Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Change in Land Use/Land Cover at the Regional Level
2.3. Fruit Crop Expansion
2.4. Spatial Simulation of Fruit Expansion to 2033
2.5. Dynamics of Fruit Crops by County
3. Results
3.1. Change in Land Use/Land Cover at the Regional Level
3.2. Changes in Fruit Production for the Region of La Araucanía in the Periods 2000–2019 and 2019–2033
3.3. Expansion of Fruit Crops into Land Use/Cover Areas in the Region of La Araucanía
3.4. Fruit Crop Dynamics by County
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WoldeYohannes, A.; Cotter, M.; Kelboro, G.; Dessalegn, W. Land Use and Land Cover Changes and Their Effects on the Landscape of Abaya-Chamo Basin, Southern Ethiopia. Land 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.A.; Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in Southern Germany. Land Use Policy 2020, 99, 104959. [Google Scholar] [CrossRef]
- Wang, X. Changes in Cultivated Land Loss and Landscape Fragmentation in China from 2000 to 2020. Land 2022, 11, 684. [Google Scholar] [CrossRef]
- Angélique, N.C.; Stany, V.; Lebailly, P.; Azadi, H. Agricultural Development in the Fight against Poverty: The Case of South Kivu, DR Congo. Land 2022, 11, 472. [Google Scholar] [CrossRef]
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Pinstrup-Andersen, P.; Hazell, P.B.R. The impact of the green revolution and prospects for the future. Food Rev. Int. 1985, 1, 1–25. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Kumar, P.; Molter, A.; Zhang, Q.; Basu, B.; Basu, A.S.; Pilla, F. Examining the status of improved air quality in world cities due to COVID-19 led temporary reduction in anthropogenic emissions. Environ. Res. 2021, 196, 110927. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- García-Ruiz, J.; Lasanta, T.; Nadal-Romero, E.; Lana-Renault, N.; Álvarez-Farizo, B. Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. Land Use Policy 2020, 99, 104850. [Google Scholar] [CrossRef]
- Hammel, K.; Arnold, T. Understanding the Loss of Traditional Agricultural Systems: A Case Study of Orchard Meadows in Germany. J. Agric. Food Syst. Community Dev. 2012, 2, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Hui, C.; Gaertner, M.; Huntsinger, L. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis. PLoS ONE 2014, 9, e98355. [Google Scholar] [CrossRef]
- Benayas, J.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.; Speroto, A.; Costa, M.; Dionizio, E. Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil. Remote Sens. 2021, 13, 1088. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.-P.; Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021, 7, eabg1620. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Errea, M.P.; Arnáez, J. The Effect of Landscape Conservation Measures in Changing Landscape Patterns: A Case Study in Mediterranean Mountains. Land Degrad. Dev. 2014, 27, 373–386. [Google Scholar] [CrossRef]
- Macdonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Bellisario, A. El fin del antiguo régimen agrario chileno (1955–1965)’. Rev. Mex. Sociol. 2013, 75, 341–370. [Google Scholar]
- Murray, W.E. The global agro-food complex, neoliberalism and small farmers in Chile. J. Pac. Stud. 1998, 22, 27–59. [Google Scholar]
- Banco Central de Chile. Indicadores de Comercio Exterior Santiago; Banco Central de Chile: Santiago, Chile, 2021. [Google Scholar]
- Ramírez Cabello, J.; Farías Pérez, C.; Ovalle Reyes, J.; Muñoz Quiroz, A.; ODEPA. Catastro Frutícola Nacional: Un Análisis Geográfico–estructural de 12 Años (2008–2020). 2021. Available online: https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/71040/ArtCatastroFruticolaNacionalAnalisisGeograficoEstructural092021.pdf (accessed on 10 September 2021).
- Retamales, J.B. World temperate fruit production: Characteristics and challenges. Rev. Bras. Frutic. 2011, 33, 121–130. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2016. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 December 2021).
- Apey-Guzmán, A.; ODEPA. La Fruticultura en Chile: Tendencias Productivas y su Expresión Territorial. 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/05/Art%C3%ADculo-Fruticultura_mayo-1.pdf (accessed on 10 November 2021).
- Ulloa, M.E.; Peña-Cortés, F.A.; Castro, G.D.R.; Basso-Aldea, P.I.A. Cambios en la organización económico-espacial de la fruticultura en territorios de La Araucanía, Chile. Econ. Soc. Y Territ. 2014, 14, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de Chile. Plan Impulso Araucanía. Aportando al Reencuentro y al Desarrollo de Oportunidades. 2018. Available online: https://planimpulso.cl/wp-content/uploads/2019/12/Plan_impulso_araucania.pdf (accessed on 10 October 2021).
- Di Castri, F.; Hajek, E. Bioclimatología de Chile; Universidad Católica de Chile: Santiago, Chile, 1976. [Google Scholar]
- Instituto Nacional de Estadísticas (INE). Síntesis de Resultados. Censo 2017. 2018. Available online: http://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf (accessed on 16 March 2022).
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Peña-Cortés, F.; Vergara-Fernández, C.; Pincheira-Ulbrich, J.; Aguilera-Benavente, F.; Gallardo-Alvarez, N. Location factors and dynamics of tree plantation expansion in two coastal river basins in south-central Chile: Basis for land use planning. J. Land Use Sci. 2021, 16, 159–173. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2017, 18, 247–259. [Google Scholar] [CrossRef]
- Hermosilla-Palma, K.; Pliscoff, P.; Folchi, M. Sixty years of land-use and land-cover change dynamics in a global biodiversity hotspot under threat from global change. J. Land Use Sci. 2021, 16, 467–478. [Google Scholar] [CrossRef]
- Olmedo, M.T.C.; Pontius, R.G.; Paegelow, M.; Mas, J.F. Comparison of simulation models in terms of quantity and allocation of land change. Environ. Model. Softw. 2015, 69, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Cerrillo, R.M.N.; Rodríguez, G.P.; Rumbao, I.C.; Lara, M.; Bonet, F.J.; Mesas-Carrascosa, F.-J. Modeling Major Rural Land-Use Changes Using the GIS-Based Cellular Automata Metronamica Model: The Case of Andalusia (Southern Spain). ISPRS Int. J. Geo-Inf. 2020, 9, 458. [Google Scholar] [CrossRef]
- Oficina de Estudios y Politicas Agrarias (ODEPA). Catastro Frutícola IX Región de la Araucanía: Actualización 2006. (Pub. CIREN S/N 2007). 2006. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/18618 (accessed on 17 December 2021).
- Larragaña, P.; Osores, A.; Catastro Frutícola. Principales Resultados. Región de La Araucanía. ODEPA. 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/08/catastroAraucania2019.pdf (accessed on 6 August 2021).
- Clapp, J. The Privatization of Global Environmental Governance: ISO 14000 and the Developing World. Glob. Gov. A Rev. Multilater. Int. Organ. 1998, 4, 295–316. [Google Scholar] [CrossRef]
- Díaz, G.I.; Nahuelhual, L.; Echeverría, C.; Marín, S. Drivers of land abandonment in Southern Chile and implications for landscape planning. Landsc. Urban. Plan. 2011, 99, 207–217. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar] [CrossRef]
- Zhang, D. China’s forest expansion in the last three plus decades: Why and how? For. Policy Econ. 2018, 98, 75–81. [Google Scholar] [CrossRef]
- Paudyal, K.; Samsudin, Y.B.; Baral, H.; Okarda, B.; Phuong, V.; Paudel, S.; Keenan, R.J. Spatial Assessment of Ecosystem Services from Planted Forests in Central Vietnam. Forests 2020, 11, 822. [Google Scholar] [CrossRef]
- Azadi, H.; Ho, P.; Hasfiati, L. Agricultural land conversion drivers: A comparison between less. Land Degrad. Dev. 2011, 22, 596–604. [Google Scholar] [CrossRef]
- Gebremichael, M.; Krishnamurthy, P.; Ghebremichael, L.; Alam, S. What Drives Crop Land Use Change during Multi-Year Droughts in California’s Central Valley? Prices or Concern for Water? Remote Sens. 2021, 13, 650. [Google Scholar] [CrossRef]
- Panez, A.; Roose, I.; Faúndez, R. Agribusiness Facing Its Limits: The Re-Design of Neoliberalization Strategies in the Exporting Agriculture Sector in Chile. Land 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M. Economies of Size in Production Agriculture. J. Hunger Environ. Nutr. 2009, 4, 375–392. [Google Scholar] [CrossRef]
- Gómez Orea, D.; Gómez Villarino, A. Ordenación Territorial; Mundi-Prensa Libros: Madrid, Spain, 2013. [Google Scholar]
- Torres-Salinas, R.; García, G.A.; Henriquez, N.C.; Zambrano-Bigiarini, M.; Costa, T.; Bolin, B. Desarrollo forestal, escasez hídrica, y la protesta social mapuche por la justicia ambiental en Chile. Ambiente Soc. 2016, 19, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2020, 243, 106417. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S. Biopesticides: Present Status and the Future Prospects. J. Biofertil. Biopestic. 2015, 6, 100–129. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Babakan, A.S.; Suthaharan, S. An enhanced support vector machine model for urban expansion prediction. Comput. Environ. Urban. Syst. 2019, 75, 61–75. [Google Scholar] [CrossRef]
- Aguilera-Benavente, F.A.; Montes, L.M.V.; Lara, J.A.S.; Delgado, M.G. Escenarios y modelos de simulación como instrumento en la planificación territorial y metropolitana. Ser. Geográfica 2011, 17, 11–28. Available online: http://hdl.handle.net/10017/14342 (accessed on 6 August 2020).
- Molinero-Parejo, R.; Aguilera-Benavente, F.; Gómez-Delgado, M.; Soria-Lara, J.A. Mapping disruptive long-term scenarios using a participatory approach. J. Maps 2021, 17, 106–115. [Google Scholar] [CrossRef]
Land Cover/Year | 2012 | 2016 | 2019 | 2033 | Δ 12–16 (ha) | Δ 16–19 (ha) | Δ12–19 (ha) | Δ 19–33 (ha) |
---|---|---|---|---|---|---|---|---|
Agriculture | 6,181.3 | 7,889.2 | 10,368.5 | 14,899.0 | 1,707.9 | 2,479.3 | 4,187.2 | 4,953.0 |
Meadow | 1,274.1 | 2,545.2 | 3,831.4 | 6,841.4 | 1271.1 | 1,286.2 | 2,557.3 | 3,010.0 |
Scrubland | 8.3 | 47.7 | 154.5 | 313.2 | 39.4 | 106.8 | 146.3 | 158.7 |
Plantation | 297.5 | 445.1 | 737.0 | 2,066.4 | 147.6 | 291.9 | 439.5 | 1,329.4 |
Native forest | 14.8 | 21.6 | 38.4 | 232.1 | 6.8 | 16.8 | 23.6 | 193.7 |
Secondary forest | 83.5 | 82.2 | 178.6 | 1232.8 | −1.3 | 96.4 | 95.1 | 1054.2 |
Wetland | 1.5 | 1.3 | 5.5 | 22.9 | −0.2 | 4.2 | 4.0 | 17.4 |
Urban area | 0.6 | 1.2 | 5.5 | 5.5 | 0.6 | 4.3 | 4.9 | 0 |
Bare land | 0.1 | 0 | 0 | 0 | −0.1 | 0 | -0.1 | 0 |
Water bodies | 1.1 | 1.2 | 1.2 | 1.2 | 0.1 | 0 | 0.1 | 0 |
Snow and Glacier | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 7862.8 | 11,034.7 | 15,320.6 | 25,614.1 | 3171.9 | 4285.9 | 7457.8 | 10,716.4 |
2006 | 2019 | |||||||
---|---|---|---|---|---|---|---|---|
County/Crops | Blueberry | European Hazel | Cherry | Red Apple | Blueberry | European Hazel | Cherry | Red Apple |
Renaico | 0 | 0 | 1.85 | 662.1 | 117.6 | 0 | 342.6 | 1272.1 |
Angol | 94.76 | 0 | 72.04 | 350.72 | 147.8 | 0 | 403.1 | 272.9 |
Collipulli | 111.81 | 0 | 42.38 | 61.45 | 238.8 | 197 | 85.7 | 208.6 |
Los Sauces | 0 | 0 | 0 | 0 | 10.3 | 0 | 34.9 | 24.2 |
Ercilla | 16.99 | 0 | 13 | 0 | 6.5 | 234.8 | 8 | 0 |
Curacautín | 0 | 0 | 0 | 0 | 6.6 | 0 | 0 | 0 |
Traiguén | 24.05 | 0 | 0 | 141.17 | 84.3 | 131.7 | 78.7 | 473.4 |
Victoria | 35.74 | 0 | 0 | 32.92 | 85.8 | 687.6 | 18.5 | 32.9 |
Lumaco | 0 | 1.49 | 7.97 | 0 | 0 | 0 | 0 | 0 |
Cunco | 28.78 | 313.15 | 0 | 0 | 79.4 | 946.9 | 0 | 0 |
Curarrehue | 0 | 0 | 0 | 0 | 0 | 57.5 | 0 | 0 |
Freire | 31.67 | 80 | 0 | 139.26 | 215.7 | 1031.3 | 14.1 | 266.6 |
Galvarino | 0 | 0 | 0 | 0 | 38.1 | 98 | 0 | 0 |
Gorbea | 198.24 | 104.25 | 10.16 | 0 | 236.9 | 1167 | 68.3 | 0 |
Lautaro | 59.75 | 0 | 7.5 | 0.81 | 97.5 | 103.5 | 7 | 0 |
Loncoche | 34.83 | 31.47 | 21 | 0.43 | 181.8 | 438 | 38.7 | 0.3 |
Nueva Imperial | 0.03 | 0 | 0 | 0.07 | 5.3 | 55 | 0 | 0 |
Padre las Casas | 0.25 | 0 | 0 | 13.22 | 2.8 | 6.9 | 20.9 | 132.9 |
Pitrufquén | 4 | 6.5 | 0 | 29.05 | 23.9 | 683 | 0 | 17.4 |
Pucón | 0 | 0 | 0 | 0 | 1.3 | 0 | 0 | 0 |
Temuco | 8.12 | 0 | 0.54 | 31.3 | 0 | 0 | 0 | 29.7 |
Teodoro Schmidt | 19 | 0 | 0 | 0 | 41.5 | 34.5 | 0 | 0 |
Vilcún | 41.44 | 0 | 0 | 14.89 | 272.3 | 254.2 | 5.2 | 6.5 |
Villarrica | 4.9 | 1 | 0 | 8.68 | 188.5 | 630.4 | 0 | 7.2 |
Perquenco | 4 | 6.5 | 0 | 29.05 | 75.2 | 287 | 44.5 | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenegro-Romero, T.; Vergara-Fernández, C.; Argandoña-Castro, F.; Peña-Cortés, F. Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile. Land 2022, 11, 788. https://doi.org/10.3390/land11060788
Montenegro-Romero T, Vergara-Fernández C, Argandoña-Castro F, Peña-Cortés F. Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile. Land. 2022; 11(6):788. https://doi.org/10.3390/land11060788
Chicago/Turabian StyleMontenegro-Romero, Tatiana, Cristián Vergara-Fernández, Fabian Argandoña-Castro, and Fernando Peña-Cortés. 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile" Land 11, no. 6: 788. https://doi.org/10.3390/land11060788
APA StyleMontenegro-Romero, T., Vergara-Fernández, C., Argandoña-Castro, F., & Peña-Cortés, F. (2022). Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile. Land, 11(6), 788. https://doi.org/10.3390/land11060788