Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sampling and Samples Preparation
2.3. Chemical Analyses
2.4. Magnetic Measurements
2.5. Pollution Assessment
2.6. Statistical Treatment
3. Results
3.1. PTE Distribution
3.2. Metals Contamination and Ecological Risk
3.3. Magnetic Properties
3.4. Statistical Analyses
4. Conclusions and Recommendations
- Treat wastewater in order to limit toxic heavy-metal contamination from this source.
- Carefully manage fertilizer and pesticide use and educate farmers about the side-effects of fertilizers and pesticides.
- Use the applicable method for remediation and cleaning soil that suffers from contamination.
- Factory sites should have environment-friendly plants through the effective use of resources and implementation of environmental management to conserve biodiversity through the appropriate management of chemicals and cooperation with local communities.
- Monitor the contaminated soil periodically.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turhan, S.; Garad, A.M.K.; Hançerlioğulları, A.; Kurnaz, A.; Gören, E.; Duran, C.; Karataşlı, M.; Altıkulaç, A.; Savaci, G.; Aydın, A. Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey. Environ. Earth Sci. 2020, 79, 134. [Google Scholar] [CrossRef]
- Tan, L.; Yang, B.; Xue, Z.; Wang, Z. Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-NorthWater Diversion Project, China. Land 2021, 10, 934. [Google Scholar] [CrossRef]
- Baghdady, A.; Awad, S.; Gad, A. Assessment of metal contamination and natural radiation hazards in different soil types near iron ore mines, Bahariya Oasis, Egypt. Arab. J. Geosci. 2018, 11, 506. [Google Scholar] [CrossRef]
- Yakovlev, E.U.; Zykova, E.N.; Zykov, S.B.; Malkov, A.V.; Bazhenov, A.V. Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district, NW Russia. Environ. Earth Sci. 2020, 79, 218. [Google Scholar] [CrossRef]
- Ogundele, L.T.; Oluwajana, O.A.; Ogunyele, A.C.; Inuyomi, S.O. Heavy metals, radionuclides activity and mineralogy of soil samples from an artisanal gold mining site in Ile-Ife, Nigeria: Implications on human and environmental health. Environ. Earth Sci. 2021, 80, 202. [Google Scholar] [CrossRef]
- Osman, R.; Melegy, A.; Dawood, Y.; Gad, A. Distribution of some potentially toxic heavy metals in the soil of Shoubra El Kheima, Egypt. Egypt. J. Chem. 2021, 64, 1965–1980. [Google Scholar] [CrossRef]
- Fazekašová, D.; Petrovič, F.; Fazekaš, J.; Štofejová, L.; Baláž, I.; Tulis, F.; Tóth, T. Soil Contamination in the Problem Areas of Agrarian Slovakia. Land 2021, 10, 1248. [Google Scholar] [CrossRef]
- Xia, F.; Zhu, Y.; Hu, B.; Chen, X.; Li, H.; Shi, K.; Xu, L. Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. Land 2021, 10, 1126. [Google Scholar] [CrossRef]
- Jain, C.K.; Vaid, U.; Sharma, S.K.; Singh, S. Assessment of potentially toxic elements’ contamination in surface soils of Kulsi River Basin in NorthEast India. SN Appl. Sci. 2020, 1, 673. [Google Scholar] [CrossRef] [Green Version]
- Ilechukwu, I.; Osuji, L.C.; Okoli, C.P.; Onyema, M.O.; Ndukwe, G.I. Assessment of heavy metal pollution in soils and health risk consequences of human exposure within the vicinity of hot mix asphalt plants in Rivers State, Nigeria. Environ. Monit. Assess. 2021, 193, 461. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Shakeri, A.; Rodríguez-Seijo, A. Potentially toxic element content in arid agricultural soils in south Iran. Agronomy 2020, 10, 564. [Google Scholar] [CrossRef]
- Yassine, A.; Taoufik, E.; Rachid, H.; Driss, D.; Mohamed, N.; Abdelmajid, H.; Hanane, H. Assessing the contamination of trace toxic elements in the soils of sugar beet field (Beni-Mellal, Morocco). Arab. J. Geosci. 2021, 14, 822. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Sardar, S.W.; Ur Rehman, S.A.; Nawab, J.; Khan, S.; Ali, A.; Ur Rahman, Z.; Baig, S.A.; Khan, M. Quantification of potentially toxic elements in degraded mining soils and medicinal plants: A case study of Indus Kohistan region Northern Pakistan. Environ. Earth Sci. 2021, 80, 641. [Google Scholar] [CrossRef]
- Alexakis, D.E. Multielement Contamination of Land in the Margin of Highways. Land 2021, 10, 230. [Google Scholar] [CrossRef]
- Golui, D.; Datta, S.P.; Dwivedi, B.S.; Meena, M.C.; Ray, P.; Trivedi, V.K. A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environ. Earth Sci. 2021, 80, 667. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O. Heavy metal mixture exposure and effects in developing nations: An update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Gad, A.; Abd El Bakey, S.M.; Sakr, S. Concentrations of heavy metals and associated human health risk in unrefined salts of inland hypersaline lakes, Egypt. Int. J. Environ. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Sebastian, A.; Nangia, A.; Prasad, M.N.V. Advances in agrochemical remediation using nanoparticles. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann, Elsevier: Chennai, India, 2020; pp. 465–485. [Google Scholar] [CrossRef]
- Vallero, D.A. Hazardous Wastes. In Waste, 2nd ed.; Letcher, T.M., Vallero, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 585–630. [Google Scholar] [CrossRef]
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a soil remediation strategy using biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; 142p. [Google Scholar]
- Dong, S.; Pan, Y.; Guo, H.; Gao, B.; Li, M. Identifying Influencing Factors of Agricultural Soil Heavy Metals Using a Geographical Detector: A Case Study in Shunyi District, China. Land 2021, 10, 1010. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, P.; Qiao, B.; Wu, K. The Spatial Distribution and Prediction of Soil Heavy Metals Based on Measured Samples and Multi-Spectral Images in Tai Lake of China. Land 2021, 10, 1227. [Google Scholar] [CrossRef]
- Boar, R.R.; Harper, D.M. Magnetic susceptibilities of lake sediment and soils on the shoreline of Lake Naivasha, Kenya. In Lake Naivasha, Kenya; Harper, D.M., Boar, R.R., Everard, M., Hickley, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 81–88. [Google Scholar] [CrossRef]
- Petrovský, E.; Hulka, Z.; Kapicka, A. A new tool for in situ measurements of the vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol. 2004, 25, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Attoucheik, L.; Jordanova, N.; Bayou, B.; Lagroix, F.; Jordanova, D.; Maouche, S.; Henry, B.; Boutaleb, A. Soil metal pollution from former Zn–Pb mining assessed by geochemical and magnetic investigations: Case study of the Bou Caid area (Tissemsilt, Algeria). Environ. Earth Sci. 2017, 76, 298. [Google Scholar] [CrossRef]
- Li, M.; Zhu, S.; Ouyang, T.; Tang, J.; Tang, Z. Magnetic properties of the surface sediments in the Yellow River Estuary and Laizhou Bay, Bohai Sea, China: Implications for monitoring heavy metals. J. Hazard. Mater. 2021, 410, 124579. [Google Scholar] [CrossRef] [PubMed]
- Menshov, O.; Spassov, S.; Camps, P.; Vyzhva, S.; Pereira, P.; Pastushenko, T.; Demidov, V. Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environ. Earth Sci. 2020, 79, 182. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Zhao, Y.; Zhang, M.; Jia, J. Spatial and temporal distribution of pollution based on magnetic analysis of soil and atmospheric Dustfall in Baiyin City, Northwestern China. Int. J. Environ. Res. Public Health 2021, 18, 1681. [Google Scholar] [CrossRef]
- Kletetschka, G.; Žila, V.; Wasilewski, P.J. Magnetic anomalies on the tree trunks. Studia Geophys. Geod. 2003, 47, 371–379. [Google Scholar] [CrossRef]
- Hu, S.Y.; Duan, X.M.; Shen, J.M.; Blaha, U.; Roesler, W.; Yan, H.T.; Appel, E.; Hoffmann, V. Magnetic response to atmospheric heavy metal pollution recorded by dust-loaded leaves in Shougang industrial area, western Beijing, China. Chin. Sci. Bull. 2008, 53, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Salo, H.; Bućko, M.S.; Vaahtovuo, E.; Limo, J.; Mäkinen, J.; Pesonen, L.J. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem. Explor. 2012, 115, 69–81. [Google Scholar] [CrossRef]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef]
- Rea-Downing, G.; Quirk, B.J.; Wagner, C.L.; Lippert, P.C. Evergreen needle magnetization as a proxy for particulate matter pollution in urban environments. GeoHealth 2020, 4, e2020GH000286. [Google Scholar] [CrossRef]
- Strzyszcz, Z.; Magiera, T. Magnetic susceptibility and heavy metals contamination in soils of Southern Poland. Phys. Chem. Earth 1998, 23, 1127–1131. [Google Scholar] [CrossRef]
- Spiteri, C.; Kalinski, V.; Rösler, W.; Hoffmann, V.; Appel, E.; MAGPROX team. Magnetic screening of pollution hotspots in the Lausitz Area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal concentration in soil. Environ. Geol. 2000, 49, 1. [Google Scholar] [CrossRef]
- Osman, R.; Dawood, Y.H.; Melegy, A.; El-Bady, M.S.; Saleh, A.; Gad, A. Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere 2022, 13, 98. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Fitch, A.C.; Zhang, Z.; Ali, R.R. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, M.M.; Heikal, Y.M.; Bonanomi, G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt. Chemosphere 2019, 225, 678–687. [Google Scholar] [CrossRef]
- Eltaher, G.T.; Ahmed, D.A.; El-Beheiry, M.; Sharaf El-Din, A. Biomass estimation and heavy metal accumulation by Pluchea dioscoridis (L.) DC. in the Middle Nile Delta, (Egypt): Perspectives for phytoremediation. S. Afr. J. Bot. 2019, 127, 153–166. [Google Scholar] [CrossRef]
- El-Nagar, D.A.; Abdel-Halim, K.Y. Remediation of heavy metals in contaminated soil by using nano-bentonite, nano-hydroxyapatite, and nano-composite. Land Degrad. Dev. 2021, 32, 4562–4573. [Google Scholar] [CrossRef]
- Abu Khatita, A.M.; Koch, R.; Bamousa, A.O. Sources identification and contamination assessment of heavy metals in soil of Middle Nile Delta, Egypt. J. Taibah Univ. Sci. 2020, 14, 750–761. [Google Scholar] [CrossRef]
- Guda, A.M.; El-Hemaly, I.A.; Abdel Aal, E.M.; Odah, H.; Appel, E.; El Kammar, A.M.; Abu Khatita, A.M.; Abu Salem, H.S.; Awad, A. Suitability of magnetic proxies to reflect complex anthropogenic spatial and historical soil heavy metal pollution in the southeast Nile delta. Catena 2020, 191, 104552. [Google Scholar] [CrossRef]
- Shaddad, S.M.; Buttafuoco, G.; Castrignanò, A. Assessment and mapping of soil salinization risk in an Egyptian field using a probabilistic approach. Agronomy 2020, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- FAO, Food and Agriculture Organization. Fertilizer Use by Crop in Egypt; FAO: Rome, Italy, 2005; 50p. [Google Scholar]
- Elbana, T.; Gaber, H.M.; Kishk, F.M. Soil Chemical Pollution and Sustainable Agriculture. In Soils of Egypt; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.A., Eds.; World Soils Book Series; Springer: Cham, Switzerland, 2019; pp. 187–200. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Bessa, A.Z.E.; Elsayed, A.; El-Esawi, M.A.; AL-Harbi, M.S.; Samra, B.N.; Kotb, W.K. Assessment of the heavy metals pollution and ecological risk in sediments of Mediterranean Sea drain estuaries in Egypt and phytoremediation potential of two emergent plants. Sustainability 2021, 13, 12244. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Elbehiry, F. Geology. In The Soils of Egypt; World Soils Book Series; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 93–109. [Google Scholar] [CrossRef]
- Gad, A.; Saleh, A.; Khalifa, M. Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arab. J. Geosci. 2019, 12, 188. [Google Scholar] [CrossRef]
- Khalifa, M.; Gad, A. Assessment of heavy metals contamination in agricultural soil of southwestern Nile Delta, Egypt. Soil. Sediment. Contam. 2018, 27, 619–642. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yi, L.; Lu, A.; Xie, B.; Peng, H. Evaluating Metal(loid)s Contamination in Soil of a Typical In-Dustry Smelting Site in South Central China: Levels, Possible Sources and Human Health Risk Analysis. Sustainability 2021, 13, 11294. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Duah, A.A.; Karikari, A.Y.; Agyekum, W.A.; Manu, E.; Tagoe, R. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment. Chemosphere 2021, 282, 131007. [Google Scholar] [CrossRef]
- ISO 14869-1. Soil Quality—Dissolution for the Determination of Total Element Content—Part 1: Dissolution with Hydrofluoric and Perchloric Acids; ISO: Geneva, Switzerland, 2001; pp. 1–5. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Loska, K.; Wiechula, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Förstner, U. Contaminated Sediments; Lecture Notes in Earth Science, 21; Springer: Berlin, Germany, 1990. [Google Scholar]
- Guan, Y.; Shao, C.; Ju, M. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int. J. Environ. Res. Public Health 2014, 11, 7286–7303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.C.; Wilson, D.J.; Harris, C.R.; Jeffrey, D.W. Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Arab, L.H.; Boutaleb, A.; Berdous, D. Environmental assessment of heavy metal pollution in the polymetallic district of Kef Oum Teboul (El Kala, Northeast Algeria). Environ. Earth Sci. 2021, 80, 277. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Gao, Z.; Zhang, H.; Zhu, Z.; Jiang, B.; Liu, J.; Dong, H. Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling. Ecotoxicol. Environ. Saf. 2021, 227, 112926. [Google Scholar] [CrossRef]
- Sungur, A.; Soylak, M.; Yilmaz, S.; Ozcan, H. Heavy metal mobility and potential availability in animal manure: Using a sequential extraction procedure. J. Mater. Cycles Waste Manag. 2016, 18, 563–572. [Google Scholar] [CrossRef]
- Kong, F.; Chen, Y.; Huang, L.; Yang, Z. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicol. Environ. Saf. 2021, 211, 111922. [Google Scholar] [CrossRef]
- Elbana, T.A.; Ramadan, M.A.; Gaber, H.M.; Bahnassy, M.H.; Kishk, F.M.; Selim, H.M. Heavy metals accumulation and spatial distribution in long term wastewater irrigated soils. J. Environ. Chem. Eng. 2013, 1, 925–933. [Google Scholar] [CrossRef]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Soil Pollution—An Emerging Threat to Agriculture; Springer Nature: Singapore, 2017. [Google Scholar]
- Thompson, R.; Oldfield, F. Environmental Magnetism; Allen and Unwin: London, UK, 1986. [Google Scholar]
- Borda, M.J.; Sparks, D.L. Mobility of trace elements in soil environments. In Biophysicochemical Processes of Metals and Metalloids in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 97–168. [Google Scholar]
- Sparks, D.L.; Ginder-Vogel, M. The role of synchrotron radiation in elucidating the biogeochemistry of metal(loids) and nutrients at critical zone interfaces. In Handbook of Soil Sciences; Resource Management and Environmental Impact; Huang, P.M., Li, Y., Sumner, M.E., Eds.; HCRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012; pp. 1–17. [Google Scholar]
- Sparks, D.L. Advances in the use of synchrotron radiation to elucidate environmental interfacial reaction processes and mechanisms in the earth’ critical zone. In Molecular Environmental Soil Science; Xu, J., Sparks, D.L., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 93–114. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Gauthier, G.; Pelchat, J.C.; Pelchat, P.; Vaive, J.E. Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. J. Anal. At. Spectrom. 1996, 11, 787. [Google Scholar] [CrossRef]
- Palumbo, B.; Bellanca, A.; Neri, R.; Roe, M.J. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy. Chem. Geol. 2001, 173, 257–269. [Google Scholar] [CrossRef]
- Tan, W.; Liu, F.; Feng, X.H.; Huang, Q.; Li, X. Adsorption and redox reactions of heavy metals on Fe–Mn nodules from Chinese soils. J. Colloid Interface Sci. 2005, 284, 600–605. [Google Scholar] [CrossRef]
- Gasparatos, D. Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environ. Chem. Lett. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- Sipos, P.; Choi, C.; Németh, T.; Szalai, Z.; Póka, T. Relationship between iron and trace metal fractionation in soils. Chem. Speciat. Bioavail. 2014, 26, 21–30. [Google Scholar] [CrossRef]
- Fialova, H.; Maier, G.; Petrovsky, E.; Kapicka, A.; Boyko, T.; Scholger, R. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl. Geophys. 2006, 59, 273–283. [Google Scholar] [CrossRef]
- Chai, L.; Li, H.; Yang, Z.; Min, X.; Liao, Q.; Liu, Y.; Men, S.; Yan, Y.; Xu, J. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 874–885. [Google Scholar] [CrossRef]
- Chon, H.T.; Cho, C.H.; Kim, K.W.; Moon, H.S. The occurrence and dispersion of potentially toxic elements in areas covered with black shale’s and slates in Korea. Appl. Geochem. 1996, 11, 69–76. [Google Scholar] [CrossRef]
Land Use | Al | Mn | Fe | Ti | Co | Cr | Cu | Hg | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural (N = 27) | Min. | 7100 | 69 | 3300 | 400 | BDL | 7.00 | 10.00 | UDL | 4.00 | 7.00 | 9.00 | 36.00 |
Max. | 80,700 | 1375 | 71,100 | 12,200 | 34.00 | 138.00 | 101.00 | 0.14 | 82.00 | 108.00 | 208.00 | 215.00 | |
Mean | 50,181 | 767 | 41,181 | 6456 | 19.07 | 81.15 | 46.56 | 0.02 | 46.04 | 30.48 | 112.56 | 96.33 | |
St.D. | 26,276 | 465 | 23,988 | 3878 | 11.58 | 45.09 | 23.74 | 0.04 | 27.36 | 24.50 | 67.22 | 37.75 | |
Industrial (N = 9) | Min. | 6500 | 54 | 3000 | 700 | UDL | 4.00 | 3.00 | BDL | 3.00 | BDL | 8.00 | 6.00 |
Max. | 84,600 | 1572 | 76,000 | 12,300 | 35.00 | 113.00 | 84.00 | 0.19 | 97.00 | 26.00 | 206.00 | 899.00 | |
Mean | 36,811 | 552 | 29,400 | 4433 | 13.11 | 50.11 | 35.89 | 0.03 | 34.00 | 10.89 | 77.67 | 206.67 | |
St.D. | 28,248 | 516 | 25,831 | 4015 | 12.30 | 40.81 | 29.63 | 0.06 | 32.18 | 11.56 | 68.81 | 287.70 | |
Urban (N = 15) | Min. | 6100 | 66 | 4700 | 900 | 2.00 | 9.00 | 11.00 | BDL | 4.00 | 10.00 | 16.00 | 32.00 |
Max. | 80,400 | 1264 | 66,000 | 10,200 | 30.00 | 121.00 | 72.00 | 0.18 | 77.00 | 113.00 | 188.00 | 161.00 | |
Mean | 36,673 | 594 | 31,027 | 4507 | 13.73 | 58.07 | 35.40 | 0.02 | 34.20 | 31.53 | 81.33 | 86.33 | |
St.D. | 27,002 | 440 | 23,192 | 3456 | 11.02 | 39.85 | 20.76 | 0.05 | 26.84 | 26.87 | 60.80 | 37.21 | |
All Samples (N = 51) | Min. | 6100 | 54 | 3000 | 400 | BDL | 4.00 | 3.00 | BDL | 3.00 | BDL | 8.00 | 6.00 |
Max. | 84,600 | 1572 | 76,000 | 12,300 | 35.00 | 138.00 | 101.00 | 0.19 | 97.00 | 113.00 | 208.00 | 899.00 | |
Mean | 43,849 | 678 | 36,116 | 5525 | 16.45 | 68.88 | 41.39 | 0.02 | 40.43 | 27.33 | 97.22 | 112.86 | |
St.D. | 27,145 | 468 | 24,214 | 3839 | 11.66 | 44.14 | 24.19 | 0.04 | 28.15 | 24.39 | 66.44 | 127.73 | |
Skew | −0.08 | 0.19 | 0.02 | 0.19 | 0.08 | −0.01 | 0.31 | 2.66 | 0.10 | 1.94 | 0.16 | 5.03 | |
Kurt | −1.68 | −1.51 | −1.63 | −1.48 | −1.60 | −1.57 | −0.78 | 6.82 | −1.50 | 4.22 | −1.50 | 29.71 | |
CV | 0.62 | 0.69 | 0.67 | 0.69 | 0.71 | 0.64 | 0.58 | 2.24 | 0.70 | 0.89 | 0.68 | 1.13 | |
Upper continental crust [57] | 10 | 35 | 25 | 0.05 | 20 | 20 | 60 | 71 | |||||
World average [58] | 11.3 | 59.5 | 38.5 | 1.1 | 29 | 27 | 129 | 70 | |||||
Threshold value [59] | 20 | 100 | 100 | 0.5 | 50 | 60 | 100 | 200 | |||||
Maximum Pollution Limit (MPL) [59] | 100 | 200 | 150 | 2 | 100 | 200 | 150 | 250 |
Agricultural | Industrial | Urban | All Samples | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | |
Pn | 0.035 | 1.882 | 0.68 | 0.47 | 0.002 | 9.492 | 1.576 | 3.055 | 0.023 | 2.108 | 0.483 | 0.557 | 0.002 | 9.492 | 0.78 | 1.357 |
PLI | 0.331 | 2.774 | 1.673 | 0.793 | 0.169 | 2.992 | 1.395 | 1.091 | 0.325 | 3.013 | 1.388 | 0.86 | 0.169 | 3.013 | 1.54 | 0.863 |
PERI | 8.33 | 188.05 | 62.47 | 43.32 | 2.08 | 213.35 | 59.02 | 63.37 | 8.78 | 208.04 | 56.94 | 50.59 | 2.08 | 213.35 | 60.23 | 48.38 |
Agricultural | Industrial | Urban | All Samples | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | Min. | Max. | Mean | St.D. | |
k (10−3) | 0.15 | 3.56 | 1.51 | 1.06 | 0.21 | 3.42 | 1.72 | 1.10 | 0.15 | 3.56 | 1.31 | 1.20 | 0.25 | 2.73 | 1.25 | 0.86 |
χ (10−6) | 0.17 | 6.18 | 2.60 | 1.87 | 0.24 | 6.12 | 2.76 | 2.02 | 0.17 | 6.18 | 2.03 | 2.01 | 0.32 | 1.62 | 2.66 | 1.54 |
χfd% | 1.39 | 5.82 | 3.66 | 1.01 | 2.89 | 4.73 | 3.99 | 0.71 | 2.41 | 10.77 | 4.36 | 1.92 | 1.39 | 10.77 | 3.93 | 1.32 |
Fe | Mn | Ti | Co | Cr | Cu | Ni | Pb | V | Zn | Pn | PLI | PERI | k | χ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | 0.904 ** | 0.981 ** | 0.963 ** | 0.970 ** | 0.952 ** | 0.792 ** | 0.973 ** | 0.066 | 0.966 ** | 0.468 ** | 0.371 ** | 0.904 ** | 0.638 ** | 0.791 ** | 0.650 ** |
Fe | 1 | 0.949 ** | 0.924 ** | 0.956 ** | 0.917 ** | 0.821 ** | 0.960 ** | 0.148 | 0.918 ** | 0.419 ** | 0.377 ** | 0.910 ** | 0.667 ** | 0.900 ** | 0.760 ** |
Mn | 1 | 0.987 ** | 0.997 ** | 0.973 ** | 0.813 ** | 0.995 ** | 0.097 | 0.988 ** | 0.452 ** | 0.379 ** | 0.925 ** | 0.664 ** | 0.874 ** | 0.732 ** | |
Ti | 1 | 0.988 ** | 0.972 ** | 0.776 ** | 0.980 ** | 0.094 | 0.995 ** | 0.414 ** | 0.368 ** | 0.900 ** | 0.655 ** | 0.873 ** | 0.726 ** | ||
Co | 1 | 0.974 ** | 0.815 ** | 0.995 ** | 0.116 | 0.987 ** | 0.442 ** | 0.385 ** | 0.923 ** | 0.671 ** | 0.890 ** | 0.750 ** | |||
Cr | 1 | 0.845 ** | 0.965 ** | 0.205 | 0.974 ** | 0.492 ** | 0.372 ** | 0.939 ** | 0.678 ** | 0.856 ** | 0.705 ** | ||||
Cu | 1 | 0.828 ** | 0.317 * | 0.780 ** | 0.687 ** | 0.354 * | 0.911 ** | 0.613 ** | 0.756 ** | 0.557 ** | |||||
Ni | 1 | 0.098 | 0.979 ** | 0.455 ** | 0.381 ** | 0.927 ** | 0.665 ** | 0.881 ** | 0.740 ** | ||||||
Pb | 1 | 0.087 | 0.245 | 0.092 | 00.341 * | 0.152 | 0.121 | 0.170 | |||||||
V | 1 | 0.409 ** | 0.373 ** | 0.904 ** | 0.663 ** | 0.872 ** | 0.713 ** | ||||||||
Zn | 1 | 0.284 * | 0.614 ** | 0.336 * | 0.368 ** | 0.302 * | |||||||||
Pn | 1 | 0.475 ** | 0.621 ** | 0.400 ** | 0.147 | ||||||||||
PLI | 1 | 0.700 ** | 0.831 ** | 0.655 ** | |||||||||||
PERI | 1 | 0.616 ** | 0.395 ** | ||||||||||||
k | 1 | 0.790 ** | |||||||||||||
χ | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, A.; Dawood, Y.H.; Gad, A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land 2022, 11, 319. https://doi.org/10.3390/land11030319
Saleh A, Dawood YH, Gad A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land. 2022; 11(3):319. https://doi.org/10.3390/land11030319
Chicago/Turabian StyleSaleh, Ahmed, Yehia H. Dawood, and Ahmed Gad. 2022. "Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes" Land 11, no. 3: 319. https://doi.org/10.3390/land11030319
APA StyleSaleh, A., Dawood, Y. H., & Gad, A. (2022). Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land, 11(3), 319. https://doi.org/10.3390/land11030319