On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management
Abstract
:1. Introduction
1.1. Dredged Sediments Beneficial Use and Circular Economy
1.2. On-Site Analysis Methods for Sediments
1.3. Dredged Sediments Beneficial Use and Near Real-Time Analyses On-Site
1.4. Scope of Near Real-Time Analyses On-Site
1.5. Limitations of Near Real-Time Analyses On-Site
2. Materials and Methods
2.1. Sampling Technologies
2.1.1. Underwater Sediment Sampling
2.1.2. Soil and Sediment above Water
2.1.3. Water
- spot samplers, carried and operated by monitoring staff for spot site visits and single sampling operations. Most types of lightweight sampling equipment can be used (bucket, bottle, bailer, battery-operated pump, etc.).
- permanent samplers, installed on-site for periodic sampling operations. They may be operated by monitoring staff during site visits or be programmed for unsupervised sampling operations.
2.2. On-Site Analytical Technologies
2.2.1. On-Site Analytical Technologies Used in the Different Case Studies
pXRF
- -
- sampling is done by traditional methods, usually GPS-located auger coring,
- -
- the sample is partly dehydrated using a hand press [10],
- -
- pXRF analysis is performed immediately on the sample pellet, and direct readings are corrected for moisture. Two measurements are usually made on each pellet in two different places on the same face of the pellet.
Multiparametric Water Probe
2.2.2. Other On-Site Analytical Technologies
LIBS
pXRD
Gas Chromatography
pFTIR and µRaman
Spectral Gamma
Turbidimetry
Trace Element Water Analysis
3. Results
3.1. Case Study 1: Rotterdam
3.1.1. Pilot Site for Beneficial Use
3.1.2. On-Site Monitoring (Baseline and Pilot Work)
3.1.3. Benefits of On-Site Monitoring Techniques
3.2. Case Study 2: Bowling (Scotland, UK)
3.2.1. Pilot Site in a Canalside Regeneration Area
3.2.2. On-Site Baseline Monitoring
3.2.3. Benefits of On-Site Monitoring Techniques
3.3. Case Study 3: Walloon Waterways Sediment Characterisation Surveys, Belgium
3.3.1. Pilot Test Site to Improve Sediment Management at Temporary Disposal Sites
3.3.2. Orientation Survey
3.3.3. On-Site Monitoring (Pre-Dredging Mapping)
3.3.4. Benefits of On-Site Monitoring Techniques
4. Discussion
4.1. When Can On-Site Techniques Be Used?
- Before dredging and sediment relocation,
- During operations, either dredging or application,
- After application, to monitor their use at the target site.
4.2. Current Limitations of On-Site Techniques
4.3. Reliability of On-Site Results
- -
- select more representative samples for laboratory analysis, chosen from a larger number of field samples, on the basis of their on-site analyses,
- -
- increase the sampling density to improve the detection of anomalies and the delineation of polluted areas,
- -
- manage more efficiently the sediment loads during dredging operations.
4.4. Before Dredging and Management Operations
4.5. During Dredging and Management Operations
5. Conclusions
- by reducing cost risks and environmental uncertainties through continuous measurements of sediment quality,
- by reducing environmental risks over the long term, through high density site monitoring,
- by addressing acceptability and community responsibility issues through easier access to community monitoring, with immediate feedback.
- facilitate beneficial use projects by allowing rapid on-site decisions,
- provide immediate data if mineral processing is required,
- and generally, offer a significant advantage for daily operational decision making compared to more precise but lengthy and expensive laboratory work. The compromises on precision are safely manageable in most cases, provided that regular laboratory controls are performed.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lemiere, B.; Laperche, V.; Brequel, H. On-site analyses as a decision support tool for dredging and sustainable sediment management. In Proceedings of the 5th International Symposium on Sediment Management (I2SM), Montréal, QC, Canada, 16 July 2016. [Google Scholar]
- Nijssen, J.P.J.; Zwakhals, J.W.; Ammerlaan, R.A.; Berger, G.W. Monitoring environmental effects in the Slufter, a disposal site for contaminated sludge. Water Sci. Technol. 1998, 37, 425–433. [Google Scholar] [CrossRef]
- Rhodes, J.R.; Rautala, P. Application of a microprocessor-based portable XRF analyzer in minerals analysis. Int. J. Appl. Radiat. Isot. 1983, 34, 333–343. [Google Scholar] [CrossRef]
- Kalnicky, D.J.; Singhvi, R. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 2001, 83, 93–122. [Google Scholar] [CrossRef] [Green Version]
- Lemière, B.; Uvarova, Y.A. New developments in field portable geochemical techniques and on-site technologies and their place in mineral exploration. Geochem. Explor. Environ. Anal. 2019, 20, 205–216. [Google Scholar] [CrossRef]
- Bernick, M.B.; Kalnicky, D.J.; Prince, G.; Singhvi, R. Results of field-portable X-ray fluorescence analysis of metal contaminants in soil and sediment. J. Hazard. Mater. 1995, 43, 101–110. [Google Scholar] [CrossRef]
- Luck, P.; Simandl, G.J. Portable X-ray fl uorescence in stream sediment chemistry and indicator mineral surveys, Lonnie carbonatite complex, British Columbia. In Geological Fieldwork 2013, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2014-1; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 2014; pp. 169–182. [Google Scholar]
- Stallard, M.O.; Apitz, S.E.; Dooley, C.A. X-ray fluorescence spectrometry for field analysis of metals in marine sediments. Mar. Pollut. Bull. 1995, 31, 297–305. [Google Scholar] [CrossRef]
- Kirtay, V.J.; Kellum, J.H.; Apitz, S.E. Field-portable X-ray Fluorescence Spectrometry for metals in marine sediments. Water Sci. Technol. 1998, 37, 141–148. [Google Scholar] [CrossRef]
- Laperche, V.; Billon, G.; Lemière, B.; Lesven, L.; Superville, P.J.; Margus, M.; Alary, C.; Bour, O.; Lefebvre, M.; Auger, P.; et al. Environmental Monitoring at a Sediment Source Site to Qualify for Reuse. In Proceedings of the 11th International SedNet Conference, Dubrovnik, Croatia, 3–5 April 2019; Available online: https://sednet.org/wp-content/uploads/2019/05/C.-Alary-CE.pdf (accessed on 2 November 2021).
- Henry, M.; Brequel, H.; Meerseman, J.; Lemière, B. Mineral Processing Techniques Dedicated to the Recycling of River Sediments to Produce Raw Materials for Construction Sector. In Proceedings of the 11th International SedNet Conference, Dubrovnik, Croatia, 3–5 April 2019; Available online: https://sednet.org/wp-content/uploads/2019/05/M.-Henry-ppt.pdf (accessed on 2 November 2021).
- Robbat, A., Jr. Dynamic Workplans and Field Analytics: The Keys to Cost-Effective Site Investigations, Tufts University, Case Study. 1997. Available online: https://clu-in.org/download/misc/hanscom_transcript.pdf (accessed on 2 November 2021).
- Crumbling, D.M. Using the Triad Approach to Improve the Cost-Effectiveness of Hazardous Waste Site Clean-Ups; US-EPA report 542-R-01-016; EPA: Washington, DC, USA, 2001; Available online: www.clu-in.org (accessed on 2 November 2021).
- Álvarez-Vázquez, M.A.; Hošek, M.; Elznicová, J.; Pacina, J.; Hron, K.; Fačevicová, K.; Talská, R.; Bábek, O.; Grygar, T.M. Separation of geochemical signals in fluvial sediments: New approaches to grain-size control and anthropogenic contamination. Appl. Geochem. 2020, 123, 104791. [Google Scholar] [CrossRef]
- US-EPA. Method 6200. Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. 2007. Available online: www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf (accessed on 2 December 2014).
- Padilla, J.T.; Hormes, J.; Selima, H.M. Use of portable XRF: Effect of thickness and antecedent moisture of soils on measured concentration of trace elements. Geoderma 2019, 337, 143–149. [Google Scholar] [CrossRef]
- Lemiere, B.; Laperche, V.; Haouche, L.; Auger, P. Portable XRF and wet materials: Application to dredged contaminated sediments from waterways. Geochem. Explor. Environ. Anal. 2014, 14, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Laperche, V.; Lemière, B. Possible Pitfalls in the Analysis of Minerals and Loose Materials by Portable XRF, and How to Overcome Them. Minerals 2021, 11, 33. [Google Scholar] [CrossRef]
- Pinto, A.H. Portable X-ray Fluorescence Spectrometry: Principles and Applications for Analysis of Mineralogical and Environmental Materials. Asp. Min. Miner. Sci. 2018, 1, 42–47. [Google Scholar]
- Lemiere, B. A review of applications of pXRF (field portable X-ray fluorescence) for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Harmon, R.S.; Russo, R.E.; Hark, R.R. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochim. Acta Part B 2013, 87, 11–26. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Lemière, B.; Harmon, R.S. XRF and LIBS for Field Geology. In Portable Spectroscopy and Spectrometry, Applications; Wiley: Chichester, UK, 2021; Volume 2, pp. 455–498, in press. [Google Scholar]
- Uvarova, Y.A.; Gazley, M.F.; Cleverley, J.S.; Baensch, A.; Lawie, D.; leGras, M. Representative, high-spatial resolution geochemistry from diamond drill fines (powders): An example from Brukunga, Adelaide, South Australia. J. Geochem. Explor. 2016, 170, 1–9. [Google Scholar] [CrossRef]
- Woods, J. Application of Fourier transform infra-red spectroscopy (FTIR) for mineral quantification. Explore 2019, 182, 1–6. [Google Scholar]
- Grandjean, G.; Briottet, X.; Adeline, K.; Bourguignon, A.; Hohmann, A. Clay Minerals Mapping from Imaging Spectroscopy. In Earth Observation and Geospatial Analyses; Books on Demand: Nordstedt, Germany, 2019; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical reviews of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The performance of visible near- and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Ludwig, B.; Murugan, R.; Parama, V.R.R.; Vohland, M. Use of different chemometric approaches for an estimation of contents of soil properties in an Indian arable field with near infrared spectroscopy. J. Plant Nutr. Soil Sci. 2018, 181, 704–713. [Google Scholar] [CrossRef]
- Davies, S.J.; Elliott, T. Spectral gamma ray characterization of high resolution sequence stratigraphy: Examples from Upper Carboniferous fluvio-deltaic systems, County Clare, Ireland. Geol. Soc. Lond. Spec. Publ. 1996, 104, 25–35. [Google Scholar] [CrossRef]
- El-Reefy, H.I.; Sharshar, T.; Elnimr, T.; Badran, H.M. Distribution of gamma-ray emitting radionuclides in the marine environment of the Burullus Lake: II. Bottom sediments. Environ. Monit. Asses 2010, 169, 273–284. [Google Scholar] [CrossRef]
- Zhukouski, A.; Anshakou, V.; Kutsen, S. In situ measurement of radioactive contamination of bottom sediments. Appl. Radiat. Isot. 2018, 139, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, T.; Tiihonen, T.; Riikonen, J.; Lehto, V.P. On-Site Analysis of Metal Concentrations of Natural Waters. In Proceedings of the 13. Geokemian Päivät 2018—13th Finnish Geochemical Meeting, Oulun yliopisto, Linnanmaa, Oulun, Finland, 28–30 November 2018; Available online: https://vuorimiesyhdistys.fi/wp-content/uploads/2018/12/Abstraktikokoelma_B99_-Geokemian-p%C3%A4iv%C3%A4t.pdf (accessed on 2 November 2021).
- SURICATES Project Website, to Be Updated in 2022. Available online: https://www.nweurope.eu/projects/project-search/suricates-sediment-uses-as-resources-in-circular-and-territorial-economies/ (accessed on 2 November 2021).
- Huisman, D.J. Geochemical Characterization of Subsurface Sediments in the Netherlands. Ph.D. Thesis, University of Wageningen, Wageningen, The Netherlands, 1998. Available online: https://edepot.wur.nl/210645 (accessed on 2 November 2021).
- Esser, V.; Buchty-Lemke, M.; Schulte, P.; Podzun, L.S.; Lehmkuhl, F. Signatures of recent pollution profiles in comparable central European rivers–Examples from the international River Basin District Meuse. Catena 2020, 193, 104646. [Google Scholar] [CrossRef]
- Laperche, V.; Lemière, B.; Wijdeveld, A.; Groot, H.; Wensveen, M.; Auger, P.; Joublin, F.; Mossman, J.R. Demonstrate and Evaluate Innovative Sediment Reuse Solutions for Flood and Erosion Protection-XRF Quick Scan of Sediment Composition. In Proceedings of the 12th international SedNet Conference 2021, online, 28 June–2 July 2021; Available online: https://sednet.org/wp-content/uploads/2021/07/ConPol-3.28.-V.-Laperche.pdf (accessed on 2 November 2021).
- Specification for Topsoil-BS3882:2015; British Standards Institution: London, UK, 2015.
- Lemiere, B.; Laperche, V.; Lord, R.; Hamilton, A.; Auger, P.; Joublin, F.; Jakstys, I. Baseline Monitoring at a Pilot Site for Sediment Reuse. Bowling, Scotland. In Proceedings of the 11th International SedNet Conference, Dubrovnik, Croatia, 3–5 April 2019; Available online: https://sednet.org/wp-content/uploads/2019/05/B.-Lemiere-ppt.pdf; https://sednet.org/wp-content/uploads/2019/05/B.-Lemiere-CE.pdf (accessed on 2 November 2021).
- VALSE Project Website, to Be Updated in 2022. Available online: https://valse.info/ (accessed on 2 November 2021). (In Dutch and French).
- US-DOE. Adaptive Sampling and Analysis Programs (ASAPs). Report DOE/EM-0592. 2001. Available online: https://clu-in.org/download/char/ASAPs_ITSR_DOE-EM-0592.pdf (accessed on 2 November 2021).
- Byrne, P.; Hudson-Edwards, K.A.; Bird, G.; Macklin, M.G.; Brewer, P.A.; Williams, R.D.; Jamieson, H.E. Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl. Geochem. 2018, 91, 64–74. [Google Scholar] [CrossRef]
- Balaram, V. Current and emerging analytical techniques for geochemical and geochronological studies. Geol. J. 2020, 56, 2300–2359. [Google Scholar] [CrossRef]
- Arrêté du 30/06/20 modifiant l’arrêté du 9 août 2006 relatif aux niveaux à prendre en compte lors d’une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d’eau ou canaux relevant respectivement des rubriques 2.2.3.0, 3.2.1.0 et 4.1.3.0 de la nomenclature annexée à l’article R. 214-1 du code de l’environnement. J. Off. République Français 2020.
Element | LD | Element | LD |
---|---|---|---|
SiO2 | 1% | Pb | 5 ppm |
Fe2O3 | 500 ppm | Zn | 5 ppm |
TiO2 | 100 ppm | Cu | 10 ppm |
K2O | 500 ppm | Ni | 20 ppm |
CaO | 500 ppm | Cr | 20 ppm |
MnO | 100 ppm | Cd | 5 ppm |
S | 1000 ppm | As | 5 ppm |
Hg | 20 ppm |
Statistic | Pb | As | Zn | Cu |
---|---|---|---|---|
Minimum | 12 | 4 | 22 | 13 |
Maximum | 195 | 66 | 643 | 128 |
Median | 19 | 7 | 66 | 23 |
Mean | 33 | 10 | 112 | 30 |
SD 1 | 41 | 14 | 138 | 26 |
Inorganic Element or Substance | Minimum mg/kg | Maximum mg/kg | Guide Value mg/kg |
---|---|---|---|
As | 6.1 | 22.8 | 50 |
Cd | 0.6 | 3.9 | 6 |
Co | 42 | 90 | 200 |
Cu | 39 | 87 | 150 |
Cr | 6.6 | 14.7 | 25 |
Hg | 0.19 | 0.52 | 1.5 |
Ni | 18 | 33 | 75 |
Pb | 49 | 149 | 250 |
Zn | 261 | 658 | 1200 |
F− | 46 | 121 | 250 |
CN− | <4 | 5 | |
Organic Substance or Group | Minimum mg/kg | Maximum mg/kg | Guide Value mg/kg |
Aliphatic hydrocarbons C10–C40 | 6.08 | 24.02 | 1500 |
Halogenated solvents, most abundant substance | <0.95 | 1 | |
PAH, sum of 16’ Borneff compounds | 2.77 | 10.16 | 9 |
Total organochlorine pesticides | <0.06 | 0.25 | |
PCB * | 0.075 | 0.333 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemière, B.; Laperche, V.; Wijdeveld, A.; Wensveen, M.; Lord, R.; Hamilton, A.; Haouche, L.; Henry, M.; Harrington, J.; Batel, B.; et al. On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management. Land 2022, 11, 274. https://doi.org/10.3390/land11020274
Lemière B, Laperche V, Wijdeveld A, Wensveen M, Lord R, Hamilton A, Haouche L, Henry M, Harrington J, Batel B, et al. On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management. Land. 2022; 11(2):274. https://doi.org/10.3390/land11020274
Chicago/Turabian StyleLemière, Bruno, Valérie Laperche, Arjan Wijdeveld, Marco Wensveen, Richard Lord, Alasdair Hamilton, Laurence Haouche, Mathieu Henry, Joe Harrington, Branislav Batel, and et al. 2022. "On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management" Land 11, no. 2: 274. https://doi.org/10.3390/land11020274
APA StyleLemière, B., Laperche, V., Wijdeveld, A., Wensveen, M., Lord, R., Hamilton, A., Haouche, L., Henry, M., Harrington, J., Batel, B., & Lehette, P. (2022). On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management. Land, 11(2), 274. https://doi.org/10.3390/land11020274