A Multitemporal Fragmentation-Based Approach for a Dynamics Analysis of Agricultural Terraced Systems: The Case Study of Costa Viola Landscape (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Multitemporal Method
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Council of Europe. European Landscape Convention; Council of Europe: Florence, Italy, 2000. [Google Scholar]
- Latocha, A. Land-use changes and longer-term human-environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 2009, 108, 48–57. [Google Scholar] [CrossRef]
- Di Fazio, S.; Modica, G. Historic Rural Landscapes: Sustainable Planning Strategies and Action Criteria. The Italian Experience in the Global and European Context. Sustainability 2018, 10, 3834. [Google Scholar] [CrossRef] [Green Version]
- Latocha, A.; Reczyńska, K.; Gradowski, T.; Świerkosz, K. Landscape memory in abandoned areas—Physical and ecological perspectives (Central European mountains case study). Landsc. Res. 2019, 44, 600–613. [Google Scholar] [CrossRef]
- Troiano, C.; Buglione, M.; Petrelli, S.; Belardinelli, S.; De Natale, A.; Svenning, J.C.; Fulgione, D. Traditional free-ranging livestock farming as a management strategy for biological and cultural landscape diversity: A case from the southern apennines. Land 2021, 10, 957. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Moser, K.F.; Ahn, C.; Noe, G.B. The Influence of Microtopography on Soil Nutrients in Created Mitigation Wetlands. Restor. Ecol. 2009, 17, 641–651. [Google Scholar] [CrossRef]
- Agnoletti, M.; Errico, A.; Santoro, A.; Dani, A.; Preti, F. Terraced landscapes and hydrogeological risk. Effects of land abandonment in Cinque Terre (Italy) during Severe rainfall events. Sustainability 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y.; Lu, Y.; Sun, G.; Feng, T. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, 388–403. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Zhang, G.; Liu, Y.; Nie, X.; Li, Z.; Liu, J.; Zhu, D. Advantages and disadvantages of terracing: A comprehensive review. Int. Soil Water Conserv. Res. 2021, 9, 344–359. [Google Scholar] [CrossRef]
- Košulič, O.; Michalko, R.; Hula, V. Recent artificial vineyard terraces as a refuge for rare and endangered spiders in a modern agricultural landscape. Ecol. Eng. 2014, 68, 133–142. [Google Scholar] [CrossRef]
- Collier, M.J. Field Boundary Stone Walls as Exemplars of ‘Novel’ Ecosystems. Landsc. Res. 2013, 38, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Biddoccu, M.; Zecca, O.; Audisio, C.; Godone, F.; Barmaz, A.; Cavallo, E. Assessment of Long-Term Soil Erosion in a Mountain Vineyard, Aosta Valley (NW Italy). Land Degrad. Dev. 2018, 29, 617–629. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of Terraced Slopes to a Very Intense Rainfall Event and Relationships with Land Abandonment: A Case Study from Cinque Terre (Italy). Land Degrad. Dev. 2018, 29, 630–642. [Google Scholar] [CrossRef]
- Kladnik, D.; Kruse, A.; Komac, B. Terraced landscapes: An increasingly prominent cultural landscape type. Acta Geogr. Slov. 2017, 57, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; He, L.; Li, X.; Zhang, C.; Qian, C.; Li, J.; Zhang, A. Why are the Longji Terraces in Southwest China maintained well? A conservation mechanism for agricultural landscapes based on agricultural multi-functions developed by multi-stakeholders. Land Use Policy 2019, 85, 42–51. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–660. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wei, W.; Daryanto, S.; Tarolli, P. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Sci. Total Environ. 2020, 721, 137751. [Google Scholar] [CrossRef] [PubMed]
- United Nations Educational Scientific and Cultural Organisation (UNESCO). Convention Concerning the Protection of the World Cultural and Natural Heritage. 1972. Available online: https://whc.unesco.org/en/conventiontext/ (accessed on 10 January 2022).
- Agnoletti, M.; Santoro, A.; Gardin, L. Italian Historical Rural Landscapes; Environmental History; Agnoletti, M., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 1, Available online: http://link.springer.com/10.1007/978-94-007-5354-9 (accessed on 10 January 2022).
- Santoro, A.; Venturi, M.; Agnoletti, M. Agricultural heritage systems and landscape perception among tourists. The case of Lamole, Chianti (Italy). Sustainability 2020, 12, 3509. [Google Scholar] [CrossRef]
- Rössler, M. UNESCO and cultural landscape protection. In Cultural Landscapes of Universal Value Components of a Global Strategy; Von Droste, B., Plachter, H., Rössler, M., Eds.; Gustav Fischer Verlag: New York, NY, USA, 1993; pp. 42–49. [Google Scholar]
- United Nations Educational Scientific and Cultural Organisation (UNESCO). Operational Guidelines for the Implementation of the World Heritage Convention; UNESCO: Paris, France, 2021. [Google Scholar]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban-rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Modica, G.; Praticò, S.; Di Fazio, S. Abandonment of traditional terraced landscape: A change detection approach (a case study in Costa Viola, Calabria, Italy). Land Degrad. Dev. 2017, 28, 2608–2622. [Google Scholar] [CrossRef]
- Lasanta, T.; Errea, M.P.; Nadal-Romero, E. Traditional Agrarian Landscape in the Mediterranean Mountains. A Regional and Local Factor Analysis in the Central Spanish Pyrenees. Land Degrad. Dev. 2017, 1640, 1626–1640. [Google Scholar] [CrossRef]
- Lieskovský, J.; Bezák, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Dobrovodská, M.; Bürgi, M.; Gimmi, U. The abandonment of traditional agricultural landscape in Slovakia—Analysis of extent and driving forces. J. Rural Stud. 2015, 37, 75–84. [Google Scholar] [CrossRef]
- Garcìa-Ruiz, J.M.; Lana-Renault, N.N.; García-Ruiz, J.M.; Lana-Renault, N.N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Llorens, P.; Latron, J.; Gallart, F. Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountainous basin (High Llobregat, Eastern Pyrenees). Pirineos 1992, 139, 27–46. Available online: http://pirineos.revistas.csic.es/index.php/pirineos/article/view/180/179 (accessed on 10 January 2022). [CrossRef] [Green Version]
- Moreno-de-las-Heras, M.; Lindenberger, F.; Latron, J.; Lana-Renault, N.; Llorens, P.; Arnáez, J.; Romero-Díaz, A.; Gallart, F. Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology 2019, 333, 73–91. [Google Scholar] [CrossRef]
- Romero Díaz, A.; Marín Sanleandro, P.; Sánchez Soriano, A.; Belmonte Serrato, F.; Faulkner, H. The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena 2007, 69, 282–293. [Google Scholar] [CrossRef]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Tilliger, B.; Rodríguez-Labajos, B.; Bustamante, J.; Settele, J. Disentangling Values in the Interrelations between Cultural Ecosystem Services and Landscape Conservation—A Case Study of the Ifugao Rice Terraces in the Philippines. Land 2015, 4, 888–913. [Google Scholar] [CrossRef] [Green Version]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. A Fragmentation-Based Analysis of Costa Viola (Southern Italy) Agricultural Terraces. In Innovation in Urban and Regional Planning INPUT 2021 Lecture Notes in Civil Engineering; La Rosa, D., Privitera, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 242, pp. 152–159. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D.; Picuno, P. Historical gis as a tool for monitoring, preserving and planning forest landscape: A case study in a mediterranean region. Land 2021, 10, 851. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Boccia, L. A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 800–810. [Google Scholar] [CrossRef]
- Demoulin, A.; Bovy, B.; Rixhon, G.; Cornet, Y. An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. Geomorphology 2007, 91, 51–64. [Google Scholar] [CrossRef]
- Agnoletti, M.; Conti, L.; Frezza, L.; Santoro, A. Territorial analysis of the agricultural terraced landscapes of Tuscany (Italy): Preliminary results. Sustainability 2015, 7, 4564–4581. [Google Scholar] [CrossRef] [Green Version]
- Di Fazio, S.; Modica, G. The valorisation and characterisation of the agrarian terraced landscape. A case study in the Costa Viola area (Italy). In Proceedings of the International Conference of Agricultural Engineering CIGR-AgEng, Valencia, Spain, 8–12 July 2012. [Google Scholar]
- Modica, G.; Praticò, S.; Pollino, M.; Di Fazio, S. Geomatics in Analysing the Evolution of Agricultural Terraced Landscapes. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switerland, 2014; pp. 479–494. [Google Scholar] [CrossRef]
- Tarolli, P.; Sofia, G.; Calligaro, S.; Prosdocimi, M.; Preti, F.; Dalla Fontana, G. Vineyards in Terraced Landscapes: New Opportunities from Lidar Data. Land Degrad. Dev. 2015, 26, 92–102. [Google Scholar] [CrossRef]
- Lanucara, S.; Praticò, S.; Modica, G. Harmonization and Interoperable Sharing of Multi-temporal Geospatial Data of Rural Landscapes. In Smart Innovation, Systems and Technologies; Springer: Cham, Switerland, 2019; pp. 51–59. [Google Scholar] [CrossRef]
- Solano, F.; Praticò, S.; Piovesan, G.; Chiarucci, A.; Argentieri, A.; Modica, G. Characterising historical transformation trajectories of the forest landscape in Rome’s Metropolitan area (Italy) for effective planning of sustainability goals. Land Degrad. Dev. 2021, 32, 4708–4726. [Google Scholar] [CrossRef]
- Penghui, J.; Dengshuai, C.; Manchun, L. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. J. Rural Stud. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2009, 26, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Di Fazio, S.; De Montis, A. Implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment. J. Environ. Manag. 2021, 289, 112494. [Google Scholar] [CrossRef] [PubMed]
- Heider, K.; Rodriguez Lopez, J.M.; Balbo, A.L.; Scheffran, J. The state of agricultural landscapes in the Mediterranean: Smallholder agriculture and land abandonment in terraced landscapes of the Ricote Valley, southeast Spain. Reg. Environ. Chang. 2021, 21, 23. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2015; Available online: http://link.springer.com/10.1007/978-1-4939-2794-4 (accessed on 10 January 2022).
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H.; Iwanowski, M.; Estreguil, C.; Kozak, J.; Soille, P. Mapping landscape corridors. Ecol. Indic. 2007, 7, 481–488. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H.; Estreguil, C.; Kozak, J.; Wade, T.G.; Wickham, J.D. Mapping Spatial Patterns with Morphological Image Processing. Landsc. Ecol. 2007, 22, 171–177. [Google Scholar] [CrossRef]
- Graziani, L.; Maramai, A.; Tinti, S. A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat. Hazards Earth Syst. Sci. 2006, 6, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Andrieu, E.; Ladet, S.; Heintz, W.; Deconchat, M. History and spatial complexity of deforestation and logging in small private forests. Landsc. Urban Plan. 2011, 103, 109–117. [Google Scholar] [CrossRef]
- Solano, F.; Colonna, N.; Marani, M.; Pollino, M. Geospatial Analysis to Assess Natural Park Biomass Resources for Energy Uses in the Context of the Rome Metropolitan Area. In International Symposium on New Metropolitan Perspectives; Springer: Cham, Switzerland, 2019; pp. 173–181. [Google Scholar] [CrossRef]
- Buttner, G.; Kosztra, B.; Maucha, G.; Pataki, R.; Kleeschulte, S.; Hazeu, G.; Vittek, M.; Schroder, C.; Littkopf, A. Copernicus Land Monitoring Service. CORINE Land Cover User Manual. European Union, Copernicus Land Monitoring Service 2001, European Environment Agency (EEA). 2021, p. 129. Available online: https://www.eea.europa.eu/publications/COR0-landcover (accessed on 10 January 2022).
- McGarigal, K. Landscape Pattern Metrics. In Encyclopedia of Environmetrics; Wiley StatsRef Stat Ref Online: Hoboken, NJ, USA, 2014; pp. 1–13. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M. Urban-rural gradient detection using multivariate spatial analysis and landscape metrics. J. Agric. Eng. 2013, 44. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Olsen, L.M.; Washington-Allen, R.A.; Dale, V.H. Time-Series Analysis of Land Cover Using Landscape Metrics. GIScience Remote Sens. 2005, 42, 200–223. [Google Scholar] [CrossRef]
- Milne, B.T. “Fundamentals of Landscape Organization: Coupled Networks, Thresholds, and Allometry” in Integration of Societal and Landscape Heterogeneity: Problems and Solutions. In Proceedings of the 15th Annual Symposium of the US Regional Association and International Association of Landscape Ecology and Second Conference of the Walt Dineen Society, Ft. Lauderdale, FL, USA, 15–19 April 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 10 January 2022).
- Agnoletti, M.; Cargnello, G.; Gardin, L.; Santoro, A.; Bazzoffi, P.; Sansone, L.; Pezza, L.; Belfiore, N. Traditional landscape and rural development: Comparative study in three terraced areas in northern, central and southern Italy to evaluate the efficacy of GAEC standard 4.4 of cross compliance. Ital. J. Agron. 2011, 6, 16. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Rey Benayas, J.M. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2. [Google Scholar] [CrossRef] [Green Version]
- Marcheggiani, E.; Gulinck, H.; Galli, A. Detection of Fast Landscape Changes: The Case of Solar Modules on Agricultural Land. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 315–327. [Google Scholar] [CrossRef]
- Molinillo, M.; Lasanta, T.; García-Ruiz, J.M. Managing Mountainous Degraded Landscapes after Farmland Abandonment in the Central Spanish Pyrenees. Environ. Manag. 1997, 21, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, M.; Giourga, C. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 2007, 69, 274–281. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landf. 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Stavi, I.; Rozenberg, T.; Al-Ashhab, A.; Argaman, E.; Groner, E. Failure and collapse of ancient agricultural stone terraces: On-Site effects on soil and vegetation. Water 2018, 10, 1400. [Google Scholar] [CrossRef] [Green Version]
- Kizos, T.; Dalaka, A.; Petanidou, T. Farmers’ attitudes and landscape change: Evidence from the abandonment of terraced cultivations on Lesvos, Greece. Agric. Hum. Values 2010, 27, 199–212. [Google Scholar] [CrossRef]
- Petanidou, T.; Kizos, T.; Soulakellis, N. Socioeconomic dimensions of changes in the agricultural landscape of the Mediterranean basin: A case study of the abandonment of cultivation terraces on Nisyros Island, Greece. Environ. Manag. 2008, 41, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, M.; Psiloglou, B.E.; Giannakopoulos, C.; Mylona, P.V. Integration of Abandoned Lands in Sustainable Agriculture: The Case of Terraced Landscape Re-Cultivation in Mediterranean Island Conditions. Land 2021, 10, 457. [Google Scholar] [CrossRef]
Source | Year | Frame Data | GSD |
---|---|---|---|
Italian Military Geographic Institute (IGMI) | 1955 1976 | B/W aerial photos | 0.5 m |
National geoportals of the Italian Ministry of the Environment, Land, and Sea | 1989 | B/W digital aerial orthophotos as WMS service | 1 m |
1998 | RGB digital aerial orthophotos as WMS service | ||
Agency for Agricultural Payments of the Calabria Region (ARCEA) | 2008 2012 | RGB digital orthophotos | 0.5 m |
DigitalGlobe WorldView-2 satellite | 2014 | RGB digital orthomosaic |
Morphological Spatial Pattern Class | Description |
---|---|
Core | Interior area, far from the non-core area, without its perimeter |
Islet | Disjointed areas, too small to contain core |
Perforation | The internal perimeter of opened core areas |
Edge | The external perimeter of core areas |
Loop | Small areas connecting to the same core area |
Bridge | Small areas connecting different core areas |
Branch | Small areas connected only at one and to other classes |
Core-opening | Perforation inside core areas |
Border-opening | Opening along the edges |
Year | Area (ha) | Number of Patches (n) | Mean Patch Size (ha) |
---|---|---|---|
1955 | 813.25 | 98 | 8.30 |
1976 | 409.47 | 148 | 2.77 |
1989 | 302.59 | 125 | 2.42 |
1998 | 190.44 | 114 | 1.67 |
2008 | 142.29 | 157 | 0.91 |
2012 | 130.30 | 147 | 0.89 |
2014 | 118.79 | 122 | 0.97 |
Morphological Spatial Pattern Class | 1955 | 1976 | 1989 | 1998 | 2008 | 2012 | 2014 |
---|---|---|---|---|---|---|---|
[ha] | |||||||
Core* | 630.54 | 273.64 | 195.09 | 105.19 | 68.93 | 64.59 | 60.68 |
*sCore | 12.20 | 20.69 | 23.06 | 23.59 | 20.13 | 16.93 | 14.59 |
*mCore | 158.24 | 136.19 | 113.85 | 56.81 | 48.80 | 47.66 | 46.09 |
*lCore | 460.10 | 116.76 | 58.18 | 24.78 | 0 | 0 | 0 |
Islet | 0.46 | 1.53 | 1.02 | 0.21 | 1.87 | 1.85 | 1.14 |
Perforation | 1.64 | 0 | 0 | 0 | 0 | 0 | 0 |
Edge | 152.04 | 106.38 | 82.85 | 58.86 | 49.42 | 44.47 | 39.77 |
Loop | 2.09 | 2.51 | 2.08 | 1.19 | 1.46 | 1.43 | 1.15 |
Bridge | 8.78 | 7.52 | 5.59 | 4.37 | 5.03 | 4.54 | 3.87 |
Branch | 14.39 | 17.20 | 14.75 | 11.11 | 13.37 | 11.46 | 10.34 |
Core-opening | 3.54 | 0 | 0 | 0 | 0 | 0 | 0 |
Border-opening | 8.24 | 4.64 | 1.44 | 1.22 | 0.50 | 0.39 | 0.40 |
Morphological Spatial Pattern Class | 1955 | 1976 | 1989 | 1998 | 2008 | 2012 | 2014 |
---|---|---|---|---|---|---|---|
(%) | |||||||
Core* | 76.74 | 66.19 | 64.43 | 57.75 | 49.03 | 50.18 | 51.71 |
*sCore | 1.93 | 7.56 | 11.82 | 22.43 | 29.20 | 26.21 | 24.04 |
*mCore | 25.10 | 49.77 | 58.36 | 54.01 | 70.80 | 73.79 | 75.96 |
*lCore | 72.97 | 42.67 | 29.82 | 23.56 | 0 | 0 | 0 |
Islet | 0.06 | 0.37 | 0.34 | 0.11 | 1.33 | 1.43 | 0.97 |
Perforation | 0.20 | 0 | 0 | 0 | 0 | 0 | 0 |
Edge | 18.50 | 25.73 | 27.36 | 32.31 | 35.16 | 35.44 | 33.89 |
Loop | 0.25 | 0.61 | 0.69 | 0.65 | 1.04 | 1.11 | 0.98 |
Bridge | 1.07 | 1.82 | 1.85 | 2.40 | 3.57 | 3.53 | 3.29 |
Branch | 1.75 | 4.16 | 4.87 | 6.10 | 9.51 | 8.90 | 8.81 |
Core-opening | 0.43 | 0 | 0 | 0 | 0 | 0 | 0 |
Border-opening | 1.01 | 1.12 | 0.48 | 0.67 | 0.36 | 0.30 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. A Multitemporal Fragmentation-Based Approach for a Dynamics Analysis of Agricultural Terraced Systems: The Case Study of Costa Viola Landscape (Southern Italy). Land 2022, 11, 482. https://doi.org/10.3390/land11040482
Praticò S, Solano F, Di Fazio S, Modica G. A Multitemporal Fragmentation-Based Approach for a Dynamics Analysis of Agricultural Terraced Systems: The Case Study of Costa Viola Landscape (Southern Italy). Land. 2022; 11(4):482. https://doi.org/10.3390/land11040482
Chicago/Turabian StylePraticò, Salvatore, Francesco Solano, Salvatore Di Fazio, and Giuseppe Modica. 2022. "A Multitemporal Fragmentation-Based Approach for a Dynamics Analysis of Agricultural Terraced Systems: The Case Study of Costa Viola Landscape (Southern Italy)" Land 11, no. 4: 482. https://doi.org/10.3390/land11040482
APA StylePraticò, S., Solano, F., Di Fazio, S., & Modica, G. (2022). A Multitemporal Fragmentation-Based Approach for a Dynamics Analysis of Agricultural Terraced Systems: The Case Study of Costa Viola Landscape (Southern Italy). Land, 11(4), 482. https://doi.org/10.3390/land11040482