Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China
Abstract
:1. Introduction
2. Literature Review
2.1. LUMF Framework and Quantification
2.2. LUF and Land Use Zoning
2.3. Bundle
3. Materials and Methods
3.1. Study Area
3.2. Quantification of LUMF
3.3. Analysis
3.3.1. Pattern and Spatiotemporal Changes in LUFs
3.3.2. LUF Bundles
3.3.3. Identification and Analysis of LUF Interactions
4. Results
4.1. Spatial Variations and Dynamic of Individual LUFs
4.2. Changes in Patterns of LUF Bundles across Landscapes over Time
4.3. Trade-Offs and Synergies among Bundled LUFs
5. Discussion
5.1. LUF Characteristics of Jiangsu Coastal Area
5.2. LUF Relationships
5.3. Land Use Multifunctionality: A Pathway to Sustainable Land Use
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Klein Goldewijk, K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, P.H.; Van De Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L. Spatial identifcation of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Ind. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Fan, Y.; Jin, X.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.; Xiang, X.; Zhou, Y. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Cai, F.; van Vliet, J.; Verburg, P.H.; Pu, L. Land use change and farmer behavior in reclaimed land in the middle Jiangsu coast, China. Ocean Coast. Manag. 2017, 137, 107–117. [Google Scholar] [CrossRef]
- Liu, R.; Pu, L.; Zhu, M.; Huang, S.; Jiang, Y. Coastal resource-environmental carrying capacity assessment: A comprehensive and trade-off analysis of the case study in Jiangsu coastal zone, eastern China. Ocean Coast. Manag. 2020, 186, 105092. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. The patterns and driving mechanisms of reclaimed land use in China’s coastal areas in recent 30 years. Sci. Sin. Terrae. 2020, 50, 761–774. [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Mossello, M.T. Land use functions—A multifunctionality approach to assess the impact of land use changes on land use sustainability. In Sustainability Impact Assessment of Land Use Changes; Helming, K., Pérez-Soba, M., Tabbush, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 375–404. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Zhang, C.; Deng, X.; Helming, K. Assessing the Multifunctionalities of Land use in China. J. Resour. Ecol. 2010, 1, 311–318. [Google Scholar] [CrossRef]
- Cao, S.; Li, F.; Wei, Y.; Xie, G.; Yang, L.; Zhen, L. Land Use Functions: Conceptual Framework and Application for China. Resour. Sci. 2009, 31, 544–551. Available online: https://www.resci.cn/CN/Y2009/V31/I4/544 (accessed on 15 January 2021).
- Liu, J.; Liu, Y.; Li, Y. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Ecol. Sin. 2017, 7, 156–170. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, E.; ZHu, H. An ecological-living-industrial land classification system and its spatial distribution in China. Resour. Sci. 2015, 37, 1332–1338. [Google Scholar]
- Fan, Y.; Jin, X.; Xiang, X.; Liu, J.; Yang, X.; Zhou, Y. Land use functions change and its spatial pattern in Jiangsu province from 2000 to 2015. Geogr. Res.-Aust. 2019, 38, 193–208. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Queiroz, C.; Meacham, M.; Richter, K.; Norström, A.V.; Andersson, E.; Norberg, J.; Peterson, G. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape. AMBIO 2015, 44, 89–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Zhou, S.; Li, W.; Lu, Z.; Cheng, R. An ecosystem-based analysis of urban sustainability by integrating ecosystem service bundles and socio-economic-environmental conditions in China. Ecol. Ind. 2020, 117, 106691. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Chang, F. A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study. Sustainability 2019, 11, 2325. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Wang, F.; Wall, G. Mudflat development in Jiangsu Province, China: Practices and experiences. Ocean Coast. Manag. 2010, 53, 691–699. [Google Scholar] [CrossRef]
- Bao, J.; Gao, S.; Ge, J. Dynamic land use and its policy in response to environmental and social-economic changes in China: A case study of the Jiangsu coast (1750–2015). Land Use Pol. 2019, 82, 169–180. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Gao, J.; Yu, Z.; Wang, L.; Vejre, H. Suitability of regional development based on ecosystem service benefits and losses: A case study of the Yangtze River Delta urban agglomeration, China. Ecol. Ind. 2019, 107, 105579. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahuhta, J.; Ala-Hulkko, T.; Tukiainen, H.; Purola, L.; Akujärvi, A.; Lampinen, R.; Hjort, J. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Ind. 2018, 91, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Bai, X.; Wang, S.; Qin, L.; Tian, Y.; Luo, G.; Li, Y. Ecosystem services evaluation of typical rocky desertification areas based on InVEST model—A case study at Qinglong Country, Guizhou Provice. J. Earth Environ. 2014, 5, 328–338. [Google Scholar] [CrossRef]
- Güneralp, B.; McDonald, R.I.; Fragkias, M.; Goodness, J.; Marcotullio, P.J.; Seto, K.C. Urbanization Forecasts, Effects on Land Use, Biodiversity, and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 437–452. [Google Scholar] [CrossRef] [Green Version]
- Güneralp, B.; Seto, K.C. Sub-regional Assessment of China: Urbanization in Biodiversity Hotspots. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 57–63. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Liu, M.; An, S.; Chen, J.M.; Yan, P. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. J. Environ. Manag. 2007, 85, 597–606. [Google Scholar] [CrossRef]
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Bertness, M.D.; Bruno, J.F.; Li, B.; Chen, G.; Coverdale, T.C.; Altieri, A.H.; Bai, J.; Sun, T.; Pennings, S.C.; et al. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4, 5995. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Zhu, M.; Meadows, M.; Sun, L.; Wu, T.; Bu, X.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total Environ. 2021, 768, 144996. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Tapia, J.; Gallardo, C.; Núñez, P.; Varas-Belemmi, K. Loss of coastal ecosystem spatial connectivity and services by urbanization: Natural-to-urban integration for bay management. J. Environ. Manag. 2020, 276, 111297. [Google Scholar] [CrossRef] [PubMed]
- Schößer, B.; Helming, K.; Wiggering, H. Assessing land use change impacts—A comparison of the SENSOR land use function approach with other frameworks. J. Land Use Sci. 2010, 5, 159–178. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Gong, J.; Wang, L.; Hu, Y. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Pol. 2019, 81, 256–266. [Google Scholar] [CrossRef]
Dimensions | Functions | Indicators | Unit | Quantification Method |
---|---|---|---|---|
Society | Provision of work | agricultural employee | Person | The agricultural employees in each county were allocated to cropland grids, and their spatial distribution was corrected using NPP data. |
Recreation | Recreation Potential | Index (Dimensionless) | The comprehensive influence score of the attractions for each grid was quantified according to the distance to the attractions and the benefits of the attractions. | |
Culture | landscape aesthetics values | Comparable price | Evaluation method of the value equivalent factor in a unit area. | |
Economy | Residential carrier | Residential population | Person | The total population of each county was allocated to the residential units according to nighttime light intensity variation. |
Economic support | Nonagricultural economic output | Comparable price | The nonagricultural economic output values of each county were allocated to the build up land units according to nighttime light intensity variation. | |
Food production | Food calorie output | kcal | The grain yield of each grid was multiplied by the corresponding food nutrient composition coefficient. | |
Transport | Regional accessibility | min | The cumulative time cost of arriving at the nearest regional centre. | |
Environment | Water regulation | Water Yield | mm | Water Yield model in Integrated Valuation of Ecosystem Services and Tradeoffs software (InVEST). |
Biodiversity conservation | Habitat quality | Index (Dimensionless) | Habitat Quality model in InVEST. | |
Climate regulation | Carbon sequestration | gc/m2/a | ||
Soil conservation | Sediment retention | kg/km2 | Sediment Delivery Ratio model in InVEST. |
Bundles | Area Proportion/% | Net Change | ||
---|---|---|---|---|
2000 | 2010 | 2018 | ||
LUFB1 | 35.13 | 35.57 | 35.16 | 0.03 |
LUFB2 | 30.16 | 31.89 | 32.50 | 2.34 |
LUFB3 | 23.37 | 19.88 | 16.83 | −6.55 |
LUFB4 | 11.33 | 12.67 | 15.52 | 4.18 |
Year | 2000 | 2010 | 2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LUFB | LUFB1 | LUFB2 | LUFB3 | LUFB4 | LUFB1 | LUFB2 | LUFB3 | LUFB4 | LUFB1 | LUFB2 | LUFB3 | LUFB4 |
ocean | 3.86 | 0.00 | 94.69 | 1.45 | 7.02 | 0.00 | 85.96 | 7.02 | 0.00 | 0.00 | 0.00 | 0.00 |
cropland | 43.53 | 33.58 | 12.85 | 10.04 | 45.69 | 35.12 | 9.82 | 9.37 | 45.78 | 36.71 | 6.39 | 11.12 |
forestland | 5.17 | 5.78 | 72.95 | 16.11 | 6.69 | 18.79 | 61.78 | 12.74 | 5.99 | 16.90 | 59.86 | 17.25 |
grassland | 5.06 | 3.77 | 90.47 | 0.70 | 2.71 | 5.27 | 89.61 | 2.41 | 5.61 | 7.74 | 82.85 | 3.79 |
lakes and rivers | 18.09 | 12.06 | 63.23 | 6.61 | 11.65 | 15.46 | 62.25 | 10.64 | 15.00 | 16.35 | 54.04 | 14.62 |
artificial ponds for fishing and other domestic purposes | 11.56 | 11.88 | 70.47 | 6.10 | 8.65 | 10.66 | 76.42 | 4.28 | 5.96 | 5.91 | 83.64 | 4.49 |
muddy tidal flats and wetland | 3.54 | 2.06 | 92.34 | 2.06 | 2.34 | 3.75 | 92.12 | 1.80 | 3.95 | 4.83 | 87.60 | 3.62 |
urban | 8.84 | 12.79 | 2.33 | 76.05 | 4.34 | 11.64 | 1.39 | 82.62 | 2.46 | 7.04 | 0.84 | 89.66 |
rural settlements | 13.33 | 53.67 | 7.58 | 25.42 | 12.92 | 62.47 | 4.16 | 20.46 | 12.54 | 56.93 | 4.85 | 25.67 |
construction land mainly for mining and transportation | 0.51 | 2.03 | 84.75 | 12.71 | 2.13 | 5.67 | 68.26 | 23.94 | 7.37 | 5.22 | 54.69 | 32.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, Y.; Liu, R.; Jiang, Y.; Qie, L.; Pu, L. Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land 2022, 11, 286. https://doi.org/10.3390/land11020286
Huang S, Wang Y, Liu R, Jiang Y, Qie L, Pu L. Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land. 2022; 11(2):286. https://doi.org/10.3390/land11020286
Chicago/Turabian StyleHuang, Sihua, Yuan Wang, Rongjuan Liu, Yu Jiang, Lu Qie, and Lijie Pu. 2022. "Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China" Land 11, no. 2: 286. https://doi.org/10.3390/land11020286
APA StyleHuang, S., Wang, Y., Liu, R., Jiang, Y., Qie, L., & Pu, L. (2022). Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land, 11(2), 286. https://doi.org/10.3390/land11020286