Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Design
2.2.1. Research Ideas
2.2.2. Selection of Indicators
- Dependent variable
- 2.
- Explanatory variables
- 3.
- Control variables
2.3. Data Sources
2.4. Research Methodology
2.4.1. Spatial Autocorrelation
2.4.2. Ordinary Least Squares
2.4.3. Spatial Regression Model
3. Results
3.1. Characteristics of Spatial Differences in Carbon Emissions
3.2. Characteristics of Spatial Differences in Construction Land Types
3.3. Differential Characteristics of the Impact of Different Types of Construction Land on Carbon Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Peng, D. Review on the empirical research on the impact factors of China’s carbon dioxide emissions. Ecol. Econ. 2013, 6, 50–54. [Google Scholar]
- Famoso, F.; Lanzafame, R.; Monforte, P.; Oliveri, C.; Scandura, P.F. Air quality data for Catania: Analysis and investigation casestudy 2012–2013. Energy Procedia 2015, 81, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Rosario, L.; Pietro, M.; Francesco, S.P. Comparative analyses of urban air quality monitoring systems: Passive sampling and continuous monitoring stations. Energy Procedia 2016, 101, 321–328. [Google Scholar] [CrossRef]
- The State Council Information Office of the People’s Republic of China. In Responding to Climate Change: China’s Policies and Actions; Foreign Languages Press: Beijing, China, 2021; Volume 1, p. 1.
- Lin, Q.; Zhang, L.; Qiu, B.; Zhao, Y.; Wei, C. Spatiotemporal analysis of land use patterns on carbon emissions in China. Land 2021, 10, 141. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Zhang, L. Economic Development and Its Bearing on CO2 Emissions. Acta Geogr. Sin. 2003, 58, 637–640. [Google Scholar]
- Zhang, S.; Xie, Y.; Sander, R.; Yue, H.; Shu, Y. Potentials of energy efficiency improvement and energy–emission–health nexus in Jing-Jin-Ji’s cement industry. J. Clean. Prod. 2021, 278, 123335. [Google Scholar] [CrossRef]
- Omri, A.; Mabrouk, N.B.; Sassi-Tmar, A. Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries. Renew. Sustain. Energy Rev. 2015, 42, 1012–1022. [Google Scholar] [CrossRef]
- Dong, B.; Ma, X.; Zhang, Z.; Zhang, H.; Chen, R.; Song, Y.; Shen, M.; Xiang, R. Carbon emissions, the industrial structure and economic growth: Evidence from heterogeneous industries in China. Environ. Pollut. 2020, 262, 114322. [Google Scholar] [CrossRef]
- Rosa, E.A.; Dietz, T. Human drivers of national greenhouse-gas emissions. Net. Clim. Chang. 2012, 2, 581–586. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Clark, B. The relationship between national-level carbon dioxide emissions and population size: An assessment of regional and temporal variation, 1960–2005. PLoS ONE 2013, 8, e57107. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Q. Will technology advances alleviate climate change? Dual effects of technology change on aggregate carbon dioxide emissions. Energy Sustain. Dev. 2017, 41, 61–68. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2021, 280, 111818. [Google Scholar] [CrossRef]
- Herring, H.; Roy, R. Technological innovation, energy efficient design and the rebound effect. Technovation 2007, 27, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Zhou, W.; Zhao, T.; Zhang, L. Impact of Urbanization and Industrial Structure on Carbon Emissions: Evidence from Huaihe River Eco-Economic Zone. Land 2021, 10, 1130. [Google Scholar] [CrossRef]
- Yang, W.; Cao, X. Progress of research on influencing factors of CO2 emissions from multi-scale transport. Prog. Geogr 2019, 38, 1814–1828. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.; Tang, Y. Drivers of carbon emission transfer in China—An analysis of international trade from 2004 to 2011. Sci. Total Environ. 2020, 709, 135924. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, M.; Cheng, Z.; Yang, Z. Impact of marginal and intergenerational effects on carbon emissions from household energy consumption in China. J. Clean. Prod. 2020, 273, 123022. [Google Scholar] [CrossRef]
- Houghton, R.; Hobbie, J.; Melillo, J.M.; Moore, B.; Peterson, B.; Shaver, G.; Woodwell, G. Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere. Ecol. Monogr. 1983, 53, 235–262. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G.; Deng, X. Estimation, decomposition and reduction potential calculation of carbon emissions from urban construction land: Evidence from 30 provinces in China during 2000–2018. Environ. Dev. Sustain. 2021, 1–18. [Google Scholar] [CrossRef]
- Xiao, D.; Niu, H.; Guo, J.; Zhao, S.; Fan, L. Carbon Storage change analysis and emission reduction suggestions under land use transition: A case study of Henan Province, China. Int. J. Environ. Res. Public. Health 2021, 18, 1844. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.Q.; Asaeda, T.; Thao, V.T.P. Carbon emissions in the field of land use, land use change, and forestry in the Vietnam mainland. Wetl. Ecol. Manag. 2021, 29, 315–329. [Google Scholar] [CrossRef]
- Chuai, X.; Feng, J. High resolution carbon emissions simulation and spatial heterogeneity analysis based on big data in Nanjing City, China. Sci. Total Environ. 2019, 686, 828–837. [Google Scholar] [CrossRef]
- Yuan, K.; Gan, C.; Yang, H.; Liu, Y.; Chen, Y.; Zhu, Q. Validation of the EKC and Characteristics Decomposition between Construction Land Expansion and Carbon Emission: A Case Study of Wuhan City. China Land Sci. 2019, 33, 56–64. [Google Scholar]
- Zhang, R.; Matsushima, K.; Kobayashi, K. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy 2018, 74, 32–40. [Google Scholar] [CrossRef]
- Zhang, G.; Ge, R.; Lin, T.; Ye, H.; Li, X.; Huang, N. Spatial apportionment of urban greenhouse gas emission inventory and its implications for urban planning: A case study of Xiamen, China. Ecol. Indic. 2018, 85, 644–656. [Google Scholar] [CrossRef]
- Ma, J.-S.; Liu, X.-F.; Zuo, T.-H. Study on spatial heterogeneity of land use intensity in Nanjing. Sci. Surv. Mapp. 2010, 35, 49–51. [Google Scholar]
- Li, D.; Tang, Y.; Chen, K.; Deng, T.; Cheng, F.; Liu, D. Distribution of twelve toxic trace elements in coals from southwest China. J. China Univ. Min. Technol. 2006, 1, 15–20. [Google Scholar]
- Yang, J.; Huo, Z.; Wu, L.; Wang, T.; Zhang, G. Indicator-based evaluation of spatiotemporal characteristics of rice flood in Southwest China. Agric. Ecosyst. Environ. 2016, 230, 221–230. [Google Scholar] [CrossRef]
- Li, Y.; Ren, F.; Li, Y.; Wang, P.; Yan, H. Characteristics of the regional meteorological drought events in Southwest China during 1960–2010. J. Meteorol. Res. 2014, 28, 381–392. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, J.; Wang, R.; Zhang, J.; Yu, D. Spatial planning factors that influence CO2 emissions: A systematic literature review. Urban Clim. 2021, 36, 100809. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.P. Research progress of the impact of built environment on carbon emissions of urban construction land. Sci. Technol. Rev. 2021, 24, 65–74. [Google Scholar]
- Zhao, R.; Huang, X. Carbon emission and carbon footprint of different land use types based on energy consumption of Jiangsu Province. Geogr. Res. 2010, 29, 1639–1649. [Google Scholar]
- Yuan, Y.; Chuai, X.; Xiang, C.; Gao, R. Carbon emissions from land use in Jiangsu, China, and analysis of the regional interactions. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Moon, W.; Griffith, J.W. Assessing holistic economic value for multifunctional agriculture in the US. Food Policy 2011, 36, 455–465. [Google Scholar] [CrossRef]
- Minx, J.; Baiocchi, G.; Wiedmann, T.; Barrett, J.; Creutzig, F.; Feng, K.; Förster, M.; Pichler, P.-P.; Weisz, H.; Hubacek, K. Carbon footprints of cities and other human settlements in the UK. Environ. Res. Lett. 2013, 8, 035039. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Wang, W.; Liu, T. Beyond the city: Effects of urbanization on rural residential energy intensity and CO2 emissions. Sustainability 2019, 11, 2421. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Yu, H.; Li, Y.; Dai, M.; Long, X.; Li, N.; Wang, Y. Estimation of entity-level land use and its application in urban sectoral land use footprint: A bottom-up model with emerging geospatial data. J. Ind. Ecol. 2022, 26, 309–322. [Google Scholar] [CrossRef]
- Cao, W.; Yuan, X. Region-county characteristic of spatial-temporal evolution and influencing factor on land use-related CO2 emissions in Chongqing of China, 1997–2015. J. Clean. Prod. 2019, 231, 619–632. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Chuzhi, H.; Xianjin, H. Characteristics of carbon emission in China and analysis on its cause. China Popul. Resour. Environ. 2008, 18, 38–42. [Google Scholar] [CrossRef]
- Song, M.; Guo, X.; Wu, K.; Wang, G. Driving effect analysis of energy-consumption carbon emissions in the Yangtze River Delta region. J. Clean. Prod. 2015, 103, 620–628. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J.; Mohd, S. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy 2012, 51, 184–191. [Google Scholar] [CrossRef]
- Coyle, D. GDP: A Brief but Affectionate History—Revised and expanded Edition; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Zhang, Y.-J.; Da, Y.-B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Li, W.; Sun, W.; Li, G.; Cui, P.; Wu, W.; Jin, B. Temporal and spatial heterogeneity of carbon intensity in China’s construction industry. Resour. Conserv. Recycl. 2017, 126, 162–173. [Google Scholar] [CrossRef]
- Palstra, F.P.; Fraser, D.J. Effective/census population size ratio estimation: A compendium and appraisal. Ecol. Evol. 2012, 2, 2357–2365. [Google Scholar] [CrossRef] [Green Version]
- Anser, M.K.; Alharthi, M.; Aziz, B.; Wasim, S. Impact of urbanization, economic growth, and population size on residential carbon emissions in the SAARC countries. Clean Technol. Environ. Policy 2020, 22, 923–936. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Z.; Yang, S. Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China. Renew. Sustain. Energy Rev. 2022, 155, 111942. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Jin, L.; Huang, G.; Zhang, Y.; Su, Y.; Zhang, H.; Qin, J. Identifying the Spatial Heterogeneity in the Effects of the Social Environment on Housing Rents in Guangzhou, China. Appl. Spat. Anal. Policy 2021, 14, 849–877. [Google Scholar] [CrossRef]
- Kroll, C.N.; Song, P. Impact of multicollinearity on small sample hydrologic regression models. Water Resour. Res. 2013, 49, 3756–3769. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, G.; Zhang, H.; Jin, L.; Su, Y.; Wu, K. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Appl. Geogr. 2017, 79, 26–36. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Zhao, Y.; Wang, C.; Zhang, H.o. Examining the Effects of the Built Environment on Housing Rents in the Pearl River Delta of China. Appl. Spat. Anal. Policy 2021, 15, 289–313. [Google Scholar] [CrossRef]
- Gill, B.; Moeller, S. GHG emissions and the rural-urban divide. A carbon footprint analysis based on the German official income and expenditure survey. Ecol. Econ. 2018, 145, 160–169. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Liu, K. Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages. Renew. Sustain. Energy Rev. 2021, 135, 110258. [Google Scholar] [CrossRef]
Variable | Influencing Factors | Evaluation Indicators | Indicator Meaning | Expected Direction |
---|---|---|---|---|
Dependent variable | Carbon emissions | CO2 emissions | Indicates total CO2 emissions by county (Mt) | |
Explanatory variables | Construction land type | Urban land scale | Indicates land in large, medium, and small cities and built-up areas above county towns (km2) | + |
Rural settlement land scale | Indicates land for rural settlements independent of towns (km2) | + | ||
Other construction land scale | Indicates land for factories and mines, large industrial areas, oil fields, salt fields, quarries, etc., as well as transportation roads, airports, and special land (km2) | + | ||
Control variables | Economic development level | GDP | Indicates the scale of regional economic development (billion CNY) | + |
Industry structure | Secondary industry output proportion in GDP | Reflects the rationality of industrial structure | + | |
Population size | Resident population | Indicates regional population size (million people) | + |
Variable | Tolerance | VIF |
---|---|---|
Urban land scale | 0.3492 | 2.8639 |
Rural settlement land scale | 0.6814 | 1.4676 |
Other construction land | 0.4740 | 2.1098 |
GDP | 0.1148 | 8.7122 |
Secondary industry output proportion in GDP | 0.6948 | 1.4392 |
Residential population | 0.2033 | 4.9196 |
Mode | Adjusted R2 | AIC | Log-Likelihood | LM test | Robust LM Test |
---|---|---|---|---|---|
OLS | 0.7066 | 698.6060 | −342.3030 | − | − |
SLM | 0.7356 | 662.5860 | −323.2930 | 0.0000 | 0.0433 |
SEM | 0.8092 | 552.8380 | −269.4190 | 0.0000 | 0.0000 |
Variable | Coefficient | Standard Error | Z-Value | p |
---|---|---|---|---|
Constant | −3.4583 | 0.3848 | −8.9869 | 0.0000 |
Urban land | 0.0642 | 0.0318 | 2.0184 | 0.0436 |
Rural settlement | 0.0859 | 0.0254 | 3.3761 | 0.0007 |
Other construction land | 0.1140 | 0.0262 | 4.3442 | 0.0000 |
GDP | 0.8159 | 0.0712 | 11.4602 | 0.0000 |
Secondary industry output proportion in GDP | 0.1378 | 0.0811 | 1.6984 | 0.0894 |
Residential population | −0.2512 | 0.0874 | −2.8741 | 0.0041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, Y.; Wu, Y.; Yue, X.; Wang, M.; Hu, P. Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China. Land 2022, 11, 719. https://doi.org/10.3390/land11050719
Wang M, Wang Y, Wu Y, Yue X, Wang M, Hu P. Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China. Land. 2022; 11(5):719. https://doi.org/10.3390/land11050719
Chicago/Turabian StyleWang, Min, Yang Wang, Yingmei Wu, Xiaoli Yue, Mengjiao Wang, and Pingping Hu. 2022. "Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China" Land 11, no. 5: 719. https://doi.org/10.3390/land11050719
APA StyleWang, M., Wang, Y., Wu, Y., Yue, X., Wang, M., & Hu, P. (2022). Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China. Land, 11(5), 719. https://doi.org/10.3390/land11050719