Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Chemical Analyses and Descriptive Statistics
2.3. VIS-NIR Reflectance Measurements and Pre-Processing of Spectroscopic Data
2.4. PLSR Model Calibration and Validation
2.5. Determination of Important Wavelengths and Prediction Mechanisms
3. Results
3.1. Reference Data
3.2. Land-Use Effects on Soil Properties
3.3. Effects of Spectral Pre-Processing Methods on the PLSR Calibration
3.4. PLSR Model Calibration and Validation
3.5. Prediction Mechanisms and Important Wavelengths
3.5.1. Correlations between Soil Properties and Spectral Reflectance Data
3.5.2. Principal Component and Partial Correlation Analysis
3.5.3. Important Wavelengths
4. Discussion
4.1. Accuracy Analysis of the PLSR Models
4.2. Effect of Pre-Processing Techniques on PLSR Predictions
4.3. Analysis of Prediction Mechanisms
4.3.1. Correlation, PCA and Partial Correlation Analysis
4.3.2. Analysis of Important Wavelengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Kagan, T.; Shacha, M.; Zaady, E.; Karnieli, A. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma 2014, 230, 171–184. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Tsunekawa, A.; Tsubo, M.; Fujimaki, H.; Kawai, T.; Kebede, B.; Mulualem, T.; Abebe, G.; Wubet, A.; Levy, G.J. Soil structure stability under different land uses in association with polyacrylamide effects. Sustainability 2021, 13, 1407. [Google Scholar] [CrossRef]
- Stoorvogel, J.; Kooistra, L.; Bouma, J. Managing Soil Variability at Different Spatial Scales as a Basis for Precision Agriculture. In Soil-Specific Farming Precision Agriculture; Advances in Soil Science; Rattan, L., Stewart, B., Eds.; CRC Press: New York, NY, USA, 2016; pp. 37–72. [Google Scholar] [CrossRef]
- Soriano-Disla, J.; Janik, L.; Viscarra Rossel, R.; MacDonald, L.; McLaughlinad, M. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Islam, K.; Singh, B.; McBratney, A. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. J. Soil Res. 2003, 41, 1101–1114. [Google Scholar] [CrossRef]
- Riedel, F.; Denk, M.; Müller, I.; Barth, N.; Gläßer, C. Prediction of soil parameters using the spectral range between 350 and 15,000 nm: A case study based on the permanent soil monitoring program in Saxony, Germany. Geoderma 2018, 315, 188–198. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Marcelo, V.; Pereira-Obaya, D.; García-Fernández, M.; Sanz-Ablanedo, E. Estimating Soil Properties and Nutrients by Visible and Infrared Diffuse Reflectance Spectroscopy to Characterize Vineyards. Agronomy 2021, 11, 1895. [Google Scholar] [CrossRef]
- Mouazen, A.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Pinheiro, É.F.; Ceddia, M.; Clingensmith, C.; Grunwald, S.; Vasques, G. Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the Central Amazon. Remote Sens. 2017, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.; Walvoort, D.; McBratney, A.; Janik, L.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.; Snipen, L.; Sæbø, S. A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.; Clairotte, M.; Csorba, A. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar] [CrossRef]
- Bilgili, V.; van Es, M.; Akbas, F.; Durak, A.; Hively, D. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semiarid area of Turkey. J. Arid Environ. 2010, 74, 229–238. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A. Estimating the soil clay content and organic matter by means of different calibration methods of Vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Vasques, G.; Grunwald, S.; Sickman, J. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Fang, Q.; Hong, H.; Zhao, L.; Kukolich, S.; Yin, K.; Wang, C. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy. Hindawi J. Spectrosc. 2018, 2018, 3168974. [Google Scholar] [CrossRef]
- Recena, R.; Fernández-Cabanás, V.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Luce, M.; Ziadi, N.; Gagnon, B.; Karam, A. Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils. Geoderma 2017, 288, 23–36. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 2008, 15, 1409–1416. [Google Scholar] [CrossRef]
- Burt, R.; Soil Survey Staff (Eds.) Soil Survey Staff, Soil Survey Field and Laboratory Methods Manual, Soil Survey Investigations Report No. 51; Version 2.0.; U.S. Department of Agriculture, Natural Resources Conservation Service: Redmond, OR, USA, 2014; 487p.
- Ziadi, N.; Tran, T. Mehlich 3 extractable elements. In Soil Sampling and Methods of Analysis; Carter, M., Gregorich, E., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2007; pp. 81–88. [Google Scholar]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—a proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Abdi, D.; Tremblay, G.; Ziadi, N.; Bélanger, G.; Parent, L. Predicting soil phosphorus-related properties using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318–2326. [Google Scholar] [CrossRef]
- Hively, W.; McCarty, G.; Reeves, J.; Lang, M.; Oesterling, R.; Delwiche, S. Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields. Appl. Environ. Soil. Sci. 2011, 2011, 358193. [Google Scholar] [CrossRef] [Green Version]
- Vašát, R.; Kodešová, R.; Borůvka, L.; Klement, A.; Jakšík, O.; Gholizadeh, A. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma 2014, 232–234, 208–218. [Google Scholar] [CrossRef]
- Chang, C.; Laird, D.; Mausbach, M.; Maurice, J.; Hurburgh, J. Near-Infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Nduwamungu, C.; Ziadi, N.; Parent, L.E.; Tremblay, G. Mehlich 3 extractable nutrients as determined by near-infrared reflectance spectroscopy. Can. J. Soil Sci. 2009, 89, 579–587. [Google Scholar] [CrossRef]
- Wang, J.J.; Cui, L.J.; Gao, W.X.; Shi, T.Z.; Chen, Y.Y.; Gao, Y. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 2014, 216, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Ji, J.; Gong, P.; Liao, Q.; Tian, Q.; Ma, H. A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Sci. Soc. Am. J. 2007, 71, 918–926. [Google Scholar] [CrossRef]
- Ismayilov, A. Soil resources of Azerbaijan. In Soil Resources of Mediterranean and Caucasus Countries Extension of the European Soil Database; Yigini, Y., Panagos, P., Montanarella, L., Eds.; Publications Office of the European Union, European Commission Joint Research Centre Institute for Environment and Sustainability: Luxembourg, 2013; Chapter II; pp. 16–36. [Google Scholar] [CrossRef]
- Feyziyev, F.; Babayev, M.; Priori, S.; L’Abate, G. Using visible-near infrared spectroscopy to predict soil properties of Mugan Plain, Azerbaijan. J. Soil. Sci. 2016, 6, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Mammadov, E.; Denk, M.; Riedel, F.; Lewinska, K.; Kaźmierowski, C.; Glaesser, C. Visible and Near-Infrared Reflectance Spectroscopy for Assessment of Soil Properties in the Caucasus Mountains, Azerbaijan. Commun. Soil Sci. Plant Anal. 2020, 51, 2111–2136. [Google Scholar] [CrossRef]
- Ismayilov, A.; Feyziyev, F.; Mammadov, E.; Babayev, M. Soil organic carbon prediction by Vis-NIR Spectroscopy: Case Study the Kur-Aras Plain, Azerbaijan. Commun. Soil Sci. Plant Anal. 2020, 51, 726–734. [Google Scholar] [CrossRef]
- IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015.
- Mammadov, E.; Nowosad, J.; Glaesser, C. Estimation and mapping of surface soil properties in the Caucasus Mountains, Azerbaijan using high-resolution remote sensing data. Geoderma Reg. 2021, 26, e00411. [Google Scholar] [CrossRef]
- Gee, G.; Bauder, J. Physical and Mineralogical Methods: Particle-Size Analysis. In Methods of Soil Analysis, 2nd ed.; Agronomy Monograph, Part 1; Klute, A., Ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Sparks, D.L.; Fendorf, S.E.; Toner, C.V.; Carski, T.H. Kinetic Methods and Measurements. In Methods of Soil Analysis; Part 3—Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series: Madison, WI, USA, 1996; pp. 1275–1307. [Google Scholar]
- Nelson, D.; Sommers, L. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, 2nd ed.; Part 2; Sparks, D.L., Ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Bloesch, P.M. Prediction of the CEC to clay ratio using mid-infrared spectroscopy. Soil Res. 2012, 50, 1–6. [Google Scholar] [CrossRef]
- Ameyan, O. Surface soil variability of a map unit on Niger river alluvium. Soil Sci. Soc. Am. J. 1984, 50, 1289–1293. [Google Scholar] [CrossRef]
- Evans, J. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996; 600p. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.cran.r-project.org (accessed on 1 November 2021).
- Tian, Y.; Zhang, J.; Yao, X.; Cao, W.; Zhu, Y. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma 2013, 202, 161–170. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Clark, R.; Roush, T. Reflectance spectroscopy quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Geladi, P.; McDougall, D.; Martens, H. Linearization and scatter correction for near infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Barnes, R.; Dhanoa, M.; Lister, S. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package in R. Available online: https://CRAN.R-project.org/package=prospectr/vignettes/prospectr.html (accessed on 9 June 2014).
- Geladi, P.; Kowalski, B. Partial least-squares regression: A tutorial. Anal. Chimica. Acta. 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Eriksson, L.; Trygg, J.; Kettaneh, N. The PLS Method—Partial Least Squares Projections to Latent Structures—And Its Applications in Industrial RDP (Research, Development, and Production); Technical Report for PLS in Industrial RPD (Research, Development, and Production); Umea University: Umeå, Sweden, 2004; pp. 1–44. [Google Scholar]
- Efron, B.; Tibshir, R. An Introduction to the Bootstrap; Chapman Hall/CRC Press: Boca Raton, FL, USA, 1994; 430p. [Google Scholar]
- Akaike, H. Akaike’s Information Criterion. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 25–29. [Google Scholar]
- Williams, P. Near-Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: Saint Paul, MN, USA, 2001; pp. 35–55. [Google Scholar]
- Chong, I.; Jun, C. Performance of some variable selection methods when multi-collinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Wold, S.; Trygg, J.; Berglund, A.; Antti, H. Some recent developments in PLS modelling. Chemom. Intell. Lab. Syst. 2001, 58, 131–150. [Google Scholar] [CrossRef]
- Tenenhaus, M. La Régression PLS; TECHNIP: Paris, France, 1998; 264p. (In French) [Google Scholar]
- Mevik, B.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. Jour. Stat. Softw. 2007, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Liland, K.; Mehmood, T.; Sæbø, S. The plsVarSel package: Variable selection in partial least squares regression in R. Jour. Stat. Softw. 2017, 0.9.4, 1–23. [Google Scholar]
- Rowley, M.C.; Grand, S.; Verrecchia, E.P. Calcium—Mediated stabilization of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.E.; Diakoloukas, V. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: A robust quadratic regression approach of soil pollution prediction. Environ. Sci. Pollut. Res. 2021, 1–9. [Google Scholar] [CrossRef]
- Sun, W.C.; Zhang, X.; Sun, X.J.; Sun, Y.L.; Cen, Y. Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 2018, 327, 25–35. [Google Scholar] [CrossRef]
- Isaksson, T.; Næs, T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl. Spectrosc. 1988, 42, 1273–1284. [Google Scholar] [CrossRef]
- Shi, T.Z.; Liu, H.Z.; Chen, Y.Y.; Fei, T.; Wang, J.J.; Wu, G.F. Spectroscopic diagnosis of arsenic contamination in agricultural soils. Sensors 2017, 17, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, K.; Walsh, M. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Leone, A.; Viscarra Rossel, R.; Amenta, P.; Buondonno, A. Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to Mediterranean Soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Schaepman, E.; Kooistra, L.; Stevens, A.; Hoogmoed, B.; Spaargaren, O. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- Ben Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Rathod, P.H.; Rossiter, D.G.; Noomen, M.F.; van der Meer, F.D. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. Int. J. Phytorem. 2013, 15, 405–426. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Clark, R. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Manual of Remote Sensing; Rencz, A., Ed.; Wiley & Sons: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Ben Dor, E.; Irons, J.; Epema, G. Soil Reflectance. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A., Ed.; Wiley & Sons: New York, NY, USA, 1999; Volume 3, pp. 111–188. [Google Scholar]
- Gaffey, S. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Strens, R.; Wood, B. Diffuse reflectance spectra and optical properties of some iron and titanium oxides and hydroxides. Mineral. Mag. 1977, 43, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Goetz, A.; Chabrillat, S.; Lu, Z. Field reflectance spectrometry for detection of swelling clays at construction sites. Field Anal. Chem. Tech. 2001, 5, 143–155. [Google Scholar] [CrossRef]
Soil Property | Min | Max | Mean | Median | SD | CV (%) |
---|---|---|---|---|---|---|
Ca (mg kg−1) | 133.07 | 1674.77 | 726.14 | 658.89 | 388.95 | 53.7 |
Cd (mg kg−1) | 0.191 | 0.465 | 0.32 | 0.334 | 0.064 | 20.0 |
Cu (mg kg−1) | 0.67 | 3.08 | 1.141 | 1.015 | 0.405 | 35.5 |
Fe (mg kg−1) | 19.8 | 116.16 | 58.85 | 55.72 | 23.45 | 39.8 |
K (mg kg−1) | 74.2 | 806.27 | 262.66 | 225.29 | 127.73 | 47.1 |
Mg (mg kg−1) | 190.82 | 615.66 | 446.6 | 438.46 | 92.92 | 20.8 |
Mn (mg kg−1) | 24.69 | 145.22 | 109.97 | 115.87 | 23.72 | 21.6 |
P (mg kg−1) | 2.41 | 20.34 | 5.74 | 4.8 | 2.98 | 51.9 |
Pb (mg kg−1) | 1.32 | 4.59 | 3.17 | 3.4 | 0.86 | 27.1 |
Zn (mg kg−1) | 1.98 | 7.74 | 4.59 | 4.62 | 0.9 | 20.0 |
Sand (%) | 9 | 78 | 29 | 25 | 17 | 59.6 |
Silt (%) | 21 | 77 | 50 | 54 | 11 | 22.0 |
Clay (%) | 2 | 38 | 21 | 23 | 8 | 34.8 |
SOC (%) | 1.34 | 6.85 | 3.41 | 3.08 | 1.15 | 34.8 |
CaCO3 (%) | 0.00 | 8.81 | 2.91 | 2.16 | 2.41 | 83.6 |
pH | 5.75 | 7.82 | 7.25 | 7.47 | 0.46 | 6.3 |
Soil | Land Use | |||
---|---|---|---|---|
Properties | Arable | Hayfield | Pasture | Shrub |
Elevation (m) | 872.2 c | 910.9 b | 971.5 a | 953.4 a |
SOC (%) | 2.2 c | 3.5 b | 3.4 b | 4.3 a |
pH | 7.6 a | 7.4 a | 7.1 b | 7.0 b |
Sand (%) | 16.4 b | 18.6 b | 38.4 a | 39.3 a |
Silt (%) | 57.8 a | 57.1 a | 43.5 b | 44.6 b |
Clay (%) | 26.4 a | 25.3 a | 17.8 b | 15.2 b |
CaCO3 (%) | 5.0 a | 3.7 b | 1.8 c | 1.2 c |
K (mg kg−1) | 317.8 a | 281.3 ab | 259.1 ab | 214.9 b |
Mg (mg kg−1) | 421.4 a | 439.9 a | 462.0 a | 461.0 a |
Ca (mg kg−1) | 1058.0 a | 879.8 b | 544.3 c | 426.4 c |
CEC (meq/100 g) | 9.6 a | 8.8 a | 7.2 b | 6.5 b |
CEC/Clay | 0.4 b | 0.4 b | 0.5 ab | 0.5 a |
Zn (mg kg−1) | 4.4 b | 4.9 ab | 4.4 b | 5.0 a |
Cu (mg kg−1) | 1.0 a | 1.2 a | 1.1 a | 1.2 a |
Pb (mg kg−1) | 3.8 a | 3.6 a | 2.7 b | 2.7 b |
Cd (mg kg−1) | 0.4 a | 0.4 a | 0.3 b | 0.3 b |
Mn (mg kg−1) | 114.2 ab | 117.3 a | 105.1 b | 103.9 b |
Fe (mg kg−1) | 39.8 b | 58.3 a | 67.4 a | 69.3 a |
P (mg kg−1) | 7.6 a | 5.5 b | 5.0 b | 4.7 b |
Soil Property | Optimal Pre-Processing Method | NF | Cross-Validation (n = 114) | Calibration (n = 88) | Validation (n = 26) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RPD | RMSE | R2 | RPD | RMSE | R2 | RPD | |||
CaCO3 | D1-Gap-S10 | 11 | 0.81 | 0.96 | 2.97 | 0.83 | 0.96 | 3.02 | 0.99 | 0.89 | 2.16 |
pH | D1-Gap-S10 | 4 | 0.36 | 0.69 | 1.44 | 0.35 | 0.66 | 1.47 | 0.37 | 0.65 | 1.49 |
Clay | MSC | 11 | 3.78 | 0.84 | 1.85 | 4.02 | 0.85 | 1.75 | 3.77 | 0.83 | 2.20 |
Silt | D1-Gap-S10 | 4 | 5.32 | 0.82 | 2.07 | 5.00 | 0.85 | 2.19 | 5.75 | 0.81 | 2.02 |
Sand | D1-Gap-S10 | 4 | 8.18 | 0.81 | 2.08 | 8.21 | 0.82 | 2.02 | 8.35 | 0.81 | 2.19 |
SOC | Absorbance | 16 | 0.45 | 0.93 | 2.53 | 0.54 | 0.94 | 2.19 | 0.43 | 0.90 | 2.16 |
Ca | D1-Gap-S10 | 10 | 180.60 | 0.91 | 2.15 | 179.80 | 0.94 | 2.21 | 165.10 | 0.86 | 2.39 |
Cd | D1-Gap-S10 | 6 | 0.035 | 0.80 | 1.81 | 0.036 | 0.82 | 1.79 | 0.037 | 0.74 | 1.88 |
Cu | D1-Gap-S10 | 10 | 0.275 | 0.80 | 1.47 | 0.327 | 0.80 | 1.31 | 0.180 | 0.76 | 1.74 |
Fe | D1-Gap-S10 | 9 | 14.66 | 0.82 | 1.60 | 14.79 | 0.83 | 1.49 | 16.31 | 0.76 | 1.72 |
K | D1-Gap-S10 | 10 | 72.21 | 0.85 | 1.85 | 78.93 | 0.85 | 1.55 | 65.32 | 0.83 | 2.62 |
Mg | D1-Gap-S10 | 8 | 67.14 | 0.73 | 1.39 | 74.30 | 0.75 | 1.27 | 66.00 | 0.62 | 1.36 |
Mn | D1-Gap-S10 | 10 | 13.72 | 0.85 | 1.73 | 14.77 | 0.86 | 1.57 | 14.25 | 0.71 | 1.81 |
P | D1-Gap-S10 | 8 | 2.19 | 0.73 | 1.36 | 2.26 | 0.72 | 1.25 | 2.41 | 0.51 | 1.43 |
Pb | D1-Gap-S10 | 10 | 0.375 | 0.91 | 2.29 | 0.380 | 0.93 | 2.17 | 0.396 | 0.84 | 2.48 |
Zn | D1-Gap-S10 | 6 | 0.750 | 0.56 | 1.20 | 0.890 | 0.54 | 0.99 | 0.670 | 0.57 | 1.43 |
Category Controlled | CaCO3 | Clay | Silt | Sand | SOC | pH | Fe | Ca | Cd | Cu | K | Mg | Mn | P | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spearman’s Rho correlation coefficients | ||||||||||||||||
0.84 * | 0.62 * | 0.84 * | −0.78 * | −0.59 * | 0.70 * | −0.68 * | 0.88 * | 0.75 * | −0.10 | 0.37 * | −0.40 * | 0.17 | 0.39 * | 0.76 * | −0.17 | |
Partial correlation coefficients | ||||||||||||||||
CaCO3 | 0.63 * | 0.74 * | −0.73 * | −0.18 | 0.20 | 0.06 | 0.56 * | 0.42 * | −0.09 | 0.26 * | 0.20 | 0.23 | −0.08 | 0.37 * | 0.05 | |
Clay | 0.84 * | 0.73 * | −0.60 * | −0.47 * | 0.65 * | −0.70 * | 0.82 * | 0.67 * | 0.09 | 0.23 | −0.51 * | 0.05 | 0.53 * | 0.69 * | −0.26 * | |
Silt | 0.74 * | 0.18 | −0.08 | −0.47 * | 0.45 * | −0.59 * | 0.72 * | 0.43 * | 0.07 | 0.17 | −0.43 * | −0.18 | 0.46 * | 0.50 * | −0.31 * | |
Sand | 0.80 * | 0.00 | 0.49 * | −0.41 * | 0.55 * | −0.66 * | 0.76 * | 0.59 * | 0.14 | 0.18 | −0.51 * | −0.06 | 0.47 * | 0.61 * | −0.24 * | |
SOC | 0.75 * | 0.52 * | 0.80 * | −0.70 * | 0.54 * | −0.51 * | 0.84 * | 0.77 * | 0.10 | 0.33 * | −0.34 * | 0.23 | 0.31 * | 0.76 * | −0.14 | |
pH | 0.67 * | 0.56 * | 0.73 * | −0.68 * | −0.31 * | −0.39 * | 0.77 * | 0.57 * | −0.04 | 0.28 * | 0.04 | −0.22 | 0.21 | 0.56 * | −0.27 * | |
Fe | 0.68 * | 0.64 * | 0.79 * | −0.76 * | −0.30 * | 0.43 * | 0.76 * | 0.58 * | −0.06 | 0.28 * | −0.01 | 0.14 | 0.08 | 0.53 * | −0.16 | |
CaCO3 + Clay + Fe | 0.59 * | −0.49 * | −0.03 | 0.15 | 0.37 * | 0.32 * | 0.11 | 0.14 | 0.03 | 0.11 | 0.12 | 0.28 * | −0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mammadov, E.; Denk, M.; Riedel, F.; Kaźmierowski, C.; Lewinska, K.; Łukowiak, R.; Grzebisz, W.; Mamedov, A.I.; Glaesser, C. Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains. Land 2022, 11, 363. https://doi.org/10.3390/land11030363
Mammadov E, Denk M, Riedel F, Kaźmierowski C, Lewinska K, Łukowiak R, Grzebisz W, Mamedov AI, Glaesser C. Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains. Land. 2022; 11(3):363. https://doi.org/10.3390/land11030363
Chicago/Turabian StyleMammadov, Elton, Michael Denk, Frank Riedel, Cezary Kaźmierowski, Karolina Lewinska, Remigiusz Łukowiak, Witold Grzebisz, Amrakh I. Mamedov, and Cornelia Glaesser. 2022. "Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains" Land 11, no. 3: 363. https://doi.org/10.3390/land11030363
APA StyleMammadov, E., Denk, M., Riedel, F., Kaźmierowski, C., Lewinska, K., Łukowiak, R., Grzebisz, W., Mamedov, A. I., & Glaesser, C. (2022). Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains. Land, 11(3), 363. https://doi.org/10.3390/land11030363