Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach
Abstract
:1. Introduction
2. Materials and Methods
- ERDAS IMAGINE 9.2 was used for Landsat image classification, accuracy assessment of images classification and production of land cover maps.
- TerrSet: In this software, two main models were used in this study as follows:
- -
- Land Change Modeler (LCM) was used for land cover change detection, transition sub-model selection, variable selection, transition potential modelling, change demand modelling, model validation and land cover change prediction.
- -
- Ecosystem Services Modeler (ESM) was used for carbon storage and sequestration calculation.
2.1. Study Area
2.2. Land Cover Change Analysis and Preparation for Prediction
2.3. Multi-Temporal Land Cover Classification for Land Cover Change Detection
2.4. Accuracy Assessment
- N: number of GCP
- Z: standard score for suitable of confidence level (e.g., 1.96 for 95% and 2.58 for 99% confidence)
- P: required accuracy
- q: 1-p
- E: acceptable error (e.g., 0.01 for ± 10%)
2.5. Transition Sub-Model Selection
2.6. Variable Selection
- t: number of columns-1 or number of rows-1
- n: number of rows
- x: number of columns
2.7. Transition Potential Modelling
2.8. Change Demand Modelling
2.9. Model Validation
2.10. Land Cover Change Prediction
2.11. Carbon Storage and Sequestration Calculation Using ESM
2.11.1. Carbon Density
2.11.2. Extracting Carbon Data from IPCC Report
3. Results
3.1. Land Cover Changes
3.2. Predicting Land Cover Change
3.3. Model Validation
3.4. Carbon Storage and Sequestration in the Central Zagros Region
3.4.1. Current/Future Stored Carbon (Mg)
3.4.2. Sequestered Carbon (Mg)
3.4.3. Value of Currently Stored Carbon
3.4.4. Total Value of Sequestered Carbon
3.5. The Relation of Land Cover Change with Carbon Storage and Sequestration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.H.; Ai, N.S.; Chen, Y. Qualitative analysis and fractal modelling on the mosaic structure of landscape in the central area of Shanghai metropolis. J. Geogr. Sci. 2003, 13, 199–206. [Google Scholar]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land cover/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kongf, W.; Dong, X. Evaluation and simulation of the impact of land cover change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef] [PubMed]
- IPCC (International Panel on Climate Change). Guidelines for National Greenhouse Gas Inventories. AFOLU (Agriculture, Forestry and Other Land Cover). 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 10 March 2022).
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Tol, R.S.J. The economic effects of climate change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Arunyawat, S.; Rajendra, P.S. Assessing Land cover Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Glodewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land cover/land cover changes and climate: Modelling analysis and observational evidence. J. Clim. Change 2011, 2, 828–850. [Google Scholar]
- Japelaghi, M.; Gholamalifard, M.; Shayesteh, K. Spatio-temporal analysis and prediction of landscape patterns and change processes in the Central Zagros region, Iran. RSASE 2019, 15, 100244. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Zhang, C.; Yun, W.; Qu, J. Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Math. Comput. Model. 2013, 58, 573–581. [Google Scholar] [CrossRef]
- Hagner, O.; Reese, H. A method for calibrated maximum likelihood classification of forest types. Remote Sens. Environ. 2007, 110, 438–444. [Google Scholar] [CrossRef]
- Ahmad, A. Analysis of maximum likelihood classification on multispectral Data. Int. J. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing; Taylor & Francis: London, UK, 2002; pp. 397–399. [Google Scholar]
- Fuller, R.; Groom, G.; Jones, A. The land cover map of Great Britain: An automated classification of Landsat Thematic Mapper data. Photogramm. Eng. Remote Sens. 1994, 60, 553–562. [Google Scholar]
- Cramer, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Ahmed, B.; Ahmed, R. Modelling urban land cover growth dynamics using Multi Temporal satellite images: A case study of Dhaka, Bangladesh. ISPRS 2012, 1, 3–31. [Google Scholar]
- Akber, M.A.; Rahman Khan, M.W.; Islam, M.A.; Rahman, M.M.; Rahman, M.R. Impact of land use change on ecosystem services of southwest coastal Bangladesh. J. Land Use Sci. 2018, 13, 238–250. [Google Scholar] [CrossRef]
- Eastman, J.R. Chapter Nine: Ecosystem Services Modeler. In TerrSet Manual; Clarklabs: Worcester, MA, USA, 2015; pp. 249–252. [Google Scholar]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Glossary; The Institute for Global Environmental Strategies (IGES) for the IPCC: Kanagawa, Japan, 2003. [Google Scholar]
- Khalyani, A.H.; Mayer, A.L. Spatial and Temporal Deforestation Dynamics of Zagros Forests (Iran) from 1972 to 2009. Landsc. Urban Plan. 2013, 117, 1–12. [Google Scholar] [CrossRef]
- Allen, J.C.; Barnes, D.F. The causes of deforestation in developing countries. Geogr. Assoc. 1985, 75, 163–184. [Google Scholar] [CrossRef]
- Torahi, A.A. Forest mapping and change analysis, using satellite imagery in Zagros mountain, Iran. Leban. Sci. J. 2013, 14, 63–75. [Google Scholar]
- Matinfar, H.R. Change detection monitoring of Khoramabad Region (Iran) via remote sensing. Geophys. Res. Abstr. 2010, 12, 448. [Google Scholar]
- Zebardast, L.; Yavari, A.; Sadeghi, A.; Makhdoum, M. Using an effective mesh size metric in the analysis of the fragmentation of forest cover in road effect zone in the Golestan National Park. JES 2011, 37, 15–20. (In Persian) [Google Scholar]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land cover/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land cover/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Leh, M.D.K.; Matlocka, M.D.; Cummingsa, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Tittonell, P. Beyond CO2: Multiple Ecosystem Services from Ecologically Intensive Grazing Landscapes of South America. Front. Sustain. Food Syst. 2021, 5, 664103. [Google Scholar] [CrossRef]
Time | LC Class | KIA | Kappa | Overall Accuracy |
---|---|---|---|---|
1989 | Dry Farming | 0.8526 | 0.9693 | 97.96% |
Forest | 0.9591 | |||
Irrigated Farming | 1.0000 | |||
Scattered Dry Farming | 1.0000 | |||
Range | 0.9575 | |||
Water | 1.0000 | |||
Bare Land | 1.0000 | |||
Residential | 1.0000 | |||
Transportation | 1.0000 | |||
2000 | Dry Farming | 1.0000 | 0.9754 | 98.47% |
Forest | 1.0000 | |||
Irrigated Farming | 0.8370 | |||
Scattered Dry Farming | 1.0000 | |||
Range | 0.9797 | |||
Water | 1.0000 | |||
Bare Land | 1.0000 | |||
Residential | 1.0000 | |||
Transportation | 1.0000 | |||
2013 | Dry Farming | 1.0000 | 0.9765 | 98.47% |
Forest | 0.9740 | |||
Irrigated Farming | 0.8946 | |||
Scattered Dry Farming | 1.0000 | |||
Range | 0.9798 | |||
Water | 1.0000 | |||
Bare Land | 1.0000 | |||
Residential | 1.0000 | |||
Transportation | 1.0000 |
Variable Name | Description | Cramer’s V | p Value |
---|---|---|---|
Dist_Small_Towns | Euclidean Distance from small towns | 0.2540 | 0.0000 |
Dist_Med_Size_Towns | Euclidean Distance from medium size towns | 0.1387 | 0.0000 |
Dist_Forests | Euclidean Distance from forests | 0.4572 | 0.0000 |
Dist_Water | Euclidean Distance from rivers and water resources | 0.1621 | 0.0000 |
Dist_Roads | Euclidean Distance from transportation network | 0.2612 | 0.0000 |
DEM | Digital Elevation Model | 0.1669 | 0.0000 |
Slope | Slope bypercent | 0.2272 | 0.0000 |
EV_Likelihood_Protected Area | Evidence likelihood of change at protected areas. | 0.0365 | 0.0000 |
EV_Likelihood_District | Evidence likelihood of change at districts level. | 0.4057 | 0.0000 |
EV_Likelihood_Commune | Evidence likelihood of change at commune level (5th national division level). | 0.3229 | 0.0000 |
Periods | Irrigated Farming | Scattered Dry Farming | Dry Farming | Range | Water | Residential | Bare Land | Transportation | |
---|---|---|---|---|---|---|---|---|---|
1989–2000 | Forest | 1220.6 | 1025.32 | 4293.88 | 459,916.6 | 1298.44 | 56.12 | 417.4 | 42.88 |
2000–2013 | Forest | 7536.76 | - | 11,990.4 | 272,282.64 | 829.52 | 139.56 | 188.64 | 63.48 |
Periods | Irrigated Farming | Scattered Dry Farming | Dry Farming | Range | Water | Residential | Bare Land | Transportation |
---|---|---|---|---|---|---|---|---|
2013–2020 | Forest | 3193.56 | 39.39 | 156,485.08 | 380.2 | 17.03 | 76.04 | 13.17 |
2020–2030 | Forest | 4562.28 | 15,829.56 | 120,661.2 | 528.72 | 38.59 | 152.08 | 76.04 |
2030–2040 | Forest | 5365.4 | 23,902.24 | 53,689.2 | 839.96 | 376.64 | 152.08 | 152.08 |
2040–2050 | Forest | 5685.36 | 22,457.28 | 14,134.2 | 152.08 | 1140.56 | 228.08 | 228.12 |
Validation Class | Description | Number of Cells | Percentage |
---|---|---|---|
Hit | Model predicted change and it changed | 44,319,243 | 91.89 |
Misses | Model predicted persistence and it changed | 3,534,113 | 7.03 |
False Alarm | Model predicted change but to the incorrect class/it persisted | 531,763 | 1.09 |
Overall Error | Summation of misses and false alarm | 4,065,876 | 8.11 |
2020 | 2030 | 2040 | 2050 | |
---|---|---|---|---|
Total Current/Future Carbon | 280,648,134 Mg | 280,648,134 Mg | 280,648,134 Mg | 280,648,134 Mg |
Total value of currently/Future stored carbon | US$ 4,212,528,441.00 | US$ 4,212,528,441.00 | US$ 4,212,528,441.00 | US$ 4,212,528,441.00 |
Total Scenario Carbon | 280,491,082 Mg | 280,321,763 Mg | 280,183,500 Mg | 280,083,385 Mg |
Total sequestrated carbon | −157,052 Mg | −326,371 Mg | −464,634 Mg | −564,749 Mg |
Total value of sequestrated carbon | 1,941,962.00 | −3,010,369.00 | −3,312,922.00 | −3,215,535.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Japelaghi, M.; Hajian, F.; Gholamalifard, M.; Pradhan, B.; Maulud, K.N.A.; Park, H.-J. Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach. Land 2022, 11, 423. https://doi.org/10.3390/land11030423
Japelaghi M, Hajian F, Gholamalifard M, Pradhan B, Maulud KNA, Park H-J. Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach. Land. 2022; 11(3):423. https://doi.org/10.3390/land11030423
Chicago/Turabian StyleJapelaghi, Mohsen, Fariba Hajian, Mehdi Gholamalifard, Biswajeet Pradhan, Khairul Nizam Abdul Maulud, and Hyuck-Jin Park. 2022. "Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach" Land 11, no. 3: 423. https://doi.org/10.3390/land11030423
APA StyleJapelaghi, M., Hajian, F., Gholamalifard, M., Pradhan, B., Maulud, K. N. A., & Park, H. -J. (2022). Modelling the Impact of Land Cover Changes on Carbon Storage and Sequestration in the Central Zagros Region, Iran Using Ecosystem Services Approach. Land, 11(3), 423. https://doi.org/10.3390/land11030423