Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Carbon Content in Soil
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, H.; Song, W. Cropland Abandonment and Influencing Factors in Chongqing, China. Land 2021, 10, 1206. [Google Scholar] [CrossRef]
- Jiménez, R.M. Globarruralización: Cómo el medio rural se ve afectado por la globalización y las TIC. GeoGraphos 2014, 5, 283–311. [Google Scholar] [CrossRef] [Green Version]
- Camarero, L.; Sampedro, R. Despoblación y ruralidad transnacional: Crisis y arraigo rural en Castilla y León. Econ. Agrar. Recur. Nat. 2019, 19, 59–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roquer, S.; Blay, J. Del Éxodo Rural a La Inmigración Extranjera: El Papel de la Población Extranjera en la Recuperación Demográfica de las Zonas Rurales Españolas (1996–2006). X Coloquio Internacional de Neocrítica: Diez Años de Cambios en el Mundo, en la Geografía y en las Ciencias Sociales, 1999–2008. Actas del X Coloquio Internacional de Geocrítica, Universidad de Barcelona, 26–30 de Mayo de 2008. Available online: http://www.ub.edu/geocrit/-xcol/65.htm (accessed on 10 November 2020).
- Atance, I.; García, A.; Martínez, M.; Pujol, R.; Urruela, J. La Población Rural en España: Un Enfoque a Escala Municipal. Econ. Agrar. Recur. Nat. 2010, 10, 35–37. [Google Scholar] [CrossRef] [Green Version]
- CES (Consejo Económico y Social). Informe 01/2018: El Medio Rural y su Vertebración Social y Territorial. In Consejo Económico y Social, 1st ed.; Lerko Print S. A.: Madrid, Spain, 2018. [Google Scholar]
- Stockdale, A.; Findaly, A.; Short, D. The repopulation of Rural Scotland: Opportunity and threa. J. Rural. Stud. 2000, 16, 243–257. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-Operation and Development). The New Rural Paradigm: Policies and Governance; OECD Publishing: Paris, France, 2006; Available online: https://www.oecd.org/cfe/regional-policy/thenewruralparadigmpoliciesandgovernance.htm (accessed on 8 October 2020).
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Cañadas, E.M. Estudio de Tierras Agrícolas Abandonadas en Ambiente Mediterráneo Semiárido: Vegetación, Suelos y Distribución Espacial. Bases Para La Gestión. Master’s Thesis, Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain, 2008. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=71502 (accessed on 14 March 2022).
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zaragozí, B.; Rabasa, A.; Rodríguez-Sala, J.J.; Navarro, J.T.; Belda, A.; Ramón, A. Modelling farmland abandonment: A study combining GIS and data mining techniques. Agric. Ecosyst. Environ. 2012, 155, 124–132. [Google Scholar] [CrossRef]
- Orjuela, J.A.; Ramírez, B.L.; Andrade, H.J. Potencial de almacenamiento de carbono en áreas de regeneración natural de paisajes ganaderos de la Amazonia colombiana. Rev. Fac. De Cienc. Agropecu. 2010, 2, 60–72. [Google Scholar]
- Prévosto, B.; Dambrine, E.; Coquillard, P.; Robert, A. Broom (Cytisus scoparius) Colonization after Grazing Abandonment in the French Massif Central: Impact on Vegetation Composition and Resource Availability. Acta Oecologica 2006, 30, 258–268. [Google Scholar] [CrossRef]
- MTE (Ministerio de Transición Ecológica). Anuario de Estadística Agraria; Secretaría General Técnica: Madrid, Spain, 2017; Available online: https://www.miteco.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2017/default.aspx?parte=2&capitulo=12&grupo=1 (accessed on 12 December 2019).
- Beguería, S. Changes in Land Cover and Shallow Landslide Activity: A Case Study in the Spanish Pyrenees. Geomorphology 2006, 74, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Kolouri, M.; Giourga, C. Land Abandonment and Slope Gradient as Key Factors of Soil Erosion in Mediterranean Terraced Lands. Catena 2007, 69, 274–281. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services. A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Robinson, D.A.; Emmett, B.A.; Reynolds, B.; Rowe, E.C.; Spurgeon, D.; Keith, A.M.; Lebron, I.; Hockley, N. Soil Natural Capital and Ecosystem Service Delivery in a World of Global Soil Change; Hester, R.E., Harrison, R.M., Eds.; Soils and Food Security; Issues in Environmental Science and Technology Series; Royal Society od Chemistry: London, UK, 2012; pp. 41–68. [Google Scholar]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Gifford, R.M. The Global Carbon Cycle: A Viewpoint on the Missing Sink. Funct. Plant Biol. 1994, 21, 1–15. [Google Scholar] [CrossRef]
- Van Groenigen, K.; Osenberg, C.; Hungate, B. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 2011, 475, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xu, X.; Smith, P.; Pan, W.; Lal, R. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Zhuang, O.; He, N. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Sci. Total Environ. 2021, 758, 143644. [Google Scholar] [CrossRef] [PubMed]
- IPCC (Intergovernmental Panel of Climate Change). Mitigation of Climate Change. Contribution of Working Group I to the Fourth Assessment Reporto of the IPCC. 2007. Available online: http://www.ipcc.ch/pub/reports.htm (accessed on 12 December 2020).
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 2003, 55, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Bravo, F.; Alloza, J.A.; Marys, S.; Bravo-Oviedo, A.; Broto, M.; Cámara, A.; Canga, E.; Delgado, J.A.; Díaz, L.; Fernández, M.J.; et al. El Papel de los Bosques Españoles en la Mitigación del Cambio Climático, 1st ed.; Fundación Gas Natural; Department de Producción Vegetal y Recursos Forestales, Universidad de Valladolid: Valladolid, Spain, 2007; p. 332. [Google Scholar]
- Pardos, J.A. Forest Ecosystems and Carbon Sequestration in the Face of Global Warming; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, Spain, 2017; p. 253.
- Batjes, N.H. Harmonized soil property values for broad-scale modelling with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Gloor, M.; Mahlman, J.; Pacala, S.; Sarmiento, J.; Takahashi, T.; Tans, P.A. Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models. Science 1998, 282, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Maljean, J.F.; Amlinger, F.; Bannick, C.G.; Favoino, E.; Feix, I.; Leifert, I.; Marmo, L.; Morris, R.; Pallière, C.; Robert, M.; et al. Land Use Practices in Europe. In Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection; Camp, V., Ed.; Office for Official Publications of the European Communities: Luxembourg, 2004; p. 872. [Google Scholar]
- Lal, R. Sequestering carbon in soils of arid ecosystems. Land Degrad. Dev. 2009, 20, 441–454. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L. Towards a Thematic Strategy for Soil Protection; Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2002. [Google Scholar]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Frank, A.B.; Liebig, M.A.; Tanaka, D.L. Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil Tillage Res. 2006, 89, 78–85. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.; Domingos, T. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PLoS ONE 2019, 14, e0222604. [Google Scholar] [CrossRef] [Green Version]
- INE (Instituto Nacional de Estadística). Available online: https://www.ine.es/nomen2/inicio_r.do.2021 (accessed on 9 November 2021).
- IDEE (Infraestructura de Datos Espaciales de España). Portal de Acceso a la Información Geográfica de España. Ministerio de fomento del gobierno de España. 2019. Available online: https://www.idee.es/es (accessed on 8 December 2020).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In World Soil Resources Reports; FAO: Rome, Italy, 2007; p. 103. [Google Scholar]
- PFE (Plan Forestal de Extremaura). Análisis y Estudio del Paisaje Vegetal y su Dinámica en la Región de Extremadura. Dirección General Medio Ambiente. Junta de Extemadura; 2010; p.128. Available online: https://asfoex.es/marco-legal/legislacion/89-documentacion-plan-forestal-extremadura (accessed on 13 December 2019).
- Macdiken, K.G. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects; Winrock International Institute for Agricultural Development: Arlington, VA, USA, 1997. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rovira, P.; Romanyà, J.; Rubio, A.; Roca, N.; Alloza, R.; Vallejo, R. Estimación del carbono orgánico en los suelos peninsulares españoles. In El Papel de Los Bosques Españoles en la Mitigación del Cambio Climático, 1st ed.; Bravo, F., Ed.; Fundación Gas Natural: Barcelona, Spain, 2007; pp. 197–222. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy Series No. 9; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Sato, J.H.; Figueiredo, C.C.; Marchão, R.L.; Madari, B.E.; Benedito, L.E.C.; Busato, J.G.; Souza, D.M. Methods of soil organic carbon determination in Brazilian savannah soils. Soils Plant Nutr. 2014, 71, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Mercedes, E.; Hernan, S.R.; Pablo, B.; Hernán, E. Comparison of methods to determine organic carbon in soil. Soil Sci. 2014, 32, 13–19. [Google Scholar]
- Sarría, F.A.; Martínez, C.; Belmonte, F.; Fernández, M.A. Principales causas del abandono de cultivos en la Región de Murcia. In Abandono de Cultivos en la Región de Murcia. Consecuencias Ecogeomorfológicas; Romero, A., Ed.; Servicio de Publicaciones de la Universidad de Murcia: Murcia, Spain, 2016; pp. 203–226. [Google Scholar]
- Corbelle-Rico, E.; Crecente-Maseda, R.; Santé, I. Multi-scale assessment and spatial modelling of agricultural land abandonment in a European peripheral region: Galicia (Spain), 1956–2004. Land Use Policy 2012, 29, 493–501. [Google Scholar] [CrossRef]
- Tasser, E.; Walde, J.; Tappeiner, U.; Teutsch, A.; Noggler, W. Land Use Changes and Natural Reforestation in the Eastern Central Alps. Agric. Ecosyst. Environ. 2007, 118, 115–129. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Dong, L.; Wang, K.; Liu, Y.; Hai, X.; Deng, L. Plant productivity and microbial composition drive soil carbon and nitrogen sequestrations following cropland abandonment. Sci. Total Environ. 2020, 744, 140802. [Google Scholar] [CrossRef] [PubMed]
- Podmanicky, L.; Balázs, K.; Belényesi, M.; Centeri, C.; Kristóf, D.; Kohlheb, N. Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecol. Indic. 2011, 11, 4–15. [Google Scholar] [CrossRef]
- Van Hall, R.L.; Cammeraat, E.; Keesstra, S.D.; Zorn, M. Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape. Catena 2017, 149, 836–843. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The World State of Agriculture and Food; FAO: Roma, Italy, 2009; pp. 122–137. [Google Scholar]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Grau, J.M.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- ESYRCE (Encuesta sobre Superficies y Rendimientos de Cultivos). Resultados Autonómicos y Nacionales. Ministerio de Agricultura, Alimentación y Medio Ambiente de España. 2015. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 24 February 2022).
- Holland, J.A. The environmental consequences of adopting conservation tillage in Europe: Review the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Romanyà, J.; Rovira, P.; Vallejo, R. Análisis del carbono en los suelos agrícolas de España. Aspectos relevantes en relación a la reconversión a la agricultura ecológica en el ámbito mediterráneo. Ecosistemas 2007, 16, 50–57. [Google Scholar]
- Lugato, E.; Panagos, P.; Bampa, F.; Jones, A.; Montanarella, L. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob. Change Biol. 2014, 20, 313–326. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T.F. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Bignell, D.E.; Brown, V.K.; Brussaard, L.; Dangerfield, J.M.; Wall, D.; Wardle, D.; Coleman, D.C.; Giller, K.; Lavelle, P.; et al. Interactions between above and below ground biodiversity in terrestrial ecosystems: Patterns; mechanisms and feedbacks. BioScience 2000, 50, 1049–1061. [Google Scholar] [CrossRef]
- Desyatkin, A.R.; Shinya, I.D.; Roman, V.; Hatano, R. Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area-Central Yakutia. Atmosphere 2018, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Mazinanian, P. Forest Succession on Abandoned Agricultural Land and Its Carbon Stock. Master’s Thesis no. 286, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2017; p. 40. [Google Scholar]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Gabarrón-Galeote, M.A.; Trigalet, S.; van Wesemael, B. Effect of land abandonmenton soil organic fractions along a Mediterranean precipitation gradient. Geoderma 2015, 249, 69–78. [Google Scholar] [CrossRef]
- Robert, M. Soil Carbon Sequestration for Improved Land Management. In World Soil Resources Report; FAO: Rome, Italy, 2001; p. 75. [Google Scholar]
- González, E.J.; Veroz, O.; Gil, J.A.; Ordóñez, R.M. 4 per Thousand Initiative: Soil Organic Carbon as a Tool for Mitigation and Adaptation to Climate Change in Spain; Ministerio de Agriultura, Pesca y Medio Ambiente: Madrid, Spain, 2018; pp. 144–150.
%V | AD | C Concentration | SOC | |
---|---|---|---|---|
mg C 100 mg−1 | Mg C ha−1 | |||
H1 (0–10) | 11.11 ± 6.26 a | 1.37 ± 0.17 a | 3.23 ± 1.34 a | 22.27 ± 7.67 a |
H2 (10–20) | 12.10 ± 6.38 a | 1.58 ± 0.12 a | 1.42 ± 0.27 b | 11.76 ± 2.06 b |
H3 (20–30) | 14.05 ± 7.57 a | 1.48 ± 0.09 a | 1.25 ± 0.26 b | 9.38 ± 1.67 b |
TH (0–30) | 12.42 ± 1.50 | 1.47 ± 0.10 | 1.97 ± 1.09 | 43.89 ± 11.41 |
CS | AS | |
---|---|---|
Sand | 86 ± 13.2 a | 89 ± 12.5 a |
Silt | 11.5 ± 5.5 a | 8.6 ± 4.2 a |
Clay | 2.5 ± 0.5 a | 2.4 ± 0.6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alías, J.C.; Mejías, J.A.; Chaves, N. Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain. Land 2022, 11, 425. https://doi.org/10.3390/land11030425
Alías JC, Mejías JA, Chaves N. Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain. Land. 2022; 11(3):425. https://doi.org/10.3390/land11030425
Chicago/Turabian StyleAlías, Juan Carlos, José Antonio Mejías, and Natividad Chaves. 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain" Land 11, no. 3: 425. https://doi.org/10.3390/land11030425
APA StyleAlías, J. C., Mejías, J. A., & Chaves, N. (2022). Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain. Land, 11(3), 425. https://doi.org/10.3390/land11030425