Study on the Evolutionary Features and Driving Factors of Land-Use System in Xilingol, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Methodology
2.2.1. Data Sources and Preprocessing
2.2.2. Construct Complex Network Model
- 1.
- Betweenness centrality
- 2.
- Average distance (AveD)
2.2.3. Canonical Correspondence Analysis (CCA)
3. Results
3.1. Evolutionary Features of Land-Use System in Xilingol League
3.1.1. Change Characteristics of Ecosystem Function
3.1.2. Identification of Key Land Types in the Land-Use Complex System
3.1.3. Analysis on the Overall Structural Characteristics of Land-Use Change Network
3.2. Driving Forces behind the Transformation in Types of Land-Use in Xilingol
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Yu, G.; He, Z. Entropies of the Chinese land use/cover change from 1990 to 2010 at a county level. Entropy 2017, 19, 51. [Google Scholar] [CrossRef]
- Wu, L.N.; Yang, S.T.; Liu, X.Y. Response analysis of land use change to the degree of human activities in Beiluo River basin since 1976. Acta Geogr. Sin. 2014, 69, 54–63. [Google Scholar]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Zhuang, D.F. A study on the spatial-temporal dynamic changes of land-useand driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar]
- Turner, B.L., II; Moss, R.H.; Skole, D.L. Relating Land Use and Global Land Cover Change: A Proposal for an IGBP-HDP Core Project; IGBP Report No. 24; HDP Report No. 5.; International Geosphere-Biosphere Programme: Stockholm, Sweden, 1993; 65p. [Google Scholar]
- Katarzyna, C.; Tomasz, N. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar]
- Li, J.J.; Luo, N.S. The double threshold effects of the urbanization on process on urban land use efficiency. Econ. Geogr. 2015, 35, 156–162. [Google Scholar]
- Liu, Y.Q.; Long, H.L. Land use transitions and their dynamic mechanism in the Huang-Huai-Hai Plain. Acta Geogr. Sin. 2016, 71, 666–679. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.G.; Zhou, S.L.; Zhou, B.B.; Dai, L.; Chang, T.; Bao, G.Y.; Zhou, H.; Li, Z. Land use transformation and its eco-environmental response in process of the regional development: A case study of Jiangsu province. Sci. Geogr. Sin. 2013, 33, 1442–1449. [Google Scholar]
- Xu, L.H.; Wang, H.H.; Zhang, J.C.; Yue, W.Z. Spatial-temporal dynamics of land use in the hangzhou city during the recent 15 years. Econ. Geogr. 2014, 34, 135–142. [Google Scholar]
- Yang, J.; Xie, P.; Xi, J.C.; Ge, Q.S.; Li, X.M.; Ma, Z.D. LUCC simulation based on the cellular automata simulation: A case study of Dalian economic and technological development zone. Acta Geogr. Sin. 2015, 70, 461–475. [Google Scholar]
- Sun, J.; Zhang, L.H.; Peng, C.L.; Peng, Z.R.; Xu, M. CA-based urban land use prediction model: A case study on orange county, Florida, US. J. Transp. Syst. Eng. Inf. Technol. 2012, 6, 85–92. [Google Scholar] [CrossRef]
- Lei, S.; Quan, B.; Ou, Y.H.; Bai, Y.J.; Xie, J.N. Prediction and comparison of the land use changes in shangsha city and quanzhou city based on Markov model. Res. Soil Water Conserv. 2013, 20, 224–229. [Google Scholar]
- Anderson, J.C.; Hakansson, H.; Johanson, J. Dyadic business relationships within a business network context. J. Mark. 1994, 58, 1–15. [Google Scholar] [CrossRef]
- Guan, M.; Bo, L. Research and analysis of complex networks statistical regularity for internet. Comput. Eng. 2008, 34, 92–94. [Google Scholar]
- Liu, H.K.; Zhou, T. Empirical study of Chinese city airline network. Acta Phys. Sin. 2007, 56, 106–112. [Google Scholar]
- Xu, J.X.; Peng, H.O.; Wang, X.M.; Wang, Y.H. Epidemic spreading with time delay in complex networks. Phys. A 2006, 367, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.Q.; An, H.Z.; Chen, Y.R.; Gao, X.Y. Research on evolution of international iron ore trade based on complex network theory. Econ. Geogr. 2013, 33, 92–97. [Google Scholar]
- Han, H.R.; Yang, C.F.; Song, J.P. The Spatial-temporal characteristic of land use change in Beijing and its driving mechanism. Econ. Geogr. 2015, 35, 148–154. [Google Scholar]
- Qiao, W.F.; Sun, Z.H.; Shao, F.R.; Ni, T.; Feng, S.S.; Zhang, G. Analysis evolution and driving factors of land use structure in highly urbanized area: A case study of suzhou. Resour. Environ. Yangtze Basin 2012, 21, 557–564. [Google Scholar]
- Zhang, H.Y.; Zhao, X.Y.; Cai, Y.L.; Yin, J. The driving mechanism of human forces to the land-use change in the karst mountain area: The case study of Guizhou province. Geogr. Res. 1999, 18, 25–31. [Google Scholar]
- Zhou, Q.; Zhang, Z.M.; Ou, X.K.; Yang, M.Y. Multivariable analysis of socio-econ mic factors to drive the land use change in the area of manwan dam. Acta Ecol. Sin. 2010, 30, 165–173. [Google Scholar]
- Kong, Y.; Jiang, H.; Zhang, X.Y.; Jin, J.X.; Xiao, Z.Y.; Cheng, M.M. The comparison of ecological geographical regionalization in China based on Holdridge and CCA analysis. Acta Ecol. Sin. 2013, 3, 3825–3836. [Google Scholar] [CrossRef]
- Li, Q.H.; Han, B.P. Structure and dynamics of phytoplankton community based CCA analysis in a pumped storage reservoir. Acta Ecol. Sin. 2007, 27, 2355–2364. [Google Scholar]
- Yang, S.C.; Pang, H.C.; Wang, C.B.; Li, Y.Y.; Huo, L.; Jiang, W.L. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of northwest China. Sci. Agric. Sin. 2014, 47, 100–110. [Google Scholar]
- Zhou, X.; Zuo, X.A.; Zhao, X.Y.; Wang, S.K.; Liu, C.; Zhang, J.; Lv, P.; Zhang, J.P. Comparison analyses of DCA, CCA and DCCA on relationships between plant community distribution and soil properties of Horqin Sandy Land. Chin. J. Ecol. 2015, 34, 947–954. [Google Scholar]
- Liu, J.Y.; Liu, M.L.; Tian, H.Q.; Zhuang, D.F.; Zhang, Z.X.; Zhang, W.; Tang, X.M.; Deng, X.Z. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Chen, X.R. A brief review of complex networks and its application. Syst. Eng. 2005, 23, 1–7. [Google Scholar]
- John, S. Social Network Analysis; Chongqing University Press: Chongqing, China, 2007; pp. 72–73. [Google Scholar]
- Leng, B.R.; Yang, Y.C.; Li, Y.J.; Zhao, S.D. Spatial characteristics and complex analysis: A perspective from basic activities of urban networks in China. J. Geogr. Sci. 2011, 66, 199–211. [Google Scholar]
- Zhang, K.; Zhang, B.L.; Feng, C.Y.; Liang, K. A study of land use and land cover change in xiaoqing river watershed based on complex network. Bull. Soil Water Conserv. 2013, 33, 81–84. [Google Scholar]
- Yan, E.P.; Lin, H.; Dang, Y.F.; Xia, C.Z. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000–2012. Acta Ecol. Sin. 2014, 34, 5007–5020. [Google Scholar]
- Wu, D.; Gong, G.L.; Shao, Q.Q.; Cao, W. Ecological effects assessment of Beijing and Tianjin sandstorm source control project. J. Arid. Land Resour. Environ. 2016, 30, 117–123. [Google Scholar]
- Zhou, Y. Lake Changes and Their Causes Analysis on the Mongolia Plateau from 2000 to 2015. Master’s Thesis, University of Geosciences, Wuhan, China, 2018; pp. 1–74. [Google Scholar]
- Tao, S.L.; Fang, J.Y.; Zhao, X.; Zhao, S.Q.; Hu, H.F.; Tang, Z.Y.; Wang, Z.H.; Guo, Q.H. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, M.C.; Zhang, J.Q.; Yang, G.L. Characteristics of commercial bank branch networks based on complex networks theory: A case study on Bank of China in Beijing. Prog. Geogr. 2013, 32, 1732–1741. [Google Scholar]
- Liu, J.Y.; Ning, J.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 73, 789–802. [Google Scholar]
- Roberts, D.W.; Cooper, S.V. Concepts and techniques of vegetation mapping. In Land Classifications Based on Vegetation: Applications for Resource Management; USDA, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989; pp. 90–96. [Google Scholar]
- Hu, Y.F.; Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990–2015. Sustainability 2018, 10, 4048. [Google Scholar] [CrossRef] [Green Version]
- Wieland, R.; Lakes, T.; Hu, Y.F.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar]
- Ah, R.; Bi, Q.G.; Dong, Z.H. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China. Resour. Sci. 2019, 41, 1374–1386. [Google Scholar]
Time | Sensors | Resolution (m) | Number of Images | Satellite | Accuracy (%) | Sources |
---|---|---|---|---|---|---|
1980 | MSS | 80 | 40 | Landsat3 | 89.356 | https://glovis.usgs.gov/app (accessed on 24 December 2021) |
1990 | TM | 30 | 35 | Landsat5 | 87.946 | |
2000 | TM | 30 | 35 | Landsat5 | 87.609 | |
2010 | ETM+ | 30 | 35 | Landsat7 | 85.998 | |
2015 | OLI | 30 | 35 | Landsat8 | 86.515 |
Type | Code | Descriptions | Image Features |
---|---|---|---|
Cropland | 1 | The land used for planting crops, including cultivated land, new development, reclamation, and leisure (including wheel-rest and rotation); the cultivation of crops (including vegetables), and the land of scattered fruit trees, mulberry trees; the reclaimed land and sea paint cultivated for more than three years. | |
Forest land | 2 | Land where trees are grown, including arbor, shrub, bamboo, and for forestry use. | |
High coverage grassland | 31 | Refers to >50% coverage of natural grasslands, improved grasslands, and mowed grasslands. This type of grassland generally has better water conditions, and the grass is densely grown. | |
Medium coverage grassland | 32 | Natural grasslands and improved grasslands with a coverage of 20–50%. Such grasslands generally lack water and are sparsely covered. | |
Low coverage grassland | 33 | The natural grassland with a coverage of 5–20%. This type of grassland lacks water, the grass is sparse, and the conditions for animal husbandry are poor. | |
Water area | 4 | Natural land waters and land for water conservancy facilities. | |
Construction land | 5 | Urban and rural residential areas and other land for industrial, mining, transportation, etc. | |
Unused land | 6 | Land that is not put into practical use or that is difficult to use, including sandy land, salina, and bare rock. |
Land Use Types | Natural Environment | Humanistic Environment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
High Coverage Grassland | Medium Coverage Grassland | Low Coverage Grassland | Unused Land | Forest Land | Water | Mean Value | Construction Land | Cropland | Mean Value | ||
1980–1990 | O-D | 18.462 | 11.811 | 6.764 | 6.283 | 0.389 | 0.345 | 7.342 | 0.106 | 0.977 | 0.542 |
I-D | 9.267 | 21.590 | 9.894 | 2.751 | 0.828 | 0.282 | 7.435 | 0.116 | 0.407 | 0.262 | |
Ratio | 1.992 | 0.547 | 0.684 | 2.284 | 0.470 | 1.223 | 1.200 | 0.914 | 2.401 | 1.657 | |
1990–2000 | O-D | 20.911 | 24.141 | 14.243 | 5.539 | 0.854 | 0.554 | 11.040 | 0.195 | 1.085 | 0.640 |
I-D | 13.431 | 24.443 | 17.073 | 7.364 | 0.987 | 0.877 | 10.696 | 0.316 | 3.032 | 1.674 | |
Ratio | 1.557 | 0.988 | 0.834 | 0.752 | 0.865 | 0.632 | 0.938 | 0.617 | 0.358 | 0.487 | |
2000–2010 | O-D | 15.739 | 26.640 | 18.048 | 8.954 | 0.369 | 1.910 | 11.943 | 0.011 | 1.898 | 0.955 |
I-D | 19.343 | 29.255 | 17.990 | 5.627 | 0.432 | 0.200 | 12.141 | 0.340 | 0.383 | 0.362 | |
Ratio | 0.814 | 0.911 | 1.003 | 1.591 | 0.854 | 9.550 | 2.454 | 0.032 | 4.956 | 2.494 | |
2010–2015 | O-D | 10.888 | 14.765 | 12.375 | 25.345 | 0.974 | 1.170 | 10.920 | 0.026 | 0.328 | 0.177 |
I-D | 9.483 | 8.116 | 4.124 | 18.343 | 0.000 | 16.762 | 9.471 | 8.808 | 0.236 | 4.522 | |
Ratio | 1.148 | 1.819 | 3.001 | 1.382 | - | 0.070 | 1.484 | 0.003 | 1.390 | 0.696 |
1980–1990 | 1990–2000 | 2000–2010 | 2010–2015 | |
---|---|---|---|---|
Medium coverage grassland | 7.024 | 2.857 | 2.183 | 16.071 |
Construction land | 0.000 | 0.000 | 0.000 | 12.698 |
High coverage grassland | 7.024 | 2.857 | 2.183 | 10.516 |
Water | 0.000 | 0.476 | 0.000 | 3.175 |
Low coverage grassland | 3.452 | 0.476 | 2.183 | 2.183 |
Unused land | 1.071 | 0.000 | 0.397 | 0.595 |
Cropland | 2.857 | 2.857 | 0.397 | 0.000 |
Forest land | 0.000 | 0.000 | 2.183 | 0.000 |
Axis 1 | Axis 2 | Axis 3 | Axis 4 | |
---|---|---|---|---|
Distance | 0.3737 | 0.6737 | 0.3611 | 0.0035 |
Road | −0.3384 | 0.3855 | −0.1267 | −0.11 |
Trasp | 0.0597 | 0.0748 | 0.0838 | 0.1862 |
Live | 0.1637 | −0.7327 | −0.1685 | −0.4004 |
GDP | 0.2684 | −0.7375 | 0.109 | −0.1784 |
POP | 0.6927 | −0.0963 | −0.0062 | −0.139 |
DEM | 0.5257 | 0.5594 | −0.2588 | 0.3629 |
LRF | 0.4382 | −0.1207 | 0.0585 | 0.2835 |
PRE | 0.7637 | −0.0724 | 0.2122 | −0.3389 |
TEM | −0.2387 | 0.086 | 0.1375 | 0.4083 |
Summary of CCA ranking | ||||
Eigenvalues | 0.22 | 0.083 | 0.041 | 0.019 |
Cumulative percentage variance of species–environment (%) | 56.9 | 78.2 | 88.9 | 93.8 |
Species–environment correlations | 0.789 | 0.563 | 0.471 | 0.338 |
Test of significance of all canonical axes | 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Rong, A.; Zhang, J.; Tong, Z.; Han, A.; Zhi, F. Study on the Evolutionary Features and Driving Factors of Land-Use System in Xilingol, China. Land 2022, 11, 526. https://doi.org/10.3390/land11040526
Dong Z, Rong A, Zhang J, Tong Z, Han A, Zhi F. Study on the Evolutionary Features and Driving Factors of Land-Use System in Xilingol, China. Land. 2022; 11(4):526. https://doi.org/10.3390/land11040526
Chicago/Turabian StyleDong, Zhenhua, Ah Rong, Jiquan Zhang, Zhijun Tong, Aru Han, and Feng Zhi. 2022. "Study on the Evolutionary Features and Driving Factors of Land-Use System in Xilingol, China" Land 11, no. 4: 526. https://doi.org/10.3390/land11040526
APA StyleDong, Z., Rong, A., Zhang, J., Tong, Z., Han, A., & Zhi, F. (2022). Study on the Evolutionary Features and Driving Factors of Land-Use System in Xilingol, China. Land, 11(4), 526. https://doi.org/10.3390/land11040526