Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Description of the Management Systems
- Communal open grazing: this represents the most common land-use system in the Somali rangelands. Communal open grazing land is defined as the communal rangelands that are not privately owned but belong to the communities whose members have equal-access rights to the communal resources. This land type is characterized by open grass vegetation with scattered woody trees. The pastoralists use it for extensive livestock grazing throughout the year.
- Browsing land is a grazing management system that is used in response to changing environmental conditions. By splitting herd composition, it enhances climate resilience. To split the herd composition, a pastoralist uses herd diversity and ecosystem knowledge as the bases for vegetation management. Pastoralists divide grazing habitats into micro-categories based on plant cover, soil type, and ecosystem-functioning knowledge. Herd diversity also helps to ensure the optimum utilization of resources since the different domestic animals have different feed preferences. For example, camels and goats browse, while sheep and cattle graze. This maximizes the utilization of the available fodder. The grazing management system that is commonly known as “bay land” is one such micro-category and is characterized by open bush mixed vegetation, which is used for camel’s and goats’ browsing. This grazing management system is used when feed is scarce in the grass-dominated communal open grazing areas.
- Enclosures are areas that are closed off from grazing for a given period to foster vegetation regeneration [28]. These areas are often fenced using live fencing consisting of bushes; thus, they form an important component of rangeland landscape rehabilitation [29]. Enclosures are generally used for hay production, which is cut and carried to the livestock when there is a feed shortage for grazing in the open communal grazing areas. Pastoralists in the Somali region have started setting aside part of their rangelands physically or using social bylaws as fenced grazing reserves since the early periods of the second half of the twentieth century [30].
2.3. Site Selection and Sampling Design
2.4. Woody Vegetation Sampling
2.5. Herbaceous Biomass and Soil Physicochemical Properties Sampling
2.6. Data Analysis
3. Results
3.1. Effect of Grazing Management on Carbon Stock
3.1.1. Woody Carbon Stock
3.1.2. Herb Carbon Stock
3.1.3. Soil Organic Carbon Stock
3.2. Relative Rate of Carbon Change
4. Discussion
4.1. Effect of Customary Grazing Management on Woody Carbon Storage
4.2. Effect of Grazing Management on Herbs Carbon Storage
4.3. Effect of Grazing Management on SOC Carbon Storage
4.4. Relative Annual Rate of Carbon Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrokofsky, G.; Kanamaru, H.; Achard, F.; Goetz, S.J.; Joosten, H.; Holmgren, P.; Lehtonen, A.; Menton, M.; Pullin, A.S.; Wattenbach, M. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Mahanta, S.K. Carbon sequestration in grassland systems. Range Manag. Agrofor. 2014, 35, 173–181. [Google Scholar]
- Kane, E.S.; Vogel, J.G. Patterns of Total Ecosystem Carbon Storage with Changes in Soil Temperature in Boreal Black Spruce. Forests 2009, 2, 322–335. [Google Scholar] [CrossRef]
- FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment (Draft for Public Review). Livestock Environmental Assessment and Performance (LEAP) Partnership; FAO: Rome, Italy, 2018. [Google Scholar]
- Noulèkoun, F.; Birhane, E.; Kassa, H.; Berhe, A.; Gebremichael, Z.M.; Adem, N.M.; Syoum, Y.; Mengistu, T.; Lemma, B.; Hagazi, N.; et al. Grazing exclosures increase soil organic carbon stock at a rate greater than “4 per 1000” per year across agricultural landscapes in Northern Ethiopia. Sci. Total Environ. 2021, 782, 146821. [Google Scholar] [CrossRef]
- Seid, M.A.; Kuhn, N.J.; Fikre, T.Z. The role of pastoralism in regulating ecosystem services. OIE Rev. Sci. Tech. 2016, 35, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Deng, L. Earth-Science Reviews Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 2017, 173, 84–95. [Google Scholar] [CrossRef]
- Halefom, Z.; Kebede, F.; Fitwi, I.; Abraha, Z.; Gebresamuel, G. Acacia Dominated Area Exclosures Enhance the Carbon Sequestration Potential of Degraded Dryland Forest Ecosystems. J. Environ. Sci. 2020, 36, 25–36. [Google Scholar] [CrossRef]
- Reda, G.K.; Kebede, T.G.; Teklay, S.; Gebrehiwot, B.H. Effect of grazing exclusion on carbon storage on grazing lands: A review original research article open access effect of grazing exclusion on carbon storage on grazing lands: A review. Int. J. Dev. Res. 2018, 8, 22870–22878. [Google Scholar]
- Mohammed, M.; Abule, E.; Lissahanwork, N. Soil organic carbon and total nitrogen stock response to traditional enclosure management in eastern Ethiopia. J. Soil Sci. Environ. Manag. 2017, 8, 37–43. [Google Scholar] [CrossRef]
- Manaye, A.; Negash, M.; Alebachew, M. Effect of degraded land rehabilitation on carbon stocks and biodiversity in semi-arid region of Northern Ethiopia. Forest Sci. Technol. 2019, 15, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Molla, A.; Kewessa, G. Carbon Stock of Indigenous Agroforestry Practices in Dellomenna District Southeast Ethiopia: Implication for Climate Change Mitigation. J. Resour. Dev. Manag. 2019, 54, 1–6. [Google Scholar] [CrossRef]
- Gobelle, S.K.; Gure, A. Effects of bush encroachment on plant composition, diversity and carbon stock in Borana rangelands. Int. J. Biodivers. Conserv. 2018, 10, 230–245. [Google Scholar] [CrossRef] [Green Version]
- Tesfay, A. The Contribution of Grazing Enclosures for Sustainable Management and Enhancing Restoration of Degraded Range Lands in Ethiopia: Lessons and Forward. J. Environ. Earth Sci. 2016, 6, 112–126. [Google Scholar]
- Gurmessa, B.; Demessie, A.; Lemma, B. Dynamics of soil carbon stock, total nitrogen, and associated soil properties since the conversion of Acacia woodland to managed pastureland, parkland agroforestry, and treeless cropland in the Jido Komolcha District, southern Ethiopia. J Sustain. For. 2016, 35, 324–337. [Google Scholar] [CrossRef]
- Terefe, A.; Ebro, A.; Zewedu, T. Rangeland dynamics in South Omo zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and grazing types. Livest Res. Rural Dev. 2010, 22, 10. [Google Scholar]
- Gebregergs, T.; Tessema, Z.K.; Solomon, N.; Birhane, E. Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia. Ecol. Evol. 2019, 9, 6468–6479. [Google Scholar] [CrossRef]
- De Steiguer, B.J.E.; Brown, J.R.; Thorpe, J. Contributing to the Mitigation of Climate Change Using Rangeland Management. Soc. Range Manag. 2008, 7, 11. [Google Scholar]
- Dabasso, B.H.; Taddese, Z.; Hoag, D. Carbon stocks in semi-arid pastoral ecosystems of northern Kenya. Pastoralism 2014, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Mgalula, M.E. Assessing Trends in Land Use Change in the Borana Rangeland Ethiopia as One Cause of Greenhouse gas Emissions and Carbon Sequestration Variations, Topics in Applied Resource Management in the Tropics. Ph.D. Thesis, German Institute for Tropical and Subtropical Agriculture DITSL, Witzenhausen, Germany, 2016. [Google Scholar]
- Province, B. The Effect of Stocking Rate on Carbon Sequestration of Prangos ferulacea (Case Study: Gorgou Summer Rangelands, Kohgiluyeh and Boyer-Ahmad Province, Iran). J. Rangel. Sci. 2018, 8, 30–40. [Google Scholar]
- Gezahegn, A.K. Characterization of Rangeland Resources and Dynamics of the Pastoral Production Systems in the Somali Region of Eastern Ethiopia. 2006. Available online: http://scholar.ufs.ac.za:8080/xmlui/handle/11660/2123 (accessed on 16 October 2021).
- Haftay, H.; Yayneshet, T.; Animut, G.; Treydte, A.C. Rangeland vegetation responses to traditional enclosure management in eastern Ethiopia. Rangel. J. 2013, 35, 29–36. [Google Scholar] [CrossRef]
- Alemie, D.K.; Gebremedhin, H.H. Vegetation Diversity and Soil Physico-chemical Properties Under Traditional Management of Rangeland in Eastern Ethiopia. J. Agric. Sci. 2019, 11, 515. [Google Scholar] [CrossRef]
- Kassahun, A.; Synman, H.A.; Smit, G.N.; Snyman, H.A.; Smit, G.N. Impact of rangeland degradation on the pastoral production systems, livelihoods and perceptions of the Somali pastoralists in Eastern Ethiopia. J. Arid. Environ. 2008, 72, 1265–1281. [Google Scholar] [CrossRef]
- Debalkie, B. Floristic Composition and Diversity of the Vegetation, Soil Seed Bank Flora and Condition of the Rangelands of the Jijiga Zone, Somali Regional State, Ethiopia. Master’s Thesis, Harayama University, Harayama, Ethiopia, 2006. [Google Scholar]
- Beyene, F. Exploring incentives for rangeland enclosures among pastoral and agropastoral households in eastern Ethiopia. Glob. Environ. Chang. 2009, 19, 494–502. [Google Scholar] [CrossRef]
- Behnke, R.H. The Implications of Spontaneous Range Enclosure for African Livestock Development policy. Afr. Livest. Policy Anal. Netw. Pap. 1986, 12, 2–3. [Google Scholar]
- Nyberg, G.; Mureithi, S.M.; Muricho, D.N.; Ostwald, M. Enclosures as a land management tool for food security in African drylands. J. Land Use Sci. 2019, 14, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Beyene, F. Driving forces in the expansion of enclosure among pastoral and agropastoral herders in Ethiopia. AgEcon 2010, 49, 127–146. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. ESS Working Paper No. 2, March 2014. Available online: https://www.uncclearn.org/wp-content/uploads/library/fao198.pdf (accessed on 16 October 2021).
- Hasen-Yusuf, M.; Treydte, A.C.; Abule, E.; Sauerborn, J. Predicting aboveground biomass of woody encroacher species in semi-arid rangelands, Ethiopia. J. Arid. Environ. 2013, 96, 64–72. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Somogyi, Z.; Mangino, J.; Ogle, S.; Raison, J.; Verchot, L. Agriculture, Forestry and Other Land Use: Annex 1. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; 2006; Volume 4, pp. 1–64. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 15 June 2020).
- Goldstein, B.J.H.; Presnall, C.K.; López-Hoffman, L.; Nabhan, G.P.; Knight, R.L.; Ruyle, G.B.; Toombs, T.P. Beef and Beyond: Paying for US Rangelands. Rangelands 2011, 33, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Campbell, L.B.; Racz, G.J. Organic and inorganic P content, movement and mineralization of P in soil beneath a feedlot. Can. J. Soil Sci. 1975, 55, 457–466. [Google Scholar] [CrossRef]
- Baxter, R.; Hastings, N.; Law, A.; Glass, E.J. Organic carbon by wet oxidation (modified Walkely-Black method). Anim. Genet. 2008, 39, 561–563. [Google Scholar] [CrossRef]
- Batjes, N.H. Soil organic carbon stocks under native vegetation—Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agric. Ecosyst. Environ. 2011, 142, 365–373. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Indianapolis, IN, USA, 2017; Volume 10, pp. 11–18. [Google Scholar]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. L. Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Yusuf, H.M.; Treydte, A.C.; Sauerborn, J. Managing semi-arid rangelands for carbon storage: Grazing and woody encroachment effects on soil carbon and nitrogen. PLoS ONE 2015, 10, 9063. [Google Scholar] [CrossRef] [PubMed]
- Birhane, E.; Treydte, A.C.; Eshete, A.; Solomon, N. Can rangelands gain from bush encroachment? Carbon stocks of communal grazing lands invaded by Prosopis juli flora. J. Arid. Environ. 2017, 141, 60–67. [Google Scholar] [CrossRef]
- Booker, K.; Huntsinger, L.; Bartolome, J.W.; Sayre, N.F.; Stewart, W. What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Glob. Environ. Chang. 2013, 23, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Birhane, E.; Gebreslassie, H.; Giday, K.; Teweldebirhan, S.; Hadgu, K.M. Woody Plant Species Composition, Population Structure and Carbon Sequestration Potential of the A. senegal (L.) Willd Woodland Along a Distance Gradient in North-Western Tigray, Ethiopia. J. For. Environ. Sci. 2020, 36, 91–112. [Google Scholar]
- Mcsherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Xiong, D.; Shi, P.; Zhang, X.; Zou, C.B. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China—A meta-analysis. Ecol. Eng. 2016, 94, 647–655. [Google Scholar] [CrossRef]
- Fenetahun, Y.; Yuan, Y.; Xinwen, X.; Fentahun, T.; Nzabarinda, V.; Yong-dong, W. Impact of Grazing Intensity on Soil Properties in Teltele Rangeland, Ethiopia. Front. Environ. Sci. 2021, 9, 9. [Google Scholar] [CrossRef]
- He, N.P.; Zhang, Y.H.; Yu, Q.; Chen, Q.S.; Pan, Q.M.; Zhang, G.M.; Han, X.G. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere 2011, 2, 8. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration: Ethiopia. In Encyclopedia of Soil Science, 3rd ed.; Taylor & Francis: Abingdon, UK, 2017; pp. 2066–2072. [Google Scholar] [CrossRef]
- Mekuria, W.; Wondie, M.; Amare, T.; Wubet, A.; Feyisa, T.; Yitaferu, B. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 2018, 4, E00764. [Google Scholar] [CrossRef] [Green Version]
- Tessema, B.; Sommer, R.; Piikki, K.; Söderström, M.; Namirembe, S.; Notenbaert, A.; Tamene, L.; Nyawira, S.; Paul, B. Potential for soil organic carbon sequestration in grasslands in East African countries: A review. Grassl. Sci. 2020, 66, 135–144. [Google Scholar] [CrossRef]
- Bikila, N.G.; Tessema, Z.K.; Abule, E.G. Carbon sequestration potentials of semi-arid rangelands under traditional management practices in Borana, Southern Ethiopia. Agric. Ecosyst. Environ. 2016, 223, 108–114. [Google Scholar] [CrossRef]
- Dean, C.; Kirkpatrick, J.B.; Harper, R.J.; Eldridge, D.J. Optimising carbon sequestration in arid and semiarid rangelands. Ecol. Eng. 2015, 74, 148–163. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef]
- Smith, P. Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
Grazing Management Systems | Soil Parameters | Woody Vegetation | |||||
---|---|---|---|---|---|---|---|
Soil Texture | Soil pH | N (%) | OC (%) | Bulk Density (g·cm−3) | Tree Density (Stem·ha−1) | Woody Canopy Cover (m2/plot) | |
Enclosure | Loam | 8.61 | 16 | 32 | 1.29 | 50 | 38.54 |
Browsing area (bay) | Loam | 7.55 | 19 | 22 | 2.18 | 1125 | 374.71 |
Open grassland grazing area | Loam | 7.21 | 12 | 20 | 1.17 | 300 | 119.52 |
Management Type | WAGC | WBGC | HAGC | HBGC | SOC |
---|---|---|---|---|---|
Enclosure | 1.34 b | 0.267 b | 2.00 a | 0.40 a | 85.11 a |
Browsing land (bay) | 8.63 a | 1.73 a | 1.10 b | 0.22 b | 84.00 a |
Open grazing land | 3.40 b | 0.68 b | 0.37 b | 0.06 b | 54.33 b |
Mean | 4.46 | 0.89 | 1.16 | 0.23 | 74.48 |
Df | 2 | 2 | 2 | 2 | 2 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremedhn, H.H.; Kelkay, T.Z.; Tesfay, Y.; Tuffa, S.; Dejene, S.W.; Mensah, S.; Devenish, A.J.M.; Egeru, A. Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia. Land 2022, 11, 639. https://doi.org/10.3390/land11050639
Gebremedhn HH, Kelkay TZ, Tesfay Y, Tuffa S, Dejene SW, Mensah S, Devenish AJM, Egeru A. Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia. Land. 2022; 11(5):639. https://doi.org/10.3390/land11050639
Chicago/Turabian StyleGebremedhn, Haftay Hailu, Tessema Zewdu Kelkay, Yayanshet Tesfay, Samuel Tuffa, Sintayehu Workeneh Dejene, Sylvanus Mensah, Adam John Mears Devenish, and Anthony Egeru. 2022. "Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia" Land 11, no. 5: 639. https://doi.org/10.3390/land11050639
APA StyleGebremedhn, H. H., Kelkay, T. Z., Tesfay, Y., Tuffa, S., Dejene, S. W., Mensah, S., Devenish, A. J. M., & Egeru, A. (2022). Carbon Stock and Change Rate under Different Grazing Management Practices in Semiarid Pastoral Ecosystem of Eastern Ethiopia. Land, 11(5), 639. https://doi.org/10.3390/land11050639