-Nivicela, J.C.; Armijos-Ojeda, D.; Cáceres Andrade, J.F.; Reyes-Puig, C.; Quezada Riera, A.B.; et al. Red List assessment of amphibian species of Ecuador: A multidimensional approach for their conservation. PLoS ONE 2021, 16, e0251027. [Google Scholar] [CrossRef]
- Fiallo, J. Importance of the Agricultural Sector in a Dollarized Economy; Universidad San Francisco de Quito: Quito, Ecuador, 2017. [Google Scholar]
- Castro, M.; Sierra, R.; Calva, O.; Camacho, J.; López, F. Zonas de Procesos Homogéneos de Deforestación del Ecuador. Factores Promotores y Tendencias al 2020; Programa GESOREN-GIZ y Ministerio de Ambiente del Ecuador: Quito, Ecuador, 2013.
- Mogrovejo Jaramillo, P.R. Bosques y Cambio Climático en Ecuador: El Regente Forestal como Actor Clave en la Mitigación del Cambio Climátic. Master’s Thesis, Universidad Andina Simón Bolívar Sede Ecuador, Área de Estudios Sociales y Globales, Programa de Maestría en Cambio Climático y Negociación Ambiental, Bolivia, Ecuador, 2017. [Google Scholar]
- Ministerio del Ambiente del Ecuador (MAE). Sistema Nacional de Control ForestalSENPLADES-SGPBV-2013-1417-OF; MAE: Quito, Ecuador, 2013.
- Ministerio del Ambiente, Agua y Transición Ecológica (MAATE). Interactive Map of MAATE. Available online: http://ide.ambiente.gob.ec/mapainteractivo/ (accessed on 31 August 2021).
- Humanitarian Exchange Data (HDX). HOTOSM Ecuador Roads (OpenStreetMap Export). Available online: https://data.humdata.org/dataset/2c7e75a8-6069-4908-b679-963cba3d6cf9 (accessed on 31 August 2021).
- Military Geographic Institute (IGM) of Ecuador. Available online: http://www.geoportaligm.gob.ec/portal/index.php/descargas/cartografia-de-libre-acceso/cartografia-de-libre-acceso-escala-regional/ (accessed on 31 August 2021).
- Energy and Non-Renewable Natural Resources Regulation and Control Agency (ARCERNNR) of Ecuador. Available online: https://www.gob.ec/arcernnr/tramites/emision-reporte-grafico-catastral-provincia-sector-mineria#beneficiary (accessed on 31 August 2021).
- Ministry of Tourism (MINTUR). Catastro Turístico. Available online: https://www.turismo.gob.ec/catastro-turistico/ (accessed on 31 August 2021).
- SR Shuttle Radar Topography Mission (SRTM) from the National Aeronautics and Space Administration (NASA). NASA SRTM Digital Elevation 30 m. Available online: https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 (accessed on 31 August 2021).
- Ministerio del Ambiente Ecuador (MAE). Sistema Nacional de Areas Protegidas-SNAP. Available online: http://areasprotegidas.ambiente.gob.ec/es/info-snap (accessed on 31 August 2021).
- Ministerio del Ambiente del Ecuador (MAE). Plan Estratégico del Sistema Nacional de Áreas Protegidas del Ecuador 2007–2016. Informe Final de Consultoría: Proyecto GEF: Ecuador Sistema Nacional de Áreas Protegidas (SNAP-GEF) REGAL-ECOLEX; MAE: Quito, Ecuador, 2007.
- Boitani, L.; Cowling, R.M.; Dublin, H.T.; Mace, G.M.; Parrish, J.; Possingham, H.P.; Pressey, R.L.; Rondinini, C.; Wilson, K.A. Change the IUCN protected area categories to reflect biodiversity outcomes. PLoS Biol. 2008, 6, e66. [Google Scholar] [CrossRef] [Green Version]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2008.
- Leroux, S.J.; Krawchuk, M.A.; Schmiegelow, F.; Cumming, S.G.; Lisgo, K.; Anderson, L.G.; Petkova, M. Global protected areas and IUCN designations: Do the categories match the conditions? Biol. Conserv. 2010, 143, 609–616. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). What are Biosphere Reserves? Available online: https://en.unesco.org/biosphere/about (accessed on 19 November 2021).
- Ramsar Convention. Wetlands of International Importance. Available online: https://www.ramsar.org/about/wetlands-of-international-importance-ramsar-sites (accessed on 19 November 2021).
- IUCN. Protected Area Categories. Available online: https://www.iucn.org/theme/protected-areas/about/protected-area-categories (accessed on 19 November 2021).
- Arturo Sánchez-Azofeifa, G.; Daily, G.C.; Pfaff, A.S.; Busch, C. Integrity and isolation of Costa Rica’s national parks and biological reserves: Examining the dynamics of land-cover change. Biol. Conserv. 2003, 109, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Kintz, D.B.; Young, K.R.; Crews-Meyer, K.A. Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environ. Manag. 2006, 38, 238–252. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Viales, A.; Lecaros, G. Manual Estadísticas Ambientales Andinas; Secretaría General de la Comunidad Andina: Lima, Peru, 2008. [Google Scholar]
- Ministerio del Ambiente de Ecuador (MAE). Fragmentación De Los Ecosistemas Del Ecuador Continental: Subsecretaría de Patrimonio Natural; MAE: Quito, Ecuador, 2015.
- Finer, M.; Novoa, S.; Weisse, M.J.; Petersen, R.; Mascaro, J.; Souto, T.; Stearns, F.; Martinez, R.G. Combating deforestation: From satellite to intervention. Science 2018, 360, 1303–1305. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143. [Google Scholar] [CrossRef]
- Laurance, W.F.; Albernaz, A.K.M.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 2002, 29, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Sinharay, S. An Overview of Statistics in Education. In International Encyclopedia of Education; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–11. [Google Scholar]
- Fausto, V.; Guerro, A. Definición del año Meteorológico Típico en Base a las Variables Temperatura, Precipitación y Velocidad del Viento, de Tres Regiones Naturales del Ecuador: Costa, Sierra y Oriente. 2013. Available online: http://repositorio.espe.edu.ec/handle/21000/7143 (accessed on 15 November 2021).
- Ministerio de Agricultura, Ganadería, Acuacultura y Pesca (MAGAP). Censo Nacional Agropecuario. Informe técnico: Resultados nacionales; 2011. Available online: https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario (accessed on 19 November 2021).
- Nieto, P.E.; Ayala, L.E.; Dután, J.B.; Rodas, E.R.; Vázquez, J.M.; Murillo, Y.A.; Calle, G.R.; Samaniego, J.X. (Eds.) Composición Botánica de los Pastizales en la Provincia del Azuay-Ecuador; Actas del II Congreso Internacional de Producción Animal Especializada en Bovinos, 8; Universidad de Cuenca: Cuenca, Ecuador, 2017. [Google Scholar]
- Zhang, S. An Apex Predator in Peril in the Western Lowlands of Ecuador: Mapping the Population Distribution of Harpy Eagles (Harpia harpyja) in a Highly Deforested Region. Independent Study Project (ISP) Collection. 2020. Available online: https://digitalcollections.sit.edu/isp_collection/3326 (accessed on 15 November 2021).
- Baynard, C.W.; Ellis, J.M.; Davis, H. Roads, petroleum and accessibility: The case of eastern Ecuador. GeoJournal 2013, 78, 675–695. [Google Scholar] [CrossRef]
- Joslin, A.J.; Jepson, W.E. Territory and authority of water fund payments for ecosystem services in Ecuador’s Andes. Geoforum 2018, 91, 10–20. [Google Scholar] [CrossRef]
- Lewis, T. Transnational Conservation Movement Organizations: Shaping The Protected Area Systems of Less Developed Countries. Mobilization Int. Q. 2000, 5, 103–121. [Google Scholar] [CrossRef]
- Negru, C.; Gaibor, I.D.; Hălălișan, A.-F.; Popa, B. Management Effectiveness Assessment for Ecuador’s National Parks. Diversity 2020, 12, 487. [Google Scholar] [CrossRef]
- Mongabay. Ecuador: Nuevo Parque Nacional Río Negro-Sopladora Protegerá 546 Especies. Available online: https://es.mongabay.com/2018/01/areas-naturales-protegidas-ecuador-rio-negro/ (accessed on 25 November 2021).
- Frenkel, C.; Rodas, F. Río Negro-Sopladora: El Descubrimiento de un Tesoro Natural; Naturaleza & Cultura Internacional; MAE: Cuenca, Ecuador, 2017.
- Leverington, F.; Costa, K.L.; Pavese, H.; Lisle, A.; Hockings, M. A global analysis of protected area management effectiveness. Environ. Manag. 2010, 46, 685–698. [Google Scholar] [CrossRef]
- Finer, M.; Vijay, V.; Ponce, F.; Jenkins, C.N.; Kahn, T.R. Ecuador’s Yasuní Biosphere Reserve: A brief modern history and conservation challenges. Environ. Res. Lett. 2009, 4, 34005. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef] [Green Version]
- Deguignet, M.; Arnell, A.; Juffe-Bignoli, D.; Shi, Y.; Bingham, H.; MacSharry, B.; Kingston, N. Measuring the extent of overlaps in protected area designations. PLoS ONE 2017, 12, e0188681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots; Zachos, F.E., Habel, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar]
- Kleemann, J.; Koo, H.; Hensen, I.; Mendieta-Leiva, G.; Kahnt, B.; Kurze, C.; Inclan, D.J.; Cuenca, P.; Noh, J.K.; Hoffmann, M.H.; et al. Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biol. Conserv. 2022, 265, 109404. [Google Scholar] [CrossRef]
- Seymour, F.; Harris, N.L. Reducing tropical deforestation. Science 2019, 365, 756–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Jayathilake, H.M.; Prescott, G.W.; Carrasco, L.R.; Rao, M.; Symes, W.S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 2021, 50, 215–228. [Google Scholar] [CrossRef]
- Piotrowski, M.; Ortiz, E. Nearing the Tipping Point—Drivers of Deforestation in the Amazon Region; Inter-Amercian Dialogue: Washington, DC, USA, 2019. [Google Scholar]
- Steinweg, T.; Kuepper, B.; Thoumi, G. Economic Drivers of Deforestation: Sectors Exposed to Sustainability and Financial Risks; Chain Reaction Research: Washington, DC, USA, 2019. [Google Scholar]
- IndexMundi. Ecuador Palm Oil Exports by Year. Available online: https://www.indexmundi.com/agriculture/?country=ec&commodity=palm-oil&graph=exports (accessed on 31 August 2021).
- Mena, C.F.; Bilsborrow, R.E.; McClain, M.E. Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environ. Manag. 2006, 37, 802–815. [Google Scholar] [CrossRef]
- Quijano Vallejos, P.; Veit, P.; Tipula, P.; Reytar, K. UNDERMINING RIGHTS Indigenous Lands and Mining in the Amazon; World Resource Institute: Washington, DC, USA, 2020. [Google Scholar]
- Busch, J.; Ferretti-Gallon, K. What Drives Deforestation and What Stops It? A Meta-Analysis. Rev. Environ. Econ. Policy 2017, 11, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Ferrer Velasco, R.; Köthke, M.; Lippe, M.; Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS ONE 2020, 15, e0226830. [Google Scholar] [CrossRef]
- Mather, A.S.; Needle, C.L. The relationships of population and forest trends. Geogr. J. 2000, 166, 2–13. [Google Scholar] [CrossRef]
- Pupo, A.; Moreno, A.; Diaz, M.; Carranza, M. Evaluación de Impactos Sociales del Turismo en Ecuador. 2018. Available online: https://cidecuador.org/wp-content/uploads/congresos/2018/ii-seminario-internacional-de-turismo-sostenible/diapo/evaluacion-de-impactos-sociales-del-turismo-en-ecuador_alba-pupo.pdf (accessed on 15 November 2021).
- El Oriente. Los Turistas pueden causar Impacto a los Bosques de Guayacanes en Loja. 2020. Available online: https://www.eloriente.com/articulo/los-turistas-pueden-causar-impacto-a-los-bosques-de-guayacanes-en-loja/13694 (accessed on 31 August 2021).
- Loaiza, P. Tourism and Environmental Impacts, Case Study: Puyango Petrified Forest. Bachelor’s Thesis, Universidad de Especialidades Espíritu Santo, Facultad de Turismo, Hotelería y Gastronomía, Guayaquil, Ecuador, 2018. [Google Scholar]
- El Universo. Ecuador es el país con la mayor tasa de deforestación de Latinoamérica en comparación con su tamaño, incluso más que Brasil|Biodiversidad en América Latina; 2019. Available online: https://www.eluniverso.com/noticias/2019/11/24/nota/7616396/estado-bosques-nativos-ecuador-deforestacion (accessed on 31 August 2021).
- Convention on Biological Diversity (CBD). Ecuador–Main Details. Available online: https://www.cbd.int/countries/profile/?country=ec (accessed on 31 August 2021).
- United Nations Framework Convention on Climate Change (UNFCCC). REDD+ A Forest of Opportunities in Ecuador. Available online: https://unfccc.int/news/reddplus-a-forest-of-opportunities-in-ecuador-1 (accessed on 6 December 2021).
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas; IPBES Secretariat, UN Campus: Bonn, Germany, 2018. [Google Scholar]
- United Nations (UN) Global Compact. Goal 15: Protect, Restore and Promote Sustainable Use of Terrestrial Ecosystems, Sustainably Manage Forests, Combat Desertification, Halt and Reverse Land Degradation and Halt Biodiversity Loss. Available online: https://sdgcompass.org/sdgs/sdg-15 (accessed on 6 December 2021).
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Ewers, R.M.; Rodrigues, A.S.L. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 2008, 23, 113–116. [Google Scholar] [CrossRef] [PubMed]
- De Koning, F.; Aguiñaga, M.; Bravo, M.; Chiu, M.; Lascano, M.; Lozada, T.; Suarez, L. Bridging the gap between forest conservation and poverty alleviation: The Ecuadorian Socio Bosque program. Environ. Sci. Policy 2011, 14, 531–542. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization of the United Nations (FAO). Sustainable Development Goals. Indicator 15.2.1—Progress towards Sustainable Forest Management. Available online: https://www.fao.org/sustainable-development-goals/indicators/1521/en/ (accessed on 6 December 2021).
- The Food and Agriculture Organization of the United Nations (FAO). Monitoring the World’s Forests. Available online: https://www.fao.org/monitoring-world-forests/en/ (accessed on 6 December 2021).
- Fremout, T.; Thomas, E.; Gaisberger, H.; van Meerbeek, K.; Muenchow, J.; Briers, S.; Gutierrez-Miranda, C.E.; Marcelo-Peña, J.L.; Kindt, R.; Atkinson, R.; et al. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Glob. Chang. Biol. 2020, 26, 3552–3568. [Google Scholar] [CrossRef] [PubMed]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol. Model. 2019, 392, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Manchego, C.E.; Hildebrandt, P.; Cueva, J.; Espinosa, C.I.; Stimm, B.; Günter, S. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLoS ONE 2017, 12, e0190092. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, G.; Herold, M.; de Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Magbma, F. Estudio de las Causas de la Deforestación y Degradación Forestal en Guinea Ecuatorial 2004–2014; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018. [Google Scholar]
- Kong, R.; Diepart, J.-C.; Castella, J.-C.; Lestrelin, G.; Tivet, F.; Belmain, E.; Bégué, A. Understanding the drivers of deforestation and agricultural transformations in the Northwestern uplands of Cambodia. Appl. Geogr. 2019, 102, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Rindfuss, R.R.; Walsh, S.J.; Mishra, V.; Fox, J.; Dolcemascolo, G.P. Linking household and remotely sensed data. In People and the Environment. Approaches for Linking Household and Community Surveys to Remote Sensing and GIS; Fox, J., Rindfuss, R.R., Walsh, S.J., Mishra, V., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Pool-Stanvliet, R.; Stoll-Kleemann, S.; Giliomee, J.H. Criteria for selection and evaluation of biosphere reserves in support of the UNESCO MAB programme in South Africa. Land Use Policy 2018, 76, 654–663. [Google Scholar] [CrossRef]
Data | Format | Scale | Date of Reference | Source |
---|---|---|---|---|
Protected areas | Polygon shape file | 1:250,000 | 2020 | [51] |
Deforestation from the periods 1990–2000, 2000–2008, 2008–2014, 2014–2016, and 2016–2018 | Polygon shape files | 1:100,000 | 1990–2018 | [51] |
Land Use/Land Cover | Polygon shape file | 1:100,000 | 2018 | [51] |
Roads | Line shape file | - | 2020 | [52] |
Rivers | Line shape file | 1:250,000 | 2013 | [53] |
Lakes | Polygon shape file | 1:250,000 | 2013 | [53] |
Mining concessions | Polygon shape file | - | 2021 | [54] |
Touristic infrastructure | Point shape file | - | 2002 | [55] |
Slope | Raster file | 30 m | 2000 | [56] |
Protection Level | National and International Designations | Number of Areas | Internationally Recognized Equivalent Categories |
---|---|---|---|
High | Reserva Biologica | 5 | IUCN-Ia/b |
Reserva Ecologica | 8 | IUCN-Ia/b | |
Parque Nacional | 12 | IUCN-II | |
Reserva Geobotanica | 1 | IUCN-III | |
Refugio de Vida Silvestre | 10 | IUCN-IV | |
Low | Área Nacional de Recreación | 6 | IUCN-V |
Área Ecologica de Conservacion | 3 | IUCN-VI | |
Reserva de Producción de Flora y Fauna | 3 | IUCN-VI | |
Mixed | Biosphere Reserves | 6 | IDAs |
Ramsar Sites | 18 | IDAs |
Protection Level | IUCN eq. cat. | Zone | ||
---|---|---|---|---|
Within PAs, in % | 5 km, in % | 10 km, in % | ||
High | Ia/Ib | 2.27 | 4.20 | 3.46 |
II | 1.23 | 4.78 | 5.03 | |
III | 0.03 | 0.09 | 0.11 | |
IV | 0.07 | 1.29 | 1.61 | |
Low | V | 0.01 | 0.30 | 0.55 |
VI | 0.28 | 1.27 | 1.58 | |
TOTAL SNAP | 3.89 | 11.93 | 12.34 | |
Mixed | BR | 19.37 | 4.69 | 4.51 |
RAM | 0.62 | 1.94 | 3.53 | |
TOTAL IDAs | 19.99 | 6.63 | 8.04 |
Protected Areas (PA) Group | Before PA Establishment: Average Deforested Area in km2 per Year (%) | After PA Establishment: Average Deforested Area in km2 per Year (%) |
---|---|---|
PA established ≤ 1989 | - | 15.9 (0.05) |
PA established 1990–1999 | - | 15.3 (0.17) |
PA established 2000–2007 | 0.3 (0.03) | 0.8 (0.08) |
PA established 2008–2013 | 0.9 (0.04) | 0.6 (0.03) |
PA established 2014–2017 | 0.3 (0.02) | - |
PA established ≥ 2018 | 0.7 (0.11) | - |
TOTAL SNAP average | 0.6 (0.05) | 8.2 (0.08) |
IDA established ≤ 1989 * | - | 0.9 (0.01) |
IDA established 1990–1999 | - | 1.82 (0.29) |
IDA established 2000–2007 | 132.7 (0.58) | 84.2 (0.37) |
IDA established 2008–2013 | 30.1 (0.36) | 23.5 (0.22) |
IDA established 2014–2017 | 67.2 (0.53) | - |
IDA established ≥ 2018 * | 17.9 (0.62) | - |
TOTAL IDAs average | 62.0 (0.52) | 27.6 (0.22) |
Coefficients | Explanatory Share | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|---|
Roads | 0.26 | −5.398 × 105 | 3.627 × 106 | −14.883 | <2 × 1016 *** |
Settlements | 0.17 | 3.644 × 105 | 3.370 × 106 | 10.814 | <2 × 1016 *** |
Agriculture | 0.32 | −4.260 × 104 | 8.161 × 106 | −52.197 | <2 × 1016 *** |
Plantations | 0.06 | 7.142 × 106 | 3.239 × 107 | 22.053 | <2 × 1016 *** |
Rivers | 0.01 | 5.918 × 105 | 7.339 × 106 | 8.064 | 7.53 × 1016 *** |
Lakes | 0.04 | 8.177 × 106 | 4.783 × 107 | 17.097 | <2 × 1016 *** |
Touristic infrastructure | 0.18 | −1.650 × 105 | 9.293 × 107 | −17.758 | <2 × 1016 *** |
Mining concessions | 0.20 | −7.537 × 106 | 1.225 × 106 | −6.152 | 7.71 × 1010 *** |
Slope (topography) | 0.06 | −1.912 × 102 | 1.363 × 103 | −14.023 | <2 × 1016 *** |
Coefficients | Explanatory Share | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|---|
Roads | 0.34 | −6.387 × 105 | 3.251 × 106 | −19.644 | <2 × 1016 *** |
Settlements | 0.28 | −2.548 × 105 | 2.506 × 106 | −10.170 | <2 × 1016 *** |
Agriculture | 0.45 | −3.826 × 104 | 5.432 × 106 | −70.441 | <2 × 1016 *** |
Plantations | 0.27 | −9.805 × 106 | 3.802 × 107 | −25.787 | <2 × 1016 *** |
Rivers | 0.13 | −2.920 × 105 | 1.092 × 105 | −2.675 | 0.00748 ** |
Lakes | 0.08 | 6.753 × 106 | 5.978 × 107 | 11.296 | <2 × 1016 *** |
Touristic infrastructure | 0.27 | 1.630 × 105 | 1.118 × 106 | 14.587 | <2 × 1016 *** |
Mining concessions | 0.19 | 3.641 × 105 | 1.535 × 106 | 23.713 | <2 × 1016 *** |
Slope (topography) | 0.01 | −1.689 × 102 | 1.207 × 103 | −13.999 | <2 × 1016 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleemann, J.; Zamora, C.; Villacis-Chiluisa, A.B.; Cuenca, P.; Koo, H.; Noh, J.K.; Fürst, C.; Thiel, M. Deforestation in Continental Ecuador with a Focus on Protected Areas. Land 2022, 11, 268. https://doi.org/10.3390/land11020268
Kleemann J, Zamora C, Villacis-Chiluisa AB, Cuenca P, Koo H, Noh JK, Fürst C, Thiel M. Deforestation in Continental Ecuador with a Focus on Protected Areas. Land. 2022; 11(2):268. https://doi.org/10.3390/land11020268
Chicago/Turabian StyleKleemann, Janina, Camilo Zamora, Alexandra Belen Villacis-Chiluisa, Pablo Cuenca, Hongmi Koo, Jin Kyoung Noh, Christine Fürst, and Michael Thiel. 2022. "Deforestation in Continental Ecuador with a Focus on Protected Areas" Land 11, no. 2: 268. https://doi.org/10.3390/land11020268
APA StyleKleemann, J., Zamora, C., Villacis-Chiluisa, A. B., Cuenca, P., Koo, H., Noh, J. K., Fürst, C., & Thiel, M. (2022). Deforestation in Continental Ecuador with a Focus on Protected Areas. Land, 11(2), 268. https://doi.org/10.3390/land11020268