Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security
Abstract
:1. Introduction
2. Major Resources That Affect Food Production
2.1. Water Resources
2.2. Arable Land Resources
2.3. Soil Quality
2.4. Energy
3. Carrying Capacity of These Resources
3.1. Water Limits Food Production
3.2. Land Resources Limit Food Production
4. Impact on Food Security
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farmery, A.K.; Allison, E.H.; Andrew, N.L.; Troell, M.; Voyer, M.; Campbell, B.; Eriksson, H.; Fabinyi, M.; Song, A.M.; Steenbergen, D. Blind Spots in Visions of a “Blue Economy” Could Undermine the Ocean’s Contribution to Eliminating Hunger and Malnutrition. One Earth 2021, 4, 28–38. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns. 2019. Available online: https://www.wfp.org/publications/2019-state-food-security-and-nutrition-world-sofi-safeguarding-against-economic (accessed on 15 July 2019).
- ÓhAiseadha, C.; Quinn, G.; Connolly, R.; Connolly, M.; Soon, W. Energy and climate policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies 2020, 13, 4839. [Google Scholar] [CrossRef]
- Schot, J.; Steinmueller, W.E. Three Frames for Innovation Policy: R&D, Systems of Innovation and Transformative Change. Res. Policy 2018, 47, 1554–1567. [Google Scholar]
- Xie, W.; Xiong, W.; Pan, J.; Ali, T.; Cui, Q.; Guan, D.; Meng, J.; Mueller, N.D.; Lin, E.; Davis, S.J. Decreases in global beer supply due to extreme drought and heat. Nat. Plants 2018, 4, 964–973. [Google Scholar] [CrossRef]
- Harwood, W.A. An Introduction to Barley: The Crop and the Model. In Barley; Humana Press: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Lillemo, M.; Reitan, L.; Bjørnstad, Å. Increasing Impact of Plant Breeding on Barley Yields in Central Norway from 1946 to 2008. Plant Breed. 2010, 129, 484–490. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Hannaford, J.; Reig, F.; Peña-Angulo, D.; Tramblay, Y.; Trigo, R.M.; Mac Donald, N.; Luna, Y.; et al. Long-Term Variability and Trends in Meteorological Droughts in Western Europe (1851–2018). Int. J. Climatol. 2021, 41, E690–E717. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Scanlon, B.R.; Sun, A.Y.; Wang, K. A Modified Evaporation Model Indicates That the Effects of Air Warming on Global Drying Trends Have Been Overestimated. J. Geophys. Res. Atmos. 2021, 126, e2021JD035153. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Turner, N.C.; Xing, Y.; Li, M.; Guo, T. Determining Optimal Mulching, Planting Density, and Nitrogen Application to Increase Maize Grain Yield and Nitrogen Translocation Efficiency in Northwest China. BMC Plant Biol. 2020, 20, 282. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.; Calderhead, A.I. Glacial Melt in the Canadian Rockies and Potential Effects on Groundwater in the Plains Region. Water 2022, 14, 733. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Famiglietti, J.S.; Swenson, S.; Rodell, M. Uncertainty in Global Groundwater Storage Estimates in a Total Groundwater Stress Framework. Water Resour. Res. 2015, 51, 5198–5216. [Google Scholar] [CrossRef]
- Clarke, J.T.; Mayyasi, M.; Bhattacharyya, D.; Schneider, N.M.; McClintock, W.E.; Deighan, J.I.; Stewart, A.I.F.; Chaufray, J.-Y.; Chaffin, M.S.; Jain, S.K.; et al. Variability of D and H in the Martian Upper Atmosphere Observed with the Maven Iuvs Echelle Channel. J. Geophys. Res. Space Phys. 2017, 122, 2336–2344. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater Use for Irrigation—A Global Inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations. J. Geodyn. 2012, 59–60, 143–156. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and Four Tree-Based Ensemble Models for Predicting Daily Reference Evapotranspiration Using Limited Meteorological Data in Different Climates of China. Agr. Forest. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D. Global Groundwater Wells at Risk of Running Dry. Science 2021, 372, 418–421. [Google Scholar] [CrossRef]
- Mukherjee, A.; Saha, D.; Harvey, C.F.; Taylor, R.G.; Ahmed, K.M.; Bhanja, S.N. Groundwater Systems of the Indian Sub-Continent. J. Hydrol. Reg. Stud. 2015, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Robertson, B.; Pinstrup-Andersen, P. Global Land Acquisition: Neo-Colonialism or Development Opportunity? Food Secur. 2010, 2, 271–283. [Google Scholar] [CrossRef]
- Jain, M.; Fishman, R.; Mondal, P.; Galford, G.L.; Bhattarai, N.; Naeem, S.; Lall, U.; Balwinder-Singh; DeFries, R.S. Groundwater Depletion Will Reduce Cropping Intensity in India. Sci. Adv. 2021, 7, eabd2849. [Google Scholar] [CrossRef] [PubMed]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and Implications of Groundwater Depletion in India: A Review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Bhattarai, N.; Pollack, A.; Lobell, D.B.; Fishman, R.; Singh, B.; Dar, A.; Jain, M. The Impact of Groundwater Depletion on Agricultural Production in India. Environ. Res. Lett. 2021, 16, 085003. [Google Scholar] [CrossRef]
- Balasubramanya, S.; Stifel, D. Water, agriculture & poverty in an era of climate change: Why do we know so little? Food Policy 2020, 93, 101905. [Google Scholar]
- Sekhri, S. Agricultural Trade and Depletion of Groundwater. J. Dev. Econ. 2022, 156, 102800. [Google Scholar] [CrossRef]
- King, G.; Pan, J.; Roberts, M.E. How Censorship in China Allows Government Criticism but Silences Collective Expression. Am. Polit. Sci. Rev. 2013, 107, 326–343. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.; Garduño, H. Groundwater-resource governance: Are governments and stakeholders responding to the challenge? Hydrogeol. J. 2013, 21, 317–320. [Google Scholar] [CrossRef]
- Blakeslee, D.; Fishman, R.; Srinivasan, V. Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India. Am. Econ. Rev. 2020, 110, 200–224. [Google Scholar] [CrossRef] [Green Version]
- Kishore, P.; Singh, D.R.; Chand, P.; Prakash, P. What Determines Groundwater Depletion in India? A Meso Level Panel Analysis. J. Soil Water Conserv. 2020, 19, 388–397. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A. In Situ and Satellite-Based Estimates of Usable Groundwater Storage across India: Implications for Drinking Water Supply and Food Security. Adv. Water Resour. 2019, 126, 15–23. [Google Scholar] [CrossRef]
- Carrard, N.; Foster, T.; Willetts, J. Groundwater as a Source of Drinking Water in Southeast Asia and the Pacific: A Multi-Country Review of Current Reliance and Resource Concerns. Water 2019, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Zisopoulou, K.; Panagoulia, D. An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water 2021, 13, 1693. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.; Sperna Weiland, F.C.; Chao, B.F.; Wu, Y.H.; Bierkens, M.F.P. Past and Future Contribution of Global Groundwater Depletion to Sea-Level Rise. Geophys. Res. Lett. 2012, 39, L09402. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Aspinall, W.P. An Expert Judgement Assessment of Future Sea Level Rise from the Ice Sheets. Nat. Clim. Change 2013, 3, 424–427. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; Declerck, F.; Shah, M.; Steduto, P.; et al. Sustainable Intensification of Agriculture for Human Prosperity and Global Sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Yang, Y.; Watanabe, M.; Zhang, X. Simulation of Groundwater Dynamics in the North China Plain by Coupled Hydrology and Agricultural Models. Hydrol. Processes 2006, 20, 3441–3466. [Google Scholar] [CrossRef]
- Han, S.; Tian, F.; Liu, Y.; Duan, X. Socio-Hydrological Perspectives of the Co-Evolution of Humans and Groundwater in Cangzhou, North China Plain. Hydrol. Earth Syst. Sci. 2017, 21, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the Us High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Van Beek, L.P.; Bierkens, M.F. Nonsustainable Groundwater Sustaining Irrigation: A Global Assessment. Water Resour. Res. 2012, 48, W00L06. [Google Scholar] [CrossRef]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater Depletion Embedded in International Food Trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-S. The Challenges and Strategies of Food Security under Rapid Urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zheng, X.; Wang, Y.; Cao, Z.; Li, Y.; Wu, W.; Liu, Z.; Liu, H.; Li, R. Land Consolidation Engineering and Modern Agriculture: A Case Study from Soil Particles to Agricultural Systems. J. Geogr. Sci. 2018, 28, 1896–1906. [Google Scholar]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in Urban Land Expansion, Density, and Land Transitions from 1970 to 2010: A Global Synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M.; Li, R. Toward to Economic Growth without Emission Growth: The Role of Urbanization and Industrialization in China and India. J. Clean. Prod. 2018, 205, 499–511. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban Expansion and form Changes Across African Cities with a Global Outlook: Spatiotemporal Analysis of Urban Land Densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- d’Amour, B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Zhang, T.; Liu, D.; Xu, H. How Will Innovation-Driven Development Policy Affect Sustainable Urban Land Use: Evidence from 230 Chinese Cities. Sustain. Cities Soc. 2021, 72, 103021. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Lal, R. Managing Soils for Negative Feedback to Climate Change and Positive Impact on Food and Nutritional Security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Lal, R. Aligning Science and Policy of Regenerative Agriculture. Soil Sci. Soc. Am. J. 2020, 84, 1808–1820. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwary, P.; Chandran, P.; Singh, S.K.; Ray, S.K.; Butte, P.; Parhad, V. A Conceptual Model of Natural Land Degradation Based on Regressive Pedogenesis in Semiarid Tropical Environments. Land Degrad. Dev. 2018, 29, 2554–2567. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. A System Approach to Conservation Agriculture. J. Soil Water Conserv. 2015, 70, 82A–88A. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Shiny, R.; Geetha, N.; Vijith, H. Spatial Prediction of Soil Erosion Risk by Remote Sensing, Gis and Rusle Approach: A Case Study of Siruvani River Watershed in Attapady Valley, Kerala, India. Environ. Earth Sci. 2011, 64, 965–972. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Chang, X.; Huang, B.; Nie, X.; Liu, C.; Liu, L.; Wang, D.; Jiang, J. The Mineralization and Sequestration of Organic Carbon in Relation to Agricultural Soil Erosion. Geoderma 2018, 329, 73–81. [Google Scholar] [CrossRef]
- Tuo, D.; Xu, M.; Gao, G. Relative Contributions of Wind and Water Erosion to Total Soil Loss and Its Effect on Soil Properties in Sloping Croplands of the Chinese Loess Plateau. Sci. Total Environ. 2018, 633, 1032–1040. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Rojas, R.V.; Achouri, M.; Maroulis, J.; Caon, L. Healthy Soils: A Prerequisite for Sustainable Food Security. Environ. Earth Sci. 2016, 75, 180. [Google Scholar] [CrossRef]
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sust. Energ. Rev. 2012, 16, 878–897. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting. Renew. Sustain. Energ. Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Kaur, N.; Vashist, K.K.; Brar, A.S. Energy and Productivity Analysis of Maize Based Crop Sequences Compared to Rice-Wheat System under Different Moisture Regimes. Energy 2020, 216, 119286. [Google Scholar] [CrossRef]
- Hoeppner, J.W.; Entz, M.H.; McConkey, B.G.; Zentner, R.P.; Nagy, C.N. Energy Use and Efficiency in Two Canadian Organic and Conventional Crop Production Systems. Renew. Agric. Food Syst. 2006, 21, 60–67. [Google Scholar] [CrossRef]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. BioScience 2013, 63, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Heath, L.S.; Smith, J.E.; Skog, K.E.; Nowak, D.J.; Woodall, C.W. Managed Forest Carbon Estimates for the US Greenhouse Gas Inventory, 1990—2008. J. Forest. 2011, 109, 167–173. [Google Scholar]
- Zhang, W.-F.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L.; et al. New Technologies Reduce Greenhouse Gas Emissions from Nitrogenous Fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the Soil Environment from Excessive Application of Fertilizers and Manures to Two Contrasting Intensive Cropping Systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of Fertilizer Application on Soil Heavy Metal Concentration. Environ. Monit. Assess. 2008, 160, 83–89. [Google Scholar] [CrossRef]
- Jankowski, K.; Neill, C.; Davidson, E.A.; Macedo, M.N.; Costa, C.; Galford, G.L.; Santos, L.M.; Lefebvre, P.; Nunes, D.; Cerri, C.E.P.; et al. Deep Soils Modify Environmental Consequences of Increased Nitrogen Fertilizer Use in Intensifying Amazon Agriculture. Sci. Rep. 2018, 8, 13478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirt, H. Healthy Soils for Healthy Plants for Healthy Humans. EMBO Rep. 2020, 21, e51069. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Mattupalli, C.; Eversole, K.; Leach, J.E. Enabling Sustainable Agriculture through Understanding and Enhancement of Microbiomes. New Phytol. 2021, 230, 2129–2147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lu, X.; Yang, J.; Zhang, D.; Ren, C.; Wang, X.; Zhang, X.; Deng, J. Effects of Nitrogen Addition on Microbial Carbon Use Efficiency of Soil Aggregates in Abandoned Grassland on the Loess Plateau of China. Forests 2022, 13, 276. [Google Scholar] [CrossRef]
- Harrison, I.J.; Green, P.A.; Farrell, T.A.; Juffe-Bignoli, D.; Sáenz, L.; Vörösmarty, C.J. Protected Areas and Freshwater Provisioning: A Global Assessment of Freshwater Provision, Threats and Management Strategies to Support Human Water Security. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 103–120. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Gleeson, T. Regional Strategies for the Accelerating Global Problem of Groundwater Depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Cohen, J.E. How Many People Can the Earth Support? Sciences 1995, 35, 18–23. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources. Earth Syst. Dyn. Discuss. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Vogels, M.F.A.; de Jong, S.M.; Sterk, G.; Wanders, N.; Bierkens, M.F.P.; Addink, E.A. An Object-Based Image Analysis Approach to Assess Irrigation-Water Consumption from Modis Products in Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102067. [Google Scholar] [CrossRef]
- Comas, L.H.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water Productivity under Strategic Growth Stage-Based Deficit Irrigation in Maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Huang, J.; Ridoutt, B.G.; Sun, Z.; Lan, K.; Thorp, K.R.; Wang, X.; Yin, X.; Huang, J.; Chen, F.; Scherer, L. Balancing Food Production within the Planetary Water Boundary. J. Clean. Prod. 2020, 253, 119900. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing Yield Gaps in China by Empowering Smallholder Farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.Y.; Peng, K.; Zhou, S.L.; Shao, L.; Wu, X.F.; Wei, W.D.; Liu, S.Y.; Li, Z.; Li, J.S.; et al. Global Land-Water Nexus: Agricultural Land and Freshwater Use Embodied in Worldwide Supply Chains. Sci. Total Environ. 2018, 613–614, 931–943. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Li, Z. Assessment of Efficiency and Potentiality of Agricultural Resources in Central Asia. J. Geogr. Sci. 2018, 28, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Pervez, M.S.; Budde, M.; Rowland, J. Mapping Irrigated Areas in Afghanistan over the Past Decade Using Modis Ndvi. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of Crop Production from Polluted Lands. Energy Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The Role of Glomalin in Mitigation of Multiple Soil Degradation Problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for Redesigned and Sustainable Agricultural Systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Delivering Food Security without Increasing Pressure on Land. Glob. Food Secur. 2012, 2, 18–23. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Gregory, P.J.; Ingram, J.S.; Andersson, R.; Betts, R.A.; Brovkin, V.; Chase, T.N.; Grace, P.R.; Gray, A.J.; Hamilton, N.; Hardy, T.B.; et al. Environmental Consequences of Alternative Practices for Intensifying Crop Production. Agric. Ecosyst. Environ. 2002, 88, 279–290. [Google Scholar] [CrossRef]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture Production as a Major Driver of the Earth System Exceeding Planetary Boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Lapola, D.M.; Martinelli, L.A.; Peres, C.A.; Ometto, J.P.H.B.; Ferreira, M.E.; Nobre, C.A.; Aguiar, A.P.D.; Bustamante, M.M.C.; Cardoso, M.F.; Costa, M.H.; et al. Pervasive Transition of the Brazilian Land-Use System. Nat. Clim. Change 2014, 4, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Edreira, J.I.R.; Guilpart, N.; Sadras, V.; Cassman, K.G.; van Ittersum, M.K.; Schils, R.L.M.; Grassini, P. Water Productivity of Rainfed Maize and Wheat: A Local to Global Perspective. Agric. For. Meteorol. 2018, 259, 364–373. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Shaket, T.; Cotler, B.D.; Gilutz, S.; Giddings, D.; Raymo, M.E.; Milo, R. A Model for ‘Sustainable’ Us Beef Production. Nat. Ecol. Evol. 2018, 2, 81–85. [Google Scholar] [CrossRef]
- Acevedo, M.F.; Harvey, D.R.; Palis, F.G. Food Security and the Environment: Interdisciplinary Research to Increase Productivity While Exercising Environmental Conservation. Glob. Food Secur. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Lehman, C.; Trost, J.J. Sustainable Intensification of High-Diversity Biomass Production for Optimal Biofuel Benefits. Nat. Sustain. 2018, 1, 686–692. [Google Scholar] [CrossRef]
- Bommarco, R.; Vico, G.; Hallin, S. Exploiting Ecosystem Services in Agriculture for Increased Food Security. Glob. Food Secur. 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving Agricultural Water Productivity to Ensure Food Security in China under Changing Environment: From Research to Practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In Quest of Reducing the Environmental Impacts of Food Production and Consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The Paradox of Irrigation Efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Guardia, G.; Cangani, M.T.; Andreu, G.; Sanz-Cobena, A.; García-Marco, S.; Álvarez, J.M.; Recio-Huetos, J.; Vallejo, A. Effect of Inhibitors and Fertigation Strategies on Ghg Emissions, No Fluxes and Yield in Irrigated Maize. Field Crops Res. 2017, 24, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 121–173. [Google Scholar]
- Fang, Y.; Xiong, L. General Mechanisms of Drought Response and Their Application in Drought Resistance Improvement in Plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef]
- Ding, Z.; Fu, L.; Tie, W.; Yan, Y.; Wu, C.; Hu, W.; Zhang, J. Extensive Post-Transcriptional Regulation Revealed by Transcriptomic and Proteomic Integrative Analysis in Cassava under Drought. J. Agric. Food Chem. 2019, 67, 3521–3534. [Google Scholar] [CrossRef]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive Metabolic Profiling and Phenotyping of Interspecific Introgression Lines for Tomato Improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef]
- Keurentjes, J.J.B.; Fu, J.; de Vos, C.H.R.; Lommen, A.; Hall, R.D.; Bino, R.J.; van der Plas, L.H.W.; Jansen, R.C.; Vreugdenhil, D.; Koornneef, M. The Genetics of Plant Metabolism. Nat. Genet. 2006, 38, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Márquez, I.; Toledo, V.M. Sustainability Science: A Paradigm in Crisis? Sustainability 2020, 12, 2802. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Walker, A.P.; De Kauwe, M.G.; Bastos, A.; Belmecheri, S.; Georgiou, K.; Keeling, R.F.; McMahon, S.M.; Medlyn, B.E.; Moore, D.J.P.; Norby, R.J.; et al. Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing Atmospheric CO2. New Phytol. 2021, 229, 2413–2445. [Google Scholar] [CrossRef]
- Walker, L.P.; Buhler, D. Catalyzing Holistic Agriculture Innovation through Industrial Biotechnology. Ind. Biotechnol. 2020, 16, 189–208. [Google Scholar] [CrossRef]
- Gao, C. Genome Engineering for Crop Improvement and Future Agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Dobrowolski, J.W.; Czech, T.; Neugschwandtner, R.W.; Gambuś, F.; Kot, D. Chapter One—The Use of Laser Biotechnology in Agri-Environment as a Significant Agronomical Advance Increasing Crop Yield and Quality. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–33. [Google Scholar]
- Kraemer, G.; Camps-Valls, G.; Reichstein, M.; Mahecha, M.D. Summarizing the State of the Terrestrial Biosphere in Few Dimensions. Biogeosciences 2020, 17, 2397–2424. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. https://doi.org/10.3390/land11040484
Wang X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land. 2022; 11(4):484. https://doi.org/10.3390/land11040484
Chicago/Turabian StyleWang, Xiukang. 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security" Land 11, no. 4: 484. https://doi.org/10.3390/land11040484
APA StyleWang, X. (2022). Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land, 11(4), 484. https://doi.org/10.3390/land11040484