Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain)
Abstract
:1. Introduction
- Analysis of the dynamic of the Veleta rock glacier using geomatic techniques: Classical topography (total station); Global Navigation Satellite System (GNSS); “Reflectorless” total station; Photogrammetry analytical and digital; Unmanned Aerial Vehicle (UAV); and Terrestrial Laser Scanning (TLS).
- The physical state of the frozen bodies on which the rock glacier lies, which were determined using the geophysical prospections of 2009.
- The thermal regime of the active layer of the rock glacier was determined using the information provided by 5 thermic sensors installed in series at different depths: −0.05 m, −0.20 m, −0.50 m, −1.00 m, and −1.50 m.
2. The Study Area
- Mean altitude of the detritic body: 3105 m.
- Orientation: W (forming an L-shape).
- Longitude: 129 m.
- Mean width: 37 m.
- Mean thickness: 8 m.
- Surface area: 3815 m2.
- Clast material: heterometric blocks of mica schists with abundant coarse and internal fines.
- Clast dimensions: from blocks of thick calibre (several m3) with abundant material of decimetric and centimetric size.
3. Methodology
3.1. Total Station
3.2. Global Navigation Satellite Systems—GNSS
3.3. Reflectorless Total Station
3.4. Photogrammetry
3.5. Unmanned Aerial Flights—UAV
3.6. Terrestrial Laser Scanner—TLS
4. Results
4.1. General Dynamic of The Rock Glacier
4.2. Evolution of the Perimeter and Subsidence
4.3. Behaviour of the Front
4.4. General Cartography
4.5. Determination of Volume
5. Discussion
- A long cold episode with negative temperatures and the ground permanently frozen beginning in mid-October and lasting until mid-June.
- A short episode with positive but very moderate temperatures and unfrozen ground, which is estimated to last for around 40 days, coinciding with the second half of summer (mainly August).
- Two very short episodes that act as a transitional period between the two previously described, during which ground temperatures change from positive to negative around the middle of October and vice versa around the middle of June.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradley, R.S.; Jones, P.D. Climate Since AD 1500; Psychology Press: Hove, UK, 1992; ISBN 0415120306. [Google Scholar]
- Holzhauser, H.; Magny, M.; Zumbuühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 2005, 15, 789–801. [Google Scholar] [CrossRef]
- Gómez Ortiz, A.; Plana Castellví, J.A. La pequeña Edad del Hielo en Sierra Nevada a partir de los escritos de la época (siglos) XVIII y XIX) y relaciones con el progreso de la geografía física y geomorfología española. Boletín Asoc. Geógrafos Españoles 2006, 42, 71–98. [Google Scholar]
- González Trueba, J.J.; Moreno, R.M.; Martínez de Pisón, E.; Serrano, E. ‘Little Ice Age’ glaciation and current glaciers in the Iberian Peninsula. Holocene 2008, 18, 551–568. [Google Scholar] [CrossRef]
- González Trueba, J.J. La Pequeña Edad del Hielo en los Picos de Europa (Cordillera Cantábrica, NO de España). Análisis morfológico y reconstrucción del avance glaciar histórico. Cuatern. Geomorfol. 2005, 19, 79–94. [Google Scholar]
- Kellerer-Pirklbauer, A.; Kaufmann, V. Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. Sci. Total Environ. 2018, 621, 1397–1414. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Sarkar, M.S.; Kumar, M.; Singh, G.; Lingwal, S.; Rawat, J.S. Retreat of Pindari glacier and detection of snout position using remote sensing technology. Remote Sens. Appl. Soc. Environ. 2018, 11, 64–69. [Google Scholar] [CrossRef]
- Brighenti, S.; Tolotti, M.; Bruno, M.C.; Wharton, G.; Pusch, M.T.; Bertoldi, W. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review. Sci. Total Environ. 2019, 675, 542–559. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, C.; Fu, P.; Wu, Y.; Liu, J.; Wang, N. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age. Geomorphology 2018, 306, 51–63. [Google Scholar] [CrossRef]
- Chueca, J.; Julián, A. Movement of besiberris rock glacier, central pyrenees, Spain: Data from a 10-year geodetic survey. Arctic Antarct. Alp. Res. 2003, 37, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Chueca, J.; Julián Andrés, A.; Saz Sánchez, M.A.; Creus Novau, J.; López Moreno, J.I. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 2005, 68, 167–182. [Google Scholar] [CrossRef]
- Konrad, S.K.; Humphrey, N.F.; Steig, E.J.; Clark, D.H.; Potter, N., Jr.; Pfeffer, W.T. Rock glacier dynamics and paleoclimatic implications. Geology 1999, 27, 1131–1134. [Google Scholar] [CrossRef]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, R.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S.; et al. Permafrost creep and rock glacier dynamics. Permafr. Periglac. Process. 2006, 17, 189–214. [Google Scholar] [CrossRef]
- Whalley, W.B.; Martin, H.E. Rock glaciers: Part II models and mechanisms. Prog. Phys. Geogr. 1992, 16, 127–186. [Google Scholar] [CrossRef]
- Kääb, A.; Kaufmann, V.; Ladstädter, R.; Eiken, T. Rock glacier dynamics: Implications from high-resolution measurements of surface velocity fields. In Permafrost, Proceedings of the Eighth International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; Phillips, M., Springman, S., Arenson, L., Eds.; Balkema: Zurich, Switzerland, 2003; Volume 1, pp. 501–506. [Google Scholar]
- Kääb, A.; Weber, M. Development of transverse ridges on rock glaciers: Field measurements and laboratory experiments. Permafr. Periglac. Process. 2004, 15, 379–391. [Google Scholar] [CrossRef]
- Haeberli, W. Modern research perspectives relating to permafrost creep and rock glaciers: A discussion. Permafr. Periglac. Process. 2000, 11, 290–293. [Google Scholar] [CrossRef]
- Berthling, I. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Martínez de Pisón, E. El glaciar rocoso activo de Los Gemelos en el macizo de Posets (Pirineo aragonés). Cuatern. Geomorfol. Rev. Soc. Española Geomorfol. Asoc. Española Estud. Cuatern. 1989, 3, 83. [Google Scholar]
- Serrano, E.; Agudo, C.; Martínez de Pisón, E. Rock glaciers in the Pyrenees. Permafr. Periglac. Process. 1999, 10, 101–106. [Google Scholar] [CrossRef]
- Serrano, E.; San José, J.J.; Agudo, C. Rock glacier dynamics in a marginal periglacial high mountain environment: Flow, movement (1991–2000) and structure of the Argualas rock glacier, the Pyrenees. Geomorphology 2006, 74, 285–296. [Google Scholar] [CrossRef]
- Serrano, E.; de Sanjosé, J.J.; González-Trueba, J.J. Rock glacier dynamics in marginal periglacial environments. Earth Surf. Process. Landf. 2010, 35, 1302–1314. [Google Scholar] [CrossRef]
- de Sanjosé, J.J.; Berenguer, F.; Atkinson, A.D.J.; De Matías, J.; Serrano, E.; Gómez-Ortiz, A.; González-García, M.; Rico, I. Geomatics techniques applied to glaciers, rock glaciers, and ice patches in Spain (1991–2012). Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 307–321. [Google Scholar] [CrossRef]
- Eiken, T.; Hagen, J.O.; Melvold, K. Kinematic GPS survey of geometry changes on Svalbard glaciers. Ann. Glaciol. 1997, 24, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Prantl, H.; Nicholson, L.; Sailer, R.; Hanzer, F.; Juen, I.F.; Rastner, P. Glacier snowline determination from terrestrial laser scanning intensity data. Geosciences 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, V.; Seier, G.; Sulzer, W.; Wecht, M.; Liu, Q.; Lauk, G.; Maurer, M. Rock glacier monitoring using aerial photographs: Conventional vs. UAV-based mapping—A comparative study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ortiz, A.; Salvador Franch, F.; Schulte, L.; de Sanjosé Blasco, J.J.; Atkinson Gordo, A.; Palacios Estremera, D. Evolución morfodinámica de un enclave montañoso recién deglaciado: El caso del Corral del Veleta (Sierra Nevada), ¿consecuencia del Cambio Climático? Scr. Nova 2008, 12, 270. [Google Scholar]
- Gómez-Ortiz, A.; Palacios, D.; Schulte, L.; Salvador-Franch, F.; Plana-Castellví, J.A. Evidences from historical documents of landscape evolution after Little Ice Age of a Mediterranean high mountain area, Sierra Nevada, Spain (eighteenth to twentieth centuries). Geogr. Ann. Ser. A Phys. Geogr. 2009, 91, 279–289. [Google Scholar] [CrossRef]
- Gómez-Ortiz, A.; Oliva Franganillo, M.; Salvador Franch, F.; Salvá Catireneu, M.; Palacios Estremera, D.; de Sanjosé Blasco, J.J.; Tanarro García, L.M.; Galindo Zaldívar, J.; Sanz Galdeano, C. Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006 to 2013 as a response to recent climate trends. Solid Earth 2014, 5, 979–993. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ortiz, A.; Salvador Franch, F.; de Sanjosé Blasco, J.J.; Palacios Estremera, D.; Oliva Franganillo, M.; Salvà Catarineu, M.; Tanarro, L.M.; Raso Nadal, J.M.; Atkinson Gordo, A.; Schulte, L.; et al. Degradación de hielo fósil y permafrost y cambio climático en Sierra Nevada. Proy. Investig. Parq. Nac. 2012, 25–43. [Google Scholar]
- Salvador Franch, F.; Gómez Ortiz, A.; Salvà Catarineu, M.; Palacios Estremera, D. Caracterización térmica de la capa activa de un glaciar rocoso en medio periglaciar de alta montaña mediterránea: El ejemplo del Corral del Veleta (Sierra Nevada, España). Cuad. Investig. Geográfica 2011, 37, 25–48. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ortiz, A.; Palacios, D.; Luengo, E.; Tanarro, L.M.; Schulte, L.; Ramos, M. Talus instability in a recent deglaciation area and its relationship to buried ice and snow cover evolution (Picacho del Veleta, Sierra Nevada, Spain). Geogr. Ann. Ser. A Phys. Geogr. 2003, 85, 165–182. [Google Scholar] [CrossRef]
- Sanz de Galdeano, C.; López-Garrido, A.C. Estratigrafía y estructura de las unidades alpujárrides en el borde occidental de Sierra Nevada (Granada, España). Rev. Soc. Geol. España 1999, 12, 187–198. [Google Scholar]
- Quelle, O. Beitrage zur Kenntnis der Spanischen Sierra Nevada. Ph.D. Thesis, Friedrich-Wilhelms-Universitat zu Berlin, Berlin, Germany, 1908. [Google Scholar]
- Messerli, B. Beiträge zur Geomorphologie der Sierra Nevada (Andalusien); Juris-Verlag: Zürich, Switzerland, 1965. [Google Scholar]
- Grunewald, K.; Scheithauer, J. Europe’s southernmost glaciers: Response and adaptation to climate change. J. Glaciol. 2010, 56, 129–142. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Rodrigo, J.; Sanjosé, J.J. Formulación de un modelo matemático para el estudio y predicción del comportamiento del glaciar rocoso de las Argualas (Pirineos centrales). Datum XXI 2002, 2, 38–44. [Google Scholar]
- Sanjosé, J.J.; Lerma, J.L. Estimation of the rocks glaciers dynamics by environmental modeling and automatic photogrammetric technic. In Proceedings of the XXth Congress International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, 12–23 July 2004; pp. 905–909. [Google Scholar]
- Zuo, X.; Bu, J.; Li, X.; Chang, J.; Li, X. The quality analysis of GNSS satellite positioning data. Clust. Comput. 2019, 22, 6693–6708. [Google Scholar] [CrossRef]
- Sanjosé Blasco, J.J.; Atkinson, A.; Gómez-Ortiz, A.; Salvador Franch, F. Glaciar rocoso del “Corral del Veleta” (Sierra Nevada): Aplicaciones geomáticas en el periodo 2001–2006. Topogr. Cartogr. Rev. Ilustre Col. Of. Ing. Técnicos Topogr. 2007, 24, 8–17. [Google Scholar]
- Sanjosé, J.J.; Atkinson, A.D.J.; Salvador, F.; Gómez Ortiz, A. Application of geomatic technique in controlling of the dynamics and cartography of the Veleta rock glacier (Sierra Nevada, Spain). Z. Geomorphol. 2007, 51, 79–89. [Google Scholar] [CrossRef]
- Sanjosé, J.J.; Atkinson, A.; Berenguer, F. Aplicación de Sistemas GNSS en el Monitoreo del Cambio Climático en la Península Ibérica. In Proceedings of the III Encuentro de Sistemas de Información Geográfica, Castelo Branco, Portugal, 17–18 May 2012. [Google Scholar]
- Lambiel, C.; Delaloye, R. Contribution of real-time kinematic GPS in the study of creeping mountain permafrost: Examples from the Western Swiss Alps. Permafr. Periglac. Process. 2004, 15, 229–241. [Google Scholar] [CrossRef]
- Sanjosé, J.J.; Serrano, E. Determinación del Movimiento Superficial del Glaciar Rocoso de las Argualas (Huesca) Mediante el Empleo de Técnicas Fotogramétricas. In Proceedings of the VII Reunión Nacional de Geomorfología, Valladolid, Spain, 19–20 September 2002; pp. 263–273. [Google Scholar]
- Sanjosé Blasco, J.J. Estimación de la Dinámica de los Glaciares Rocosos mediante Modelización Ambiental y Técnicas Fotogramétricas Automáticas. Topogr. Cartogr. Rev. Ilustre Col. Of. Ing. Técnicos Topogr. 2004, 21, 10–16. [Google Scholar]
- De Matías, J.; De Sanjosé, J.J.; López-Nicolás, G.; Sagüés, C.; Guerrero, J.J. Photogrammetric methodology for the production of geomorphologic maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain). Remote Sens. 2009, 1, 829–841. [Google Scholar] [CrossRef] [Green Version]
- de Matías, J.; del Pozo, J.M.; Campo, J.J.G. A Multi-View Dense Reconstruction for Rock Glacier Modelling. In Proceedings of the 5th International Conference on Virtual Systems and Multimedia, Vienna, Austria, 9–12 September 2009; pp. 163–168. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Piermattei, L.; Carturan, L.; Guarnieri, A. Use of terrestrial photogrammetry based on structure-from-motion for mass balance estimation of a small glacier in the Italian alps. Earth Surf. Process. Landf. 2015, 40, 1791–1802. [Google Scholar] [CrossRef]
- Santise, M.; Thoeni, K.; Roncella, R.; Diotri, F.; Giacomini, A. Analysis of low-light and night-time stereo-pair images for photogrammetric reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Ergun, B.; Sahin, C.; Baz, I.; Ustuntas, T. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning. Environ. Monit. Assess. 2010, 165, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Abellán, A.; Calvet, J.; Vilaplana, J.M.; Blanchard, J. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 2010, 119, 162–171. [Google Scholar] [CrossRef]
- Kaiser, A.; Neugirg, F.; Rock, G.; Müller, C.; Haas, F.; Ries, J.; Schmidt, J. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan gully morphology using structure from motion. Remote Sens. 2014, 6, 7050–7080. [Google Scholar] [CrossRef] [Green Version]
- Frattini, P.; Riva, F.; Crosta, G.B.; Scotti, R.; Greggio, L.; Brardinoni, F.; Fusi, N. Rock-avalanche geomorphological and hydrological impact on an alpine watershed. Geomorphology 2016, 262, 47–60. [Google Scholar] [CrossRef]
- Micheletti, N.; Tonini, M.; Lane, S.N. Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm. Geomorphology 2017, 278, 287–297. [Google Scholar] [CrossRef]
- de Sanjosé Blasco, J.J.; Gómez-Ortiz, A.; Atkinson, A.; Salvador-Franch, F.; Matías, J.; Salvá-Catarineu, M.; Berenguer Sempere, F. Aplicación de Técnicas Geomáticas en el Glaciar Rocoso Activo del Corral del Veleta (2001–2011). In Proceedings of the XII Reunión Nacional de Geomorfología, Santander, Spain, 17–20 September 2012; pp. 641–644. [Google Scholar]
- Salvà-Catarineu, M.; Salvador-Franch, F.; Gómez-Ortiz, A.; Fenández, M.; Sanjosé, J.J.; Atkinson, A. Análisis Morfométrico Aplicado al Estudio Geodinámico de un Glaciar Rocoso en Sierra Nevada (España): Aportaciones metodológicas. In Proceedings of the VI Seminário Latino-Americano de Geografía Física, Coimbra, Portugal, 26–30 May 2010. [Google Scholar]
- Sanjosé-Blasco, J.J.; Atkinson, A.; Berenguer, F.; Matías, J. Control de la Dinámica de los Glaciares en España (1991–2012). In Proceedings of the X TOPCART 2012, Madrid, Spain, 16–19 October 2012. [Google Scholar]
- Haeberli, W.; Schmid, W. Aerophotogrammetrical Monitoring of Rock Glaciers. In Proceedings of the 5th International Conference on Permafrost, Trondheim, Norway, 2–5 August 1988; Volume 2, pp. 764–769. [Google Scholar]
- Kääb, A.; Haeberli, W.; Gudmundsson, G.H. Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. Permafr. Periglac. Process. 1997, 8, 409–426. [Google Scholar] [CrossRef]
- Roer, I.; Nyenhuis, M. Rockglacier activity studies on a regional scale: Comparison of geomorphological mapping and photogrammetric monitoring. Earth Surf. Process. Landf. 2007, 32, 1747–1758. [Google Scholar] [CrossRef]
- Kaufmann, V.; Ladstädter, R. Application of Terrestrial Photogrammetry for Glacier Monitoring in Alpine Environments. In Proceedings of the 21st Congress of ISPRS, Beijing, China, 3–11 July 2008; Volume 37, pp. 813–818. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Gómez-Ortiz, A.; Oliva, M.; Salvador-Franch, F.; Palacios, D.; Tanarro, L.M.; de Sanjosé-Blasco, J.J.; Salvà-Catarineu, M. Monitoring permafrost and periglacial processes in Sierra Nevada (Spain) from 2001 to 2016. Permafr. Periglac. Process. 2019, 30, 278–291. [Google Scholar] [CrossRef]
- Salvador Franch, F.; Gómez-Ortiz, A.; Palacios Estremera, D. Comportamiento térmico del suelo en un enclave de alta montaña mediterránea con permafrost residual: Corral del Veleta (Sierra Nevada, Granada). In Ambientes Periglaciares, Permafrost y Variabilidad Climática: II Congreso Ibérico de la IPA, Sigüenza, Spain, 21–24 June 2009; Blanco, J.J., De Pablo, M.A., Ramos, M., Eds.; Universidad de Alcalá de Henares: Sigüenza, Spain, 2010; pp. 61–68. [Google Scholar]
- Tanarro García, L.M.; Palacios Estremera, D.; Zamorano Orozco, J.J.; Gómez-Ortiz, A. Cubierta nival, permafrost y formación de flujos superficiales en un talud detrítico de alta montaña (Corral del Veleta, Sierra Nevada, España). Cuad. Investig. Geográfica 2010, 36, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, V.; Ladstädter, R.; Kienast, G. 10 Years of Monitoring of the Doesen Rock Glacier (Ankogel Group, Austria)—A Review of the Research Activities for the Time Period 1995–2005. In Proceedings of the Fifth Mountain Cartography Workshop, Bohinj, Slovenia, 29 March–1 April 2006; Volume 1, pp. 129–144. [Google Scholar]
- de Sanjosé Blasco, J.J.; Gordo, A.; Kaufmann, V.; Ortiz, A.G.; Franch, F.S.; Cañadas, E.S.; Trueba, J.J.G. Técnicas geomáticas aplicadas al control de los glaciares rocosos. Comparación de los glaciares rocosos de Doesen (Alpes), Posets (Pirineos) y Corral del Veleta (Sierra Nevada). Rev. Cart. 2010, 45–62. [Google Scholar]
- Serrano Cañadas, E.; González Trueba, J.J.; Sanjosé Blasco, J.J. Dinámica, evolución y estructura de los glaciares rocosos de los Pirineos. Cuad. Investig. Geográfica 2011, 37, 145–170. [Google Scholar] [CrossRef] [Green Version]
- Kienast, G.; Kaufmann, V. Geodetic measurements on glaciers and rock glaciers in the Hohe Tauern National Park (Austria). In Proceedings of the 4th ICA Mountain Cartography Workshop, Vall de Núria, Spain, 30 September–2 October 2004; Volume 30, pp. 101–108. [Google Scholar]
- Krainer, K.; He, X. Flow velocities of active rock glaciers in the Austrian Alps. Geogr. Ann. Ser. A Phys. Geogr. 2006, 88, 267–280. [Google Scholar] [CrossRef]
Period | Direction | Horizontal Displac. | Subsidence |
---|---|---|---|
Centesimal Graduation | Metres | Metres | |
2001–2002 | 194.0490 | 0.064 | −0.246 |
2002–2003 | 196.7580 | 0.157 | −0.384 |
2003–2004 | 210.2730 | 0.044 | −0.115 |
2004–2005 | 201.2640 | 0.302 | −0.654 |
2005–2006 | 176.6910 | 0.207 | −0.468 |
2006–2007 | 203.5660 | 0.214 | −0.482 |
2007–2008 | 178.2790 | 0.146 | −0.454 |
2008–2009 | 165.5000 | 0.114 | −0.266 |
2009–2010 | SNOW (No data) | - | - |
2010–2011 | SNOW (No data) | - | - |
2009–2012 (3 years) | 165.9430 | 0.094 | −0.186 |
2012–2013 | SNOW (No data) | - | - |
2012–2014 (2 years) | 154.1460 | 0.065 | −0.317 |
2014–2015 | NO SNOW (No data) | - | - |
2014–2016 (2 years) | 153.9130 | 0.184 | −0.891 |
2016–2017 | NO SNOW (No data) | - | - |
2017–2018 | SNOW (No data) | - | - |
2016–2019 (3 years) | 149.6480 | 0.178 | −0.845 |
2001–2019 (18 years) | 180.3543 | 1.769 m | −5.308 m |
Period | Direction | Horizontal Displac. | Subsidence |
---|---|---|---|
Centesimal Graduation | Metres | Metres | |
August 2005–July 2006 | 166.4250 | 0.105 | −0.240 |
July 2006–August 2006 | 187.0740 | 0.104 | −0.228 |
August 2006–July 2007 | 208.9430 | 0.099 | −0.227 |
July 2007–August 2007 | 198.8930 | 0.115 | −0.255 |
August 2007–July 2008 | 180.7170 | 0.084 | −0.246 |
July 2008–August 2008 | 175.0230 | 0.063 | −0.208 |
Period | Volume m3 |
---|---|
August 2012–August 2014 | −625.95 |
August 2014–August 2016 | −1403.18 |
August 2016–August 2019 | −2418.76 |
August 2012–August 2019 | −4447.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sanjosé Blasco, J.J.; Atkinson, A.D.; Sánchez-Fernández, M.; Gómez-Ortiz, A.; Salvà-Catarineu, M.; Salvador-Franch, F. Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain). Land 2022, 11, 613. https://doi.org/10.3390/land11050613
de Sanjosé Blasco JJ, Atkinson AD, Sánchez-Fernández M, Gómez-Ortiz A, Salvà-Catarineu M, Salvador-Franch F. Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain). Land. 2022; 11(5):613. https://doi.org/10.3390/land11050613
Chicago/Turabian Stylede Sanjosé Blasco, José Juan, Alan D. Atkinson, Manuel Sánchez-Fernández, Antonio Gómez-Ortiz, Montserrat Salvà-Catarineu, and Ferran Salvador-Franch. 2022. "Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain)" Land 11, no. 5: 613. https://doi.org/10.3390/land11050613
APA Stylede Sanjosé Blasco, J. J., Atkinson, A. D., Sánchez-Fernández, M., Gómez-Ortiz, A., Salvà-Catarineu, M., & Salvador-Franch, F. (2022). Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain). Land, 11(5), 613. https://doi.org/10.3390/land11050613