The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China
Abstract
:1. Introduction
2. Literature Review
3. Policy Background
4. Theoretical Analysis
5. Methodology and Data
5.1. The DID Model
- (1)
- Economic level: economic development, and land use efficiency are closely linked, and usually areas with high levels of economic development have higher land use efficiency, so we used GDP per capita to measure economic level [36].
- (2)
- Population density: Population density has a two-way effect on urban land use efficiency, both positively through resource aggregation and by increasing congestion costs and environmental pressures, which inhibit the improvement of urban land use efficiency, so we used the number of people per unit area [2].
- (3)
- Industrial structure: The optimization of industrial structure can promote the intensive use of urban land and thus affect urban land use efficiency, which we have expressed as the ratio of secondary industry to GDP [36].
- (4)
- Financial level: Financial capital can have an impact on land use patterns, structure and efficiency, which we have expressed using the ratio of year-end financial institution deposit and loan balances to GDP [66].
- (5)
- Government intervention: Government intervention can distort the role of the market in the rational allocation of resources and thus affect the efficiency of urban land use, which we have expressed using the ratio of general budget expenditure to GDP.
- (6)
- Transportation levels: These increase both accessibility and urban sprawl [67], so we used the actual urban road area per capita at the end of the year.
5.2. Measuring Urban Land Use Efficiency
5.2.1. Global Super-SBM Model
5.2.2. Selection of Indicators
5.3. Data Source
6. Results
6.1. Trends in Urban Land Use Efficiency
6.2. Characteristics of the Spatial Distribution of Urban Land Use Efficiency
6.3. Baseline Regress
6.4. Robustness Tests
7. Conclusions and Policy Recommendations
- (1)
- The overall level of urban land use efficiency in China is low and declining, but the downward trend is slowing down over time.
- (2)
- The spatial distribution is relatively scattered and does not show a large-scale spatial agglomeration of highly efficient cities; only Guangdong Province shows a small-scale agglomeration of highly efficient cities.
- (3)
- On average, the low-carbon city pilot policy reduced carbon emissions by 4.57%, but at the cost of a 9.38% reduction in urban land use efficiency.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Xie, H. Interactive Relationship among Urban Expansion, Economic Development, and Population Growth since the Reform and Opening up in China: An Analysis Based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Yin, G.; Lin, Z.; Jiang, X.; Yan, H.; Wang, X. Spatiotemporal differentiations of arable land use intensity—A comparative study of two typical grain producing regions in northern and southern China. J. Clean. Prod. 2019, 208, 1159–1170. [Google Scholar] [CrossRef]
- Qian, Z. Land acquisition compensation in post-reform China: Evolution, structure and challenges in Hangzhou. Land Use Policy 2015, 46, 250–257. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, Y. Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China. Sustainability 2021, 13, 1771. [Google Scholar] [CrossRef]
- Florides, G.A.; Christodoulides, P. Global warming and carbon dioxide through sciences. Environ. Int. 2009, 35, 390–401. [Google Scholar] [CrossRef]
- Macías, F. Sumideros de carbono para el forzamiento climático antropoceno. Una visión de alternativas de actuación desde la ciencia del suelo. Edafologia 2004, 11, 7–25. [Google Scholar]
- Sanderson, B.M.; Xu, Y.; Tebaldi, C.; Wehner, M.; O’Neill, B.; Jahn, A.; Pendergrass, A.G.; Lehner, F.; Strand, W.G.; Lin, L.; et al. Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures. Earth Syst. Dyn. 2017, 8, 827–847. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.; Piñar Fuentes, J.C.; Cano-Ortiz, A.; Leiva Gea, F.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Pinto Gomes, C.J.; Spampinato, G.; Del Río González, S.; Musarella, C.M. Chapter 17-Bioclimatology and botanical resources for sustainable development. In Natural Resources Conservation and Advances for Sustainability; Jhariya, M.K., Meena, R.S., Banerjee, A., Meena, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 377–388. [Google Scholar]
- Cano, E.; Cano-Ortiz, A.; Musarella, C.; Piñar Fuentes, J.C.; Ighbareyeh, J.; Gea, F.; Del Rio, S. Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain). In Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 31–69. [Google Scholar]
- Dosio, A.; Fischer, E.M. Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5 °C, 2 °C, and 3 °C Global Warming. Geophys. Res. Lett. 2018, 45, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Nakicenovic, N. World Energy Outlook 2007: China and India Insights; IEA/OECD: Paris, France, 2008. [Google Scholar]
- Mi, Z.; Wei, Y.; Wang, B.; Meng, J.; Liu, Z.; Shan, Y.; Liu, J.; Guan, D. Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030. J. Clean. Prod. 2017, 142, 2227–2236. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Weinzettel, J.; Bigano, A.; Källmén, A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. J. Clean. Prod. 2020, 248, 119206. [Google Scholar] [CrossRef]
- Spampinato, G.; Massimo, D.E.; Musarella, C.M.; De Paola, P.; Malerba, A.; Musolino, M. Carbon Sequestration by Cork Oak Forests and Raw Material to Built Up Post Carbon City; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 663–671. [Google Scholar]
- Lu, X.; Zhang, Y.; Li, J.; Duan, K. Measuring the urban land use efficiency of three urban agglomerations in China under carbon emissions. Environ. Sci. Pollut. R 2022, 29, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, S.; Wang, J. Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Sci. Total Environ. 2019, 675, 472–482. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Chen, Q.; Ye, Y.; Shi, Z.; Liu, J.; Ding, Q.; Li, X. Analyzing spatial patterns of urban carbon metabolism and its response to change of urban size: A case of the Yangtze River Delta, China. Ecol. Indic. 2019, 104, 615–625. [Google Scholar] [CrossRef]
- Spampinato, G.; Malerba, A.; Calabrò, F.; Bernardo, C.; Musarella, C. Cork Oak Forest Spatial Valuation Toward Post Carbon City by CO2 Sequestration; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1321–1331. [Google Scholar]
- Rokityanskiy, D.; Benítez, P.C.; Kraxner, F.; McCallum, I.; Obersteiner, M.; Rametsteiner, E.; Yamagata, Y. Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technol. Forecast. Soc. 2007, 74, 1057–1082. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, R.; Dong, Y.; Liu, Y.; Qiu, L. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 2016, 70, 304–316. [Google Scholar] [CrossRef]
- Song, H.; Sun, Y.; Chen, D. Assessment for the Effect of Government Air Pollution Control Policy: Empirical Evidence from “Low-carbon City” Construction in China. Manag. World 2019, 35, 95–108. [Google Scholar] [CrossRef]
- Lin, J.; Jacoby, J.; Cui, S.; Liu, Y.; Lin, T. A model for developing a target integrated low carbon city indicator system: The case of Xiamen, China. Ecol. Indic. 2014, 40, 51–57. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Huo, W.; Qi, J.; Yang, T.; Liu, J.; Liu, M.; Zhou, Z. Effects of China’s pilot low-carbon city policy on carbon emission reduction: A quasi-natural experiment based on satellite data. Technol. Forecast. Soc. 2022, 175, 121422. [Google Scholar] [CrossRef]
- Feng, T. Assessment of the impact of pilot low—Carbon city projects on carbon intensity. J. Yunnan Minzu Univ. (Nat. Sci. Ed.) 2017, 26, 174–178. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?filename=ynmz201702017&dbname=cjfq2017 (accessed on 24 March 2022).
- Lu, X. Study on the Effectiveness of the Low Carbon Policy—Evidence from the Synthetic Control Methods. Soft Sci. 2017, 31, 98–101. [Google Scholar] [CrossRef]
- Wolff, H. Keep Your Clunker in the Suburb: Low-Emission Zones and Adoption of Green Vehicles. Econ. J. 2014, 124, F481–F512. [Google Scholar] [CrossRef]
- Gehrsitz, M. The effect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Yi, J.; Dai, S.; Xiong, Y. Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. J. Clean. Prod. 2019, 231, 1158–1170. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Wei, Y. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xu, Y.; Zhou, P.; Yeh, C. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy 2020, 90, 104292. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Tang, W. Development of evaluation model for intensive land use in urban centers. Front. Archit. Res. 2012, 1, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.C.M.; Wu, Y.; Deng, L.; Zheng, B. Analysis on coupling relationship of urban scale and intensive use of land in China. Cities 2015, 42, 63–69. [Google Scholar] [CrossRef]
- Liu, S.C.; Ye, Y.; Xiao, W. Spatial-Temporal Differentiation of Urban Land-Use Efficiency in China Based on Stochastic Frontier Analysis. China Land Sci. 2020, 34, 61–69. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Cai, B.; Cui, C.; Zhang, D.; Cao, L.; Wu, P.; Pang, L.; Zhang, J.; Dai, C. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Appl. Energy 2019, 253, 113579. [Google Scholar] [CrossRef]
- Pigou, A.C. The Economics of Welfare.6; China Social Sciences Publishing House: Beijing, China, 1999. [Google Scholar]
- Coase, R. The problem of social cost. The Journal of Law and Economics, Vol. III, 1960, pp. 1–44. Syst. Res. 2007, 9, 79–81. [Google Scholar] [CrossRef]
- Sewell, W.R.D.J.H. Dales, Pollution, Property & Prices: An Essay in Policy-making and Economics. Toronto: University of Toronto Press, 1968, pp. vii, 111. Can. J. Political Sci. 2009, 2, 386. [Google Scholar] [CrossRef]
- Xu, J.; Cui, J. Low-Carbon Cities and Firms’ Green Technological Innovation. China Ind. Econ. 2020, 37, 178–196. [Google Scholar] [CrossRef]
- Greenstone, M.; Hanna, R. Environmental Regulations, Air and Water Pollution, and Infant Mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef] [Green Version]
- Di Maria, C.; Lange, I.; van der Werf, E. Should we be worried about the green paradox? Announcement effects of the Acid Rain Program. Eur. Econ. Rev. 2014, 69, 143–162. [Google Scholar] [CrossRef] [Green Version]
- González Palencia, J.C.; Furubayashi, T.; Nakata, T. Analysis of CO2 emissions reduction potential in secondary production and semi-fabrication of non-ferrous metals. Energy Policy 2013, 52, 328–341. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, P.; Pan, Y. Does China’s carbon emission trading policy have an employment double dividend and a Porter effect? Energy Policy 2020, 142, 111492. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, J.; Yan, Z. Low—Carbon City Pilot Policies and Total Factor Energy Efficiency Improvement: Quasi—Natural Experiment from the Implementation of Three Batches of Pilot Policies. Econ. Rev. 2021, 42, 32–49. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Zhan, J. Does two low carbon pilot policy promote the performance of carbon emissions reduction in pilot cities—Based on difference in difference method. Syst. Eng. 2017, 35, 68–73. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=GCXT201711007&uniplatform=NZKPT&v=SI33jjQ5RiXagty_175tjkDITAkvXGep7sODvmRXBW6_xeomoDSeZ7EWHMIsmEC5 (accessed on 19 April 2022).
- Dirckinck-Holmfeld, K. The options of local authorities for addressing climate change and energy efficiency through environmental regulation of companies. J. Clean. Prod. 2015, 98, 175–184. [Google Scholar] [CrossRef]
- Hancevic, P.I. Environmental regulation and productivity: The case of electricity generation under the CAAA-1990. Energy Econ. 2016, 60, 131–143. [Google Scholar] [CrossRef]
- Alpay, E.; Kerkvliet, J.; Buccola, S. Productivity Growth and Environmental Regulation in Mexican and U.S. Food Manufacturing. Am. J. Agric. Econ. 2002, 84, 887–901. [Google Scholar] [CrossRef]
- Arvin, M.B.; Pradhan, R.P.; Norman, N.R. Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries. Util. Policy 2015, 35, 50–66. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Lei, H. Indigenous versus foreign innovation and energy intensity in China. Renew. Sustain. Energy Rev. 2018, 81, 1721–1729. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, X. Environmental protection and economic efficiency of low-carbon pilot cities in China. Environ. Dev. Sustain. 2021, 23, 18143–18166. [Google Scholar] [CrossRef]
- Naughton, H.T. To shut down or to shift: Multinationals and environmental regulation. Ecol. Econ. 2014, 102, 113–117. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X. The Impact of Environmental Regulation on Productivity and Exports: A Firm-Level Evidence from China. Emerg. Mark. Financ. Trade 2019, 55, 2589–2608. [Google Scholar] [CrossRef]
- Moser, P.; Voena, A. Compulsory Licensing: Evidence from the Trading with the Enemy Act. Am. Econ. Rev. 2012, 102, 396–427. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Ji, X. Can Carbon Finance Optimize Land Use Efficiency? The Example of China’s Carbon Emissions Trading Policy. Land 2021, 10, 953. [Google Scholar] [CrossRef]
- Zeng, P.; Wang, J.; Chen, J. Research on the measurement and influencing factors for TFP of land utilization in Chinese urban agglomerations from dynamic perspective. J. Chongqing Univ. (Soc. Sci. Ed.) 2021, 27, 184–198. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Quah, D.T. Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. Econ. J. 1996, 106, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W. Programming with linear fractional functionals. Nav. Res. Logist. Q. 1962, 9, 181–186. [Google Scholar] [CrossRef]
- Liu, S.; Xiong, X.; Zhang, Y.; Guo, G. Land System and China’s Development Mode. China Ind. Econ. 2022, 39, 34–53. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-In-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. J. Clean. Prod. 2018, 204, 702–711. [Google Scholar] [CrossRef]
Variable | Symbol | Index |
---|---|---|
Treatment group dummy variable | treat | 1 for the first batch of pilot cities, 0 for the rest |
Policy dummy variable | Post | 1 for years > 2010, 0 for all others |
Economic level | ln_rgdp | GDP per capita |
Population density | ln_den | Number of people per unit area |
Industrial structure | stru | Ratio of secondary sector to GDP |
Financial development | fina | Balance of deposits and loans of financial institutions at the end of the year as a percentage of GDP |
Government intervention | gover | General public budget expenditure as a percentage of GDP |
Transport level | ln_road | Real urban road area per capita at the end of the year |
Variable Type | Index | |
---|---|---|
Input | Land | The urban built-up area |
Capital | The capital stock | |
Labor | The number of people employed in secondary and tertiary industries in the city | |
Output | Economic | The gross value of secondary and tertiary industries within the municipal area |
Undesired | emissions |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
ULUE | 2232 | 0.227 | 0.138 | 0.034 | 1.126 |
treat | 2232 | 0.253 | 0.435 | 0 | 1 |
Post | 2232 | 0.5 | 0.5 | 0 | 1 |
gover | 2232 | 0.161 | 0.095 | 0.032 | 1.428 |
fina | 2232 | 2.651 | 1.224 | 0.213 | 10.187 |
ln_den | 2232 | 7.944 | 0.848 | 3.296 | 9.908 |
ln_rgdp | 2232 | 10.202 | 0.67 | 7.887 | 13.87 |
stru | 2232 | 0.503 | 0.126 | 0.08 | 0.91 |
ln_road | 2232 | 2.178 | 0.624 | −1.177 | 4.685 |
(1) | (2) | |
---|---|---|
Variable | ln_C | ULUE |
Treat × post | −0.0457 ** (0.0185) | −0.0283 * (0.0155) |
ln_rgdp | 0.0778 *** (0.0241) | 0.0385 ** (0.0159) |
stru | 0.177 * (0.0947) | 0.0643 (0.0615) |
ln_road | 0.0292 (0.0185) | −0.0186 ** (0.0088) |
fina | 0.0114 * (0.00656) | −0.0129 ** (0.0052) |
gover | 0.0443 (0.0799) | −0.0838 ** (0.0327) |
ln_den | 0.00407 (0.00834) | 0.0028 (0.004) |
Constant | 0.496 * (0.272) | −0.0467 (0.161) |
Year fixed | Yes | Yes |
City fixed | Yes | Yes |
Observations | 2232 | 2232 |
R-squared | 0.848 | 0.295 |
Variable | Matching | Mean | Bias | Reduction of Bias | t-Test | ||
---|---|---|---|---|---|---|---|
Treated | Control | (%) | (%) | t | P > |t| | ||
ln_rgdp | Before | 10.273 | 10.178 | 14.2 | 2.92 | 0.004 | |
After | 10.272 | 10.259 | 1.9 | 86.4 | 0.33 | 0.741 | |
stru | Before | 0.513 | 0.500 | 11.1 | 2.13 | 0.033 | |
After | 0.513 | 0.512 | 0.5 | 95.5 | 0.09 | 0.931 | |
ln_road | Before | 2.162 | 2.1829 | −3.3 | −0.70 | 0.487 | |
After | 2.162 | 2.1858 | −3.7 | −10.6 | −0.63 | 0.526 | |
fina | Before | 2.784 | 2.6058 | 14.6 | 3.00 | 0.003 | |
After | 2.771 | 2.8021 | −2.5 | 82.8 | −0.39 | 0.699 | |
gover | Before | 0.148 | 0.16537 | −19.8 | −3.69 | 0.000 | |
After | 0.1484 | 0.14495 | 4.0 | 79.7 | 0.90 | 0.371 | |
ln_den | Before | 8.010 | 7.922 | 10.5 | 2.12 | 0.034 | |
After | 8.008 | 7.997 | 1.3 | 87.4 | 0.23 | 0.821 |
(1) | (2) | |
---|---|---|
Variable | ln_C | ULUE |
Treat × post | −0.0382 ** (0.0188) | −0.0291 * (0.0160) |
Control variable | Yes | Yes |
Year fixed | Yes | Yes |
City fixed | Yes | Yes |
Observations | 1278 | 1278 |
R-squared | 0.869 | 0.317 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Feng, H.; Wang, K. The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China. Land 2022, 11, 604. https://doi.org/10.3390/land11050604
Liu J, Feng H, Wang K. The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China. Land. 2022; 11(5):604. https://doi.org/10.3390/land11050604
Chicago/Turabian StyleLiu, Jingbo, Haoyuan Feng, and Kun Wang. 2022. "The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China" Land 11, no. 5: 604. https://doi.org/10.3390/land11050604
APA StyleLiu, J., Feng, H., & Wang, K. (2022). The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China. Land, 11(5), 604. https://doi.org/10.3390/land11050604