Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources
2.3. Methods
2.3.1. Crop Classification
2.3.2. Temporal Dynamics of Crops
2.3.3. Spatial Dynamics of Crops
2.3.4. Determination and Spatial Characterization of CPS
3. Results
3.1. Temporal Dynamics of Crops
3.1.1. Area Changes in Crops
3.1.2. Area Conversion among Crops
3.2. Spatial Dynamics of Crops
3.3. Determination and Spatial Characterization of CPS
4. Discussion
4.1. Explanation for Geospatial Distribution of Crops in Hailun County
4.2. Crop Planting Structure and Food Security
4.3. Crop Planting Structure and Policy Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranganathan, J.; Vennard, D.; Waite, R.; Lipinski, B.; Searchinger, T.; Dumas, P. Shifting Diets for a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; The State of Food Security and Nutrition in the World (SOFI); FAO: Rome, Italy, 2021; ISBN 978-92-5-134325-8. [Google Scholar]
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food Wedges: Framing the Global Food Demand and Supply Challenge towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Y.; Li, Q. The evolution path of crop structure in the Sanjiang Plain in the 21st century. Res. Agric. Mod. 2019, 40, 736–744. [Google Scholar]
- Hu, Q.; Wu, W.; Song, Q.; Yu, Q.; Yang, P.; Tang, J. Recent Progresses in Research of Crop Patterns Mapping by Using Remote Sensing. Sci. Agric. Sin. 2015, 48, 1900–1914. [Google Scholar]
- Publication|Acreage|ID: J098zb09z|USDA Economics, Statistics and Market Information System. Available online: https://usda.library.cornell.edu/concern/publications/j098zb09z (accessed on 18 April 2022).
- de Araújo, M.L.S.; Sano, E.E.; Bolfe, É.L.; Santos, J.R.N.; dos Santos, J.S.; Silva, F.B. Spatiotemporal Dynamics of Soybean Crop in the Matopiba Region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Y.; Wenbin, W.; You, L. Spatiotemporal Changes of Cropping Structurein China during 1980–2011. J. Geogr. Sci. 2018, 28, 1659–1671. [Google Scholar] [CrossRef] [Green Version]
- Gale, F.; Valdes, C.; Ash, M. Interdependence of China, United States, and Brazil in Soybean Trade; USDA: Washington, DC, USA, 2019; p. 48.
- Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land 2021, 10, 107. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Cai, Y. Chapter 3—Problems, Challenges, and Strategic Options of Grain Security in China. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2009; Volume 103, pp. 101–147. [Google Scholar]
- Cui, K.; Shoemaker, S.P. A Look at Food Security in China. Npj Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Yang, L.; Xiaolei, Z. Analysis of the Characteristics of Connotation Evolution of Agricultural Modernization with Chinese Characteristics in the 70 Years since the Founding of New China. China Polit. Econ. 2020, 3, 57–74. [Google Scholar] [CrossRef]
- Ban, Z. Adjustment of planting structure: A grain Revolution at the turn of the century in China. China Food Econ. 2000, 18, 13–15. [Google Scholar]
- Guo, Y.; Liu, Y. Poverty Alleviation through Land Assetization and Its Implications for Rural Revitalization in China. Land Use Policy 2021, 105, 105418. [Google Scholar] [CrossRef]
- Zhang, J. Agrarian Change and the Pursuit of Self-Supplied Food Security in China. In Proceedings of the ICAS-Etxalde Colloquium—Elikadura21, Vitoria Gasteiz, Spain, 26 April 2017. [Google Scholar]
- Dong, Z.; Pan, Z.; Wang, S.; An, P.; Zhang, J.; Zhang, J.; Pan, Y.; Huang, L.; Zhao, H.; Han, G.; et al. Effective Crop Structure Adjustment under Climate Change. Ecol. Indic. 2016, 69, 571–577. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased Food Production and Reduced Water Use through Optimized Crop Distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Zhang, J.-Z.; Zhang, L.-F. Reducing the Carbon Footprint per Unit of Economic Benefit Is a New Method to Accomplish Low-Carbon Agriculture. A Case Study: Adjustment of the Planting Structure in Zhangbei County, China. J. Sci. Food Agric. 2019, 99, 4889–4897. [Google Scholar] [CrossRef]
- Johnson, D.M. Using the Landsat Archive to Map Crop Cover History across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- Hijmans, R.J. Global Distribution of the Potato Crop. Am. J. Potato Res. 2001, 78, 403–412. [Google Scholar] [CrossRef]
- Yu, H.; Liu, K.; Bai, Y.; Luo, Y.; Wang, T.; Zhong, J.; Liu, S.; Bai, Z. The Agricultural Planting Structure Adjustment Based on Water Footprint and Multi-Objective Optimisation Models in China. J. Clean. Prod. 2021, 297, 126646. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Dai, C. The Adjustment of China’s Grain Planting Structure Reduced the Consumption of Cropland and Water Resources. Int. J. Environ. Res. Public. Health 2021, 18, 7352. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, H.; Li, Q.; Wang, X.; Feng, G. Agricultural Planting Structure Optimization and Agricultural Water Resources Optimal Allocation of Yellow River Irrigation Area in Shandong Province. Desalination Water Treat. 2014, 52, 13–15. [Google Scholar] [CrossRef]
- Han, X.; Wei, Z.; Zhang, B.; Han, C.; Song, J. Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin. Water 2018, 10, 1305. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Zhu, Y.; Yang, Y.; Liu, W.; Hu, Y.; Chen, F.; Yin, X. Analysis of planting structure evolution and itsdriving mechanism in North China from 1981 to 2015. J. China Agric. Univ. 2019, 24, 23–32. [Google Scholar]
- An, Y.; Tan, X.; Tan, J.; Yu, H.; Wang, Z.; Li, W. Evolution of Crop Planting Structure in Traditional Agricultural Areas and Its Influence Factors: A Case Study in Hunan Province. Econ. Geogr. 2021, 41, 156–166. [Google Scholar] [CrossRef]
- Jiang, L.; An, Y.; Tan, X.; Mi, S.; Xiong, Y.; Tan, J. Temporal and Spatial Evolution and Optimized Countermeasure of Crop Planting Structure in the Changsha-Zhuzhou-Xiangtan Area in Recent 30 Years. Econ. Geogr. 2020, 40, 173–180. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, F. Study on the Effect of Lowering Minimum Purchasing Price of Grain on the Planting Structure of Large Scale Rice Farmers: Based on Micro—survey of 188 Large Scale Rice Farmers. Issues Agric. Econ. 2019, 3, 27–36. [Google Scholar] [CrossRef]
- Wei, J.; Han, L. The impact of rural population structure changes on crop planting structure: A comprehensive FGSL estimation based on panel data of major grain producing areas in China. Rural Econ. 2019, 3, 55–63. [Google Scholar]
- Chen, Y.; Guerschman, J.P.; Cheng, Z.; Guo, L. Remote Sensing for Vegetation Monitoring in Carbon Capture Storage Regions: A Review. Appl. Energy 2019, 240, 312–326. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Y.; Dong, S.; Wang, B.; Li, M.; Niu, H.; Zhang, E.; Xue, Q.; Zhang, X.; Cheng, S. Interpretation study of crop planting structure in north China plain based on landsat 8 OLI data. Comput. Tech. Geophys. Geochem. Explor. 2017, 39, 416–424. [Google Scholar]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Evaluating High Resolution SPOT 5 Satellite Imagery to Estimate Crop Yield. Precis. Agric. 2009, 10, 292–303. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Murden, D. Evaluating High Resolution SPOT 5 Satellite Imagery for Crop Identification. Comput. Electron. Agric. 2011, 75, 347–354. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping Croplands, Cropping Patterns, and Crop Types Using MODIS Time-Series Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S.; Kastens, J. Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Cai, X.; Tan, J.; Cui, Y.; Xie, H.; Liu, F.; Yang, L.; Luo, Y. Mapping Paddy Rice Using Landsat Time Series Data in the Ganfu Plain Irrigation System, Southern China, from 1988−2017. Int. J. Remote Sens. 2021, 42, 1556–1576. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X. An Experimental Comparison between KELM and CART for Crop Classification Using Landsat-8 OLI Data. Geocarto Int. 2016, 32, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.; Li, L.; Zhu, H. Protection and Utilization of Black Land and Making Concerted and Unremitting Efforts for Safeguarding Food Security Promoted by Sci-tech Innovation—Countermeasures in Conservation and Rational Utilization of Black Land. Bull. Chin. Acad. Sci. 2021, 36, 557–564. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time Tracking of Different Cropping Patterns Using Landsat Images under Different Agricultural Systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Liu, S.; Wen, X. Spatial-Temporal Evolution of Grain Production Structure in Northeast China. Econ. Geogr. 2019, 39, 163–170. [Google Scholar] [CrossRef]
- Gong, B.; Liu, S.; Yang, N.; Liu, W. Reflections after the “ninth consecutive increase”: Analysis of the contribution of internal grain restructuring and future potential. Jiangsu Agric. Sci. 2017, 45, 128–131. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, L.; Zhao, X.; Zheng, H.; Lü, Y. What Motivates Farmers to Participate in Sustainable Agriculture? Evidence and Policy Implications. Int. J. Sustain. Dev. World Ecol. 2009, 16, 374–380. [Google Scholar] [CrossRef]
- The Main Indicators of the National Economy of Hailun City in 2020. Available online: https://hailun.gov.cn/Article/content.html?id=23653 (accessed on 4 April 2022).
- Xiaozeng, H.; Wenxiu, Z.O.U.; Jun, Y.A.N.; Na, L.I.; Yanhua, L.I.; Jianguo, W.; Lujun, L.I. Ecology in Agriculture and Long-Term Research Guide Protection of Black Soil and Agricultural Sustainable Development in Northeast China. Bull. Chin. Acad. Sci. Chin. Version 2019, 34, 362–370. [Google Scholar] [CrossRef]
- Song, G.; Zhang, W. Spatiotemporal differentiation characteristics of cultivated land use from persprctive of growing food crops in major grain production areas in northeast China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–8. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Prasad, V.; Bhardwaj, A. Temporal Land Use Change Analysis of Saleran Dam Catchment in Shivalik Foot-Hills of Punjab Using Geospatial Techniques. J. Agric. Eng. 2021, 58, 167–176. [Google Scholar] [CrossRef]
- Guan, D.; Gao, W.; Watari, K.; Fukahori, H. Land Use Change of Kitakyushu Based on Landscape Ecology and Markov Model. J. Geogr. Sci. 2008, 18, 455–468. [Google Scholar] [CrossRef]
- Dehnad, K. Density Estimation for Statistics and Data Analysis. Technometrics 1987, 29, 495. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Huang, J.; Mansaray, L.R.; Mijiti, R. Monitoring Policy-Driven Crop Area Adjustments in Northeast China Using Landsat-8 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101892. [Google Scholar] [CrossRef]
- Tokuoka, Y.; Hosogi, D. Spatial Distribution and Management of Isolated Woody Plants Traditionally Used as Farmland Boundary Markers in Ibaraki Prefecture, Japan. SpringerPlus 2012, 1, 57. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Wang, E.; Xie, F. Crop Area Yield Risk Evaluation and Premium Rates Calculation—Based on Nonparametric Kernel Density Estimation. In Proceedings of the 2009 International Conference on Management Science and Engineering, Moscow, Russia, 14–16 September 2009; pp. 246–252. [Google Scholar]
- Liu, Z.; Tang, P.; Fan, L.; Yang, P.; Wu, W. Spatio-Temporal Changes of Cropping Types in Northeast China During 1980–2010. Sci. Agric. Sin. 2016, 49, 4107–4119. [Google Scholar]
- You, L.; Wood, S.; Wood-Sichra, U.; Wu, W. Generating Global Crop Distribution Maps: From Census to Grid. Agric. Syst. 2014, 127, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Chen, L.-D.; Han, X.; Ma, Y.; Xinfeng, Z. Effectiveness of Phosphorus Application in Improving Regional Soybean Yields under Drought Stress: A Multivariate Regression Tree Analysis. Afr. J. Agric. Res. 2010, 5, 3251–3258. [Google Scholar]
- Kravchenko, A.N.; Bullock, D.G. Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Yu, Y.; Su, X.; Peng, L. Response of Grain Farmers to Increase of the Minimum Purchase Price of Rice and Suggestion—Based on the Survey Results of 600 Grain Farmers in Wannian County, Jiangxi Province. China Rice 2022, 28, 32–37. [Google Scholar]
- Du, G.; Zhang, R.; Liang, C.; Hu, M. Remote sensing extraction and spatial pattern analysis of cropping patterns in black soil region of Northeast China at county level. Trans. Chin. Soc. Agric. Eng. 2021, 37, 133–141. [Google Scholar]
- Qi, X.; Vitousek, P.M.; Liu, L. Provincial Food Security in China: A Quantitative Risk Assessment Based on Local Food Supply and Demand Trends. Food Secur. 2015, 7, 621–632. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, G. China’s Food Security Strategy Reform: An Emerging Global Agricultural Policy. In China’s Global Quest for Resources; Routledge: London, UK, 2016. [Google Scholar]
- Zhang, Y.; Wu, Y.; Liu, B.; Zheng, Q.; Yin, J. Characteristics and Factors Controlling the Development of Ephemeral Gullies in Cultivated Catchments of Black Soil Region, Northeast China. Soil Tillage Res. 2007, 96, 28–41. [Google Scholar] [CrossRef]
- Zhou, Q. Agricultural supply-side structural reform: Meaning, dilemma and its realization path. Agric. Econ. 2017, 3, 3–5. [Google Scholar]
- Gao, K.; Shao, X.-X. Fundamental Problems, Causes and Focuses of China’s Agricultural Supply-Side Structural Reform. J. Interdiscip. Math. 2018, 21, 1375–1379. [Google Scholar] [CrossRef]
Times | Image Types | Cloud Proportions (%) | Identified Crops | |
---|---|---|---|---|
2000 | 06-06 | Landsat4-5 TM | 0.00 | Rice |
08-17 | Landsat7 ETM+ | 0.22 | Soybean, Maize | |
2005 | 06-28 | Landsat7 ETM+ | 0.48 | Rice |
08-07 | Landsat4-5 TM | 0.00 | Soybean, Maize | |
2010 | 06-10 | Landsat7 ETM+ | 0.00 | Rice |
08-24 | Landsat4-5 TM | 3.07 | Soybean, Maize | |
2015 | 06-16 | Landsat8 OLI | 3.13 | Rice |
09-04 | Landsat8 OLI | 1.07 | Soybean, Maize | |
2020 | 05-28 | Landsat8 OLI | 0.66 | Rice |
07-15 | Landsat8 OLI | 2.92 | Soybean, Maize |
Years | Crop Types/Values | ||||
---|---|---|---|---|---|
Soybean | Maize | Rice | Other Crops | ||
2000 | Area (104 hm2) Proportion (%) | 10.3 29.2 | 14.5 41.1 | 3.3 9.3 | 7.2 20.4 |
2005 | Area (104 hm2) Proportion (%) | 21.5 60.9 | 8.7 24.7 | 2.1 5.9 | 3.0 8.5 |
2010 | Area (104 hm2) Proportion (%) | 20.9 59.2 | 6.0 17.0 | 2.0 5.7 | 6.4 18.1 |
2015 | Area (104 hm2) Proportion (%) | 10.3 29.1 | 18.0 50.8 | 4.8 13.6 | 2.3 6.5 |
2020 | Area (104 hm2) Proportion (%) | 17.7 50.0 | 9.9 28.0 | 6.1 17.2 | 1.7 4.8 |
Periods | Crop Types/Values | ||||
---|---|---|---|---|---|
Soybean | Maize | Rice | Other Crops | ||
2000–2005 | Relative change(%) Dynamic degree(%) | +108.7 +21.7 | −40.0 −8.0 | −36.4 −7.3 | −58.3 −11.7 |
2005–2010 | Relative change(%) Dynamic degree(%) | −2.8 −0.6 | −31.0 −6.2 | −4.8 −1.0 | +113.3 +22.7 |
2010–2015 | Relative change(%) Dynamic degree(%) | −50.7 −10.1 | +200.0 +40.0 | +140.0 +28.0 | −64.1 −12.8 |
2015–2020 | Relative change(%) Dynamic degree(%) | +71.8 +14.4 | −45.0 −9.0 | +27.1 +5.4 | −26.1 −5.2 |
2000–2020 | Relative change(%) Dynamic degree(%) | +71.8 +3.6 | −31.7 −1.6 | +84.8 +4.2 | −76.4 −3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, W.; Du, G.; Faye, B.; Wang, H.; Li, Y.; Wang, L.; Qu, S. Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County. Land 2022, 11, 785. https://doi.org/10.3390/land11060785
Li Q, Liu W, Du G, Faye B, Wang H, Li Y, Wang L, Qu S. Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County. Land. 2022; 11(6):785. https://doi.org/10.3390/land11060785
Chicago/Turabian StyleLi, Quanfeng, Wei Liu, Guoming Du, Bonoua Faye, Huanyuan Wang, Yunkai Li, Lu Wang, and Shijin Qu. 2022. "Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County" Land 11, no. 6: 785. https://doi.org/10.3390/land11060785
APA StyleLi, Q., Liu, W., Du, G., Faye, B., Wang, H., Li, Y., Wang, L., & Qu, S. (2022). Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County. Land, 11(6), 785. https://doi.org/10.3390/land11060785