Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Framework of the Method
2.2.1. Data Sources
2.2.2. Land-Use Change Detection Technology
2.2.3. Landscape Pattern Analysis
2.2.4. Ecosystem Service Value Assessment
Determination of Equivalent Factors of Ecosystem Service Value
Determination of Ecosystem Service Value Coefficient
Calculation of Ecosystem Service Value
Sensitivity Analysis of Ecosystem
3. Results
3.1. Analysis of Temporal and Spatial Features Regarding the Land Use Evolution during 2000–2020
3.2. Analysis of Landscape Change Trend at Landscape and at Type Scales during 2000–2020
3.3. Ecosystem Services Analysis of Northeast China from 2000–2020
3.3.1. Sensitivity Analysis of Ecosystem Service Value during the Period of 2000–2020
3.3.2. Analysis of the Characteristics of Ecosystem Service Function during 2000–2020
3.3.3. Distributions of Ecosystem Service Value during 2000–2020
4. Discussion
4.1. The Reduction of Cultivated Land Area Is Revealed in Northeast China
4.2. The Comparison Comes from the Improved Method in This Study and the Conventional Method
4.3. The Shortcomings of This Study and the Plan for the Next Step
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Zhao, Q.; Wen, Z.; Chen, S.; Ding, S.; Zhang, M. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 2020, 17, 126. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Zhai, M.; Zhu, G.; Zhang, C.; Jiang, Z. Decoupling of wastewater eco-environmental damage and China′s economic development. Sci. Total Environ. 2021, 789, 147980. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, X.; Chen, Y.; Zhong, T.; Xu, G.; He, J.; Xu, Y.; Meng, H. The effect of land use planning (2006–2020) on construction land growth in China. Cities 2017, 68, 37–47. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; He, B.-J.; Wu, J.; Wu, K. Coupling coordination relationships between urban-industrial land use efficiency and accessibility of highway networks: Evidence from Beijing-Tianjin-Hebei urban agglomeration, China. Sustainability 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.; Damm-Luhr, T. A Current review of chinese land-use law and policy: A breakthrough in rural reform. Pac. Rim L. Pol’y J. 2010, 19, 121. [Google Scholar]
- Janeczko, E.; Dąbrowski, R.; Budnicka-Kosior, J.; Woźnicka, M. Influence of Urbanization Processes on the Dynamics and Scale of Spatial Transformations in the Mazowiecki Landscape Park. Sustainability 2019, 11, 3007. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape pattern indices for evaluating urban spatial morphology-A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Yu, S. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yushanjiang, A.; Zhang, F.; Yu, H. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Jiang, P.; Li, M.; Lv, J. The causes of farmland landscape structural changes in different geographical environments. Sci. Total Environ. 2019, 685, 667–680. [Google Scholar] [CrossRef]
- Deng, L.; Li, X.; Luo, H.; Fu, E.-K.; Ma, J.; Sun, L.-X.; Huang, Z.; Cai, S.-Z.; Jia, Y. Empirical study of landscape types, landscape elements and landscape components of the urban park promoting physiological and psychological restoration. Urban For. Urban Green. 2020, 48, 126488. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Pickett, S.T.; Yu, W.; Xiong, D.; Wang, W.; Jing, C. Integrating structure and function: Mapping the hierarchical spatial heterogeneity of urban landscapes. Ecol. Process. 2020, 9, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Xiong, N.; Chen, Y.; Sun, L.; Wang, Y.; An, L. Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China. Remote Sens. 2022, 14, 1151. [Google Scholar] [CrossRef]
- Stige, L.C.; Kvile, K.Ø. Climate warming drives large-scale changes in ecosystem function. Proc. Natl. Acad. Sci. USA 2017, 14, 12100–12102. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Arunrat, N.; Sereenonchai, S.; Wang, C. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. J. Environ. Manag. 2021, 289, 112458. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Zhu, X.; He, Q.; Tang, L. Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Adv. Space Res. 2019, 63, 2144–2154. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Huang, X.; Sloan, M.; Skitmore, M. Spatial-temporal evolution and classification of marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar]
- Gong, P.; Marceau, D.J.; Howarth, P.J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 1992, 40, 137–151. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Land cover classification in a complex urban-rural landscape with QuickBird imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiyuan, L.; Mingliang, L.; Xiangzheng, D.; Dafang, Z.; Zengxiang, Z.; Di, L. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China. Land Use Policy 2020, 97, 104747. [Google Scholar] [CrossRef]
- Rodríguez-Loinaz, G.; Alday, J.G.; Onaindia, M. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. J. Environ. Manag. 2015, 147, 152–163. [Google Scholar] [CrossRef]
- McGarigal, K.; Compton, B.W.; Plunkett, E.B.; DeLuca, W.V.; Grand, J.; Ene, E.; Jackson, S.D. A landscape index of ecological integrity to inform landscape conservation. Landsc. Ecol. 2018, 33, 1029–1048. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C. Introduction: What are ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; Volume 1. [Google Scholar]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial differentiation and driving mechanisms in ecosystem service value of arid region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Li, J.; Liang, J.; Wu, Y.; Yin, S.; Yang, Z.; Hu, Z. Quantitative evaluation of ecological cumulative effect in mining area using a pixel-based time series model of ecosystem service value. Ecol. Indic. 2021, 120, 106873. [Google Scholar] [CrossRef]
- Morano, P.; Guarini, M.R.; Sica, F.; Anelli, D. Ecosystem Services and Land Take. A Composite Indicator for the Assessment of Sustainable Urban Projects. In Proceedings of the International Conference on Computational Science and Its Applications, ICCSA, Cagliari, Italy, 13–16 September 2021; pp. 210–225. [Google Scholar]
- Ding, X.H.; Zhao, W.; Zhong, W.Z.; Xing, Z.B. Assessing the impacts of urbanization on the ecosystem services of city in northwestern China: Case study of Xi′an. Adv. Mater. Res. 2014, 864, 1070–1077. [Google Scholar] [CrossRef]
- Daily, G.C. What Are Ecosystem Services; Island Press: Washington, DC, USA, 2003; pp. 227–231. [Google Scholar]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Gaodi, X.; Yili, Z.; Chunxia, L.; Du, Z.; Shengkui, C. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, H.; Qiu, L.; Wei, X.; Liu, B.; Shao, M. Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China. Agric. Ecosyst. Environ. 2020, 302, 107081. [Google Scholar] [CrossRef]
- Liu, F.; Qin, T.; Girma, A.; Wang, H.; Weng, B.; Yu, Z.; Wang, Z. Dynamics of land-use and vegetation change using NDVI and transfer matrix: A case study of the Huaihe River Basin. Pol. J. Environ. Stud. 2018, 28, 213–223. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, E.J. How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landsc. Ecol. 2019, 34, 2065–2072. [Google Scholar] [CrossRef]
- Fragstats v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 18 February 2022).
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wang, P.; Zeng, C.; Song, Y.; Guo, L.; Liu, W.; Zhang, W. The Spatial Effect of Administrative Division on Land-Use Intensity. Land 2021, 10, 543. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; Benito, A.L.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef]
- Hou, M.; Deng, Y.; Yao, S. Spatial agglomeration pattern and driving factors of grain production in China since the reform and opening up. Land 2020, 10, 10. [Google Scholar] [CrossRef]
- Ye, Y.; Fang, X.; Khan, A.U. Migration and reclamation in Northeast China in response to climatic disasters in North China over the past 300 years. Reg. Environ. Chang. 2012, 12, 193–206. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, H.-s.; Yu, L.; He, Y.-f. Land reclamation process in northeast China since 1900. Chin. Geogr. Sci. 2003, 13, 119–123. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; Luo, G.; Du, G.; DeMaeyer, P.; Yin, Z. A large-scale shift of cropland structure profoundly affects grain production in the cold region of China. J. Clean. Prod. 2021, 307, 127300. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Zhou, Y.; Hartemink, A.E.; Shi, Z.; Liang, Z.; Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 2019, 647, 1230–1238. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S.; Liu, X.; Chen, D.; Chen, J.; Bu, K.; Yang, J.; Chang, L. The effects of spatiotemporal changes in land degradation on ecosystem services values in Sanjiang Plain, China. Remote Sens. 2016, 8, 917. [Google Scholar] [CrossRef] [Green Version]
- Tianhong, L.; Wenkai, L.; Zhenghan, Q. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Pan, T.; Kuang, W.; Pan, R.; Niu, Z.; Dou, Y. Hierarchical Urban Land Mappings and Their Distribution with Physical Medium Environments Using Time Series of Land Resource Images in Beijing, China (1981–2021). Remote Sens. 2022, 14, 580. [Google Scholar] [CrossRef]
- Yin, Z.; Kuang, W.; Bao, Y.; Dou, Y.; Chi, W.; Ochege, F.U.; Pan, T. Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform. Remote Sens. 2021, 13, 4288. [Google Scholar] [CrossRef]
- Kuang, W.; Hou, Y.; Dou, Y.; Lu, D.; Yang, S. Mapping Global Urban Impervious Surface and Green Space Fractions Using Google Earth Engine. Remote Sens. 2021, 13, 4187. [Google Scholar] [CrossRef]
- Funke, M.; Gronwald, M. The undisclosed Renminbi basket: Are the markets telling us something about where the Renminbi–US dollar exchange rate is going? World Econ. 2008, 31, 1581–1598. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Yang, Z.; Lin, P. Systematic hydrological evaluation of the Noah-MP land surface model over China. Adv. Atmos. Sci. 2019, 36, 1171–1187. [Google Scholar] [CrossRef]
- Du, J.; Song, K.; Wang, Z.; Zhang, B.; Liu, D. Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chin. Geogr. Sci. 2013, 23, 73–91. [Google Scholar] [CrossRef]
Names | Abbreviations | Formulas | Meanings |
---|---|---|---|
Number of Patches | NP | At the patch type level, it is equal to the total number of corresponding patch types in the landscape; At the landscape level, it is equal to the sum of the number of all types of patches. | |
Largest Patch Index | LPI | (100) | It refers to the percentage of the largest patch in the total area, reflecting the degree of human intervention in landscape change. |
Landscape Shape Index | LSI | It reflects the shape dispersion and regularity of different patches or landscapes. | |
Shannon’s Diversity Index | SHDI | It reflects the balance degree of the distribution of different landscape types. | |
Contagion Index | CONTAG | It reflects the degree of aggregation and extension of different landscape types. | |
Interspersion and Juxtaposition Index | IJI | It reflects the overall distribution and parallel distribution of different landscape types and shows the interaction between different types. | |
Aggregation Index | AI | It reflects the degree of interconnection between patches of the same type. |
Ecosystem Classification | Supply Service | Regulation Service | Support Service | Cultural Service | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First Class | Second Class | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
Cultivated land | Paddy field | 1.36 | 0.09 | −2.63 | 1.11 | 0.57 | 0.17 | 2.72 | 0.01 | 0.19 | 0.21 | 0.09 |
Upland crops | 0.85 | 0.40 | 0.02 | 0.67 | 0.36 | 0.10 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 | |
Forest land | Woodland | 0.27 | 0.63 | 0.33 | 2.07 | 6.20 | 1.80 | 3.86 | 2.52 | 0.19 | 2.30 | 1.01 |
Shrub wood | 0.19 | 0.43 | 0.22 | 1.41 | 4.23 | 1.28 | 3.35 | 1.72 | 0.13 | 1.57 | 0.69 | |
Sparse woods | 0.25 | 0.58 | 0.30 | 1.91 | 5.71 | 1.70 | 3.74 | 2.33 | 0.18 | 2.12 | 0.93 | |
Other forest land | 0.25 | 0.58 | 0.30 | 1.91 | 5.71 | 1.67 | 3.74 | 2.32 | 0.18 | 2.12 | 0.93 | |
Grass land | High and medium coverage grassland | 0.23 | 0.34 | 0.19 | 1.21 | 3.19 | 1.05 | 2.34 | 1.47 | 0.11 | 1.34 | 0.59 |
Low coverage grassland | 0.18 | 0.26 | 0.14 | 0.91 | 2.39 | 0.82 | 1.76 | 1.11 | 0.09 | 1.01 | 0.45 | |
Water area | Rivers, lakes, reservoirs, ponds, tidal flats and beaches | 0.80 | 0.23 | 8.29 | 0.77 | 2.29 | 5.55 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
Permanent glacier and snow | 0.00 | 0.00 | 2.16 | 0.18 | 0.54 | 0.16 | 7.13 | 0.00 | 0.00 | 0.01 | 0.09 | |
Wetland | Wetland | 0.51 | 0.50 | 2.59 | 1.90 | 3.60 | 3.60 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
Construction land | Urban, villages, industries and mines | 0.29 | 0.58 | 0.31 | 1.95 | 5.47 | 1.85 | 3.80 | 2.37 | 0.18 | 2.16 | 0.95 |
other land | Sandy land, Gobi, saline alkali land, bare land, bare rock land, others | 0.01 | 0.03 | 0.02 | 0.13 | 0.10 | 0.41 | 0.24 | 0.15 | 0.01 | 0.14 | 0.06 |
Ecosystem Classification | Supply Service | Regulation Service | Support Service | Cultural Service | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First Class | Second Class | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
Cultivated land | Paddy field | 2775.27 | 183.66 | −5366.88 | 2265.11 | 1163.16 | 346.91 | 5550.54 | 20.41 | 387.72 | 428.53 | 183.66 |
Upland crops | 1734.54 | 816.26 | 40.81 | 1367.23 | 734.63 | 204.06 | 550.97 | 2101.86 | 244.88 | 265.28 | 122.44 | |
Forest land | Woodland | 557.77 | 1285.60 | 666.61 | 4230.93 | 12,651.97 | 3679.95 | 7883.67 | 5149.21 | 394.52 | 4686.67 | 2054.24 |
Shrub wood | 387.72 | 877.48 | 448.94 | 2877.30 | 8631.91 | 2612.02 | 6836.14 | 3509.90 | 265.28 | 3203.80 | 1408.04 | |
Sparse woods | 515.26 | 1183.57 | 612.19 | 3902.72 | 11,646.95 | 3463.99 | 7637.09 | 4749.59 | 362.21 | 4326.16 | 1897.79 | |
Other forest land | 515.26 | 1183.57 | 612.19 | 3892.52 | 11,646.95 | 3412.97 | 7621.79 | 4739.39 | 362.21 | 4315.95 | 1892.69 | |
Grass land | High and medium coverage grassland | 476.15 | 700.62 | 387.72 | 2462.37 | 6509.64 | 2149.47 | 4768.29 | 2999.74 | 231.27 | 2727.65 | 1203.98 |
Low coverage grassland | 357.11 | 525.46 | 290.79 | 1856.98 | 4882.23 | 1663.12 | 3591.53 | 2260.01 | 173.45 | 2055.94 | 908.08 | |
Water area | Rivers, lakes, reservoirs, ponds, tidal flats and beaches | 1632.51 | 469.35 | 16,916.90 | 1571.29 | 4673.06 | 11,325.55 | 208,635.00 | 1897.79 | 142.84 | 5203.63 | 3856.81 |
Permanent glacier and snow | 0.00 | 0.00 | 4407.78 | 367.32 | 1101.95 | 326.50 | 14,549.76 | 0.00 | 0.00 | 20.41 | 183.66 | |
Wetland | Wetland | 1040.73 | 1020.32 | 5285.26 | 3877.22 | 7346.30 | 7346.30 | 49,444.70 | 4713.88 | 367.32 | 16,059.83 | 9652.23 |
Construction land | Urban, villages, industries and mines | 595.19 | 1180.17 | 629.20 | 3975.85 | 11,155.50 | 3771.78 | 7751.03 | 4836.32 | 370.72 | 4404.38 | 1931.81 |
Other land | Sandy land, Gobi, saline alkali land, bare land, bare rock land, others | 20.41 | 61.22 | 40.81 | 265.28 | 204.06 | 836.66 | 489.75 | 306.10 | 20.41 | 285.69 | 122.44 |
Year | Land Types | Number of Patches (NP) | Largest Patch Index (LPI)/% | Landscape Shape Index (LSI) | Aggregation Index (AI)/% | Interspersion and Juxtaposition Index (IJI)/% |
---|---|---|---|---|---|---|
2000 | Cultivated land (CL) | 32,884.00 | 9.98 | 397.47 | 92.77 | 80.14 |
Forest land (FL) | 41,050.00 | 16.89 | 285.63 | 95.18 | 60.94 | |
Grass land (GL) | 26,548.00 | 0.28 | 319.62 | 85.62 | 68.20 | |
Water body (WB) | 10,258.00 | 0.95 | 146.06 | 90.69 | 82.14 | |
Construction land (CL) | 101,455.00 | 0.03 | 381.42 | 75.61 | 34.05 | |
Unused land (UL) | 7962.00 | 0.46 | 192.01 | 90.68 | 79.38 | |
2010 | Cultivated land (CL) | 41,513.00 | 5.73 | 424.56 | 92.40 | 79.94 |
Forest land (FL) | 46,624.00 | 16.21 | 325.92 | 94.40 | 66.93 | |
Grass land (GL) | 29,511.00 | 0.25 | 312.22 | 83.02 | 75.12 | |
Water body (WB) | 16,046.00 | 0.50 | 197.08 | 86.33 | 82.97 | |
Construction land (CL) | 122,169.00 | 0.06 | 414.82 | 75.95 | 38.91 | |
Unused land (UL) | 14,456.00 | 0.46 | 289.13 | 87.96 | 78.94 | |
2020 | Cultivated land (CL) | 42,604.00 | 7.44 | 438.57 | 92.01 | 81.67 |
Forest land (FL) | 48,231.00 | 12.49 | 321.38 | 94.50 | 66.94 | |
Grass land (GL) | 33,816.00 | 0.28 | 353.00 | 83.73 | 73.20 | |
Water body (WB) | 14,524.00 | 0.68 | 186.37 | 87.85 | 85.61 | |
Construction land (CL) | 127,097.00 | 0.11 | 420.39 | 76.22 | 41.26 | |
Unused land (UL) | 18,438.00 | 0.44 | 259.80 | 88.11 | 82.21 |
Main Class | Cites |
---|---|
low value region (I) | Panjin |
sub-low value region (II) | Chaoyang |
median region (III) | Qiqihar, Suihua, Jiamusi, Shuangyashan, Qitaihe, Daqing, Baicheng, Songyuan, Changchun, Siping, Liaoyuan, Tieling, Shenyang, Fuxin, Jinzhou, Dalian and Huludao |
sub-high value region (IV) | Baishan, Tonghua, |
high value region (V) | Da Hinggan Ling Prefecture, Heihe, Yichun, Hegang, Jixi, Harbin, Mudanjiang, Jilin, Yanbian Korean Autonomous Prefecture, Fushun, Benxi, Liaoyang, Dandong, Anshan and Yingkou |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X.; Zhang, J. Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land 2022, 11, 696. https://doi.org/10.3390/land11050696
Wang X, Pan T, Pan R, Chi W, Ma C, Ning L, Wang X, Zhang J. Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land. 2022; 11(5):696. https://doi.org/10.3390/land11050696
Chicago/Turabian StyleWang, Xinqing, Tao Pan, Ruoyi Pan, Wenfeng Chi, Chen Ma, Letian Ning, Xiaoyu Wang, and Jiacheng Zhang. 2022. "Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020" Land 11, no. 5: 696. https://doi.org/10.3390/land11050696
APA StyleWang, X., Pan, T., Pan, R., Chi, W., Ma, C., Ning, L., Wang, X., & Zhang, J. (2022). Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land, 11(5), 696. https://doi.org/10.3390/land11050696