Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia
Abstract
:1. Introduction
2. Theoretical Overview of Technology Acceptance and Use
2.1. Unified Theory of Acceptance and Use of Technology
2.2. Technology Acceptance Theory
2.3. Theory of Technology Dissemination
2.4. Theory of Planned Behavior
3. Materials and Methods
3.1. Study Area
3.2. Household Sampling
3.3. Data and Data Collection
3.4. Econometric Analysis
4. Results
4.1. Sociodemographic Characteristics of Respondents
4.2. Level of Household Adoption of Sustainable Agricultural Intensification Practices
Factors Determining Adoption, Intensity, and Extent of SAI Use
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durosomo, B. Technology adoption and Sub-Sahara African agriculture: The sustainable development option. Agric. Hum. Values 1993, 10, 58–70. [Google Scholar] [CrossRef]
- Nkonya, E.; Mirzabaev, A.; Von Braun, J. Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Nature: New York, NY, USA, 2016; p. 686. [Google Scholar]
- Thompson, I.D.; Guariguata, M.R.; Okabe, K.; Bahamondez, C.; Nasi, R.; Heymell, V.; Sabogal, C. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 2013, 18, 2. [Google Scholar] [CrossRef]
- Mutoko, M.O.; Ritho, C.N.; Benhin, J.K.; Mbatia, O.L. Technical and allocative efficiency gains from integrated soil fertility management in the maize farming system of Kenya. J. Dev. Agric. Econ. 2015, 7, 143–152. [Google Scholar]
- Chauvin, N.D.; Mulangu, F.; Porto, G. Food Production and Consumption Trends in Sub-Saharan Africa: Prospects for the Transformation of the Agricultural Sector; UNDP Regional Bureau for Africa: New York, NY, USA, 2012; Volume 2, p. 74. [Google Scholar]
- Nyiawung, R.A.; Suh, N.; Ghose, B. Trends in Cereal Production and Yield Dynamics in Sub-Saharan Africa Between 1990–2015. J. Econ. Impact 2019, 1, 98–107. [Google Scholar] [CrossRef]
- Dallimer, M.; Stringer, L.C.; Orchard, S.E.; Osano, P.; Njoroge, G.; Wen, C.; Gicheru, P. Who uses sustainable land management practices and what are the costs and benefits? Insights from Kenya. Land Degrad. Dev. 2018, 29, 2822–2835. [Google Scholar] [CrossRef] [Green Version]
- Hazell, P.; Poulton, C.; Wiggins, S.; Dorward, A. The Future of Small Farms for Poverty Reduction and Growth; 2020 Discussion Paper 42; IFPRI: Washington, DC, USA, 2007. [Google Scholar]
- Ochieng, J.; Afari-Sefa, V.; Muthoni, F.; Kansiime, M.; Hoeschle-Zeledon, I.; Bekunda, M.; Thomas, D. Adoption of sustainable agricultural technologies for vegetable production in rural Tanzania: Trade-offs, complementarities and diffusion. Int. J. Agric. Sustain. 2021, 23, 1–19. [Google Scholar] [CrossRef]
- Nkomoki, W.; Bavorová, M.; Banout, J. Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia. Land Use Policy 2018, 78, 532–538. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). Statistical Pocketbook; World Food and Agriculture: Rome, Italy, 2015. [Google Scholar]
- International Food Policy Research Institute. Global Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Goshu, D.; Kassa, B.; Ketema, M. Measuring diet quantity and quality dimensions of food security in rural Ethiopia. J. Dev. Agric. Econ. 2013, 5, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, P.; Harty, M. The impact of conservation agriculture on food security in three low veldt districts of Zimbabwe. Troicaire Dev. Rev. 2010, 67–84. [Google Scholar]
- Lovo, S. Tenure insecurity and investment in soil conservation. Evidence from Malawi. World Dev. 2016, 78, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Matakala, P.; Kokwe, M.; Statz, J. Zambia National Strategy to Reduce Emissions from Deforestation and Forest Degradation (REDD+); Ministry of Lands, Natural Resources and Environmental Protection: Lusaka, Zambia, 2015.
- Wathum, G.; Seebauer, M.; Carodenuto, S. Strategic interventions to address deforestation and forest degradation in Eastern Province, Zambia. In Zambia Integrated Forest Landscape Program; Unique Forestry and Land Use; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Fraanje, W.; Lee-Gammage, S. What is Sustainable Agricultural Intensification? (Food Source: Building Blocks); Food Climate Research Network, University of Oxford: Oxford, UK, 2018. [Google Scholar]
- Vorlaufer, T.; Falk, T.; Dufhues, T.; Kirk, M. Reconciling Global and Local Benefits from Communally Managed Forests: Evidence from a Choice Experiment on PES in Zambia. In Proceedings of the 2016 World Bank Conference on Land and Poverty, Washington, DC, USA, 14–18 March 2016. [Google Scholar]
- Angelsen, A.; Kaimowitz, D. (Eds.) Agricultural Technologies and Tropical Deforestation; CAB International: Wallingford, UK, 2001. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.N. The sustainable agricultural intensification of agriculture. Nat. Resour. Forum. 1997, 21, 247–256. [Google Scholar] [CrossRef]
- World Bank. Managing Land in a Changing Climate: An Operational Perspective for Sub-Saharan Africa; Report No.: 54134-AFR; WB: Washington, DC, USA, 2010. [Google Scholar]
- Winowiecki, L.A.; Bourne, M.; Magaju, C.; Neely, C.; Massawe, B.; Masikati, P.; Vågen, T.-G.; Musili, F.; Nabi, M.; Nguyo, A.; et al. Bringing evidence to bear for negotiating tradeoffs in sustainable agricultural intensification using a structured stakeholder engagement process. Int. J. Agric. Sustain. 2021, 19, 474–496. [Google Scholar] [CrossRef]
- Liniger, H. Sustainable Land Management in Practice; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Haggblade, S.; Tembo, G. Conservation Farming in Zambia; EPTD discussion paper no. 108; International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- FAO. A Technical Guide to Agricultural Practices in Zambia: Towards Sustainable Agricultural Intensification; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. J. Agric. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Unified theory of acceptance and use of technology: A synthesis and the road ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1985. [Google Scholar]
- Rogers, E.M. Lessons for guidelines from the diffusion of innovations. Jt. Comm. J. Qual. Improv. 1995, 21, 324–328. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- CSO. Zambia in Figures; Ministry of Finance and National Planning: Lusaka, Zambia, 2017.
- García, B. Implementation of a double-hurdle model. Stata J. 2013, 13, 776–794. [Google Scholar] [CrossRef] [Green Version]
- Cragg, J.G. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 1971, 39, 829–844. [Google Scholar] [CrossRef]
- Nakhumwa, O.; Hassan, R.M. The adoption of soil conservation technologies by smallholder farmers in Malawi: A selective Tobit analysis. Agrekon 2003, 42, 271–284. [Google Scholar] [CrossRef]
- Burke, W.J. Fitting and interpreting Cragg’s tobit alternative using Stata. Stata J. 2009, 9, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Holden, S.T. Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: A case study in Andit Tid, North Shewa. Agric. Econ. 1998, 18, 233–247. [Google Scholar] [CrossRef]
- Mazvimavi, K.; Twomlow, S. Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. Agric. Syst. 2009, 101, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A. Adoption and intensity of adoption of conservation farming practices in Zambia. Agric. Ecosyst. Environ. 2014, 187, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.; Johnsen, F.H.; Aune, J.B.; Mekuria, M.; Thierfelder, C. Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. J. Soil Water Conserv. 2014, 69, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Pedzisa, T.; Rugube, L.; Winter-Nelson, A.; Baylis, K.; Mazvimavi, K. The Intensity of adoption of Conservation agriculture by smallholder farmers in Zimbabwe. Agrekon 2015, 54, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Akpan, S.B.; Nkanta, V.S.; Essien, U.A. A Double-Hurdle Model of Fertilizer Adoption and Optimum Use among Farmers in Southern Nigeria. Tropicultura 2012, 30, 67–84. [Google Scholar]
- Mwangi, W.M. Low use of fertilizers and low productivity in sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 1996, 47, 135–147. [Google Scholar] [CrossRef]
- Ntume, B.; Nalule, A.S.; Baluka, S.A. The role of social capital in technology adoption and livestock development. Livest. Res. Rural. Dev. 2015, 27, 181. [Google Scholar]
- Olawale, O.; Arega, D.; Arega, I. Determinants of fertilizer use in Northern Nigeria. Pak. J. Soc. Sci. 2009, 6, 91–98. [Google Scholar]
- Wanyama, J.M.; Mose, L.O.; Rono, S.C.; Masinde, A.A.O. Determinants of Fertiliser Use and Soil Conservation Practices in Maize-Based Cropping Systems in Trans Nzoia District, Kenya; A Publication of Kenya Agricultural Research Institute: Kitale, Kenya, 2009. [Google Scholar]
- Gebreselassie, S. Intensification of smallholder agriculture in Ethiopia: Options and scenarios. In Future Agricultures Consortium Meeting at the Institute of Development Studies; University of Sussex: Brighton, UK, 2006; pp. 20–22. [Google Scholar]
- Nyanga, P.H. Factors Influencing Adoption and Area under Conservation Agriculture: A Mixed Methods Approach. Sustain. Agric. Res. 2012, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Waaswa, A.; Oywaya Nkurumwa, A.; Mwangi Kibe, A.; Ngeno Kipkemoi, J. Climate-Smart agriculture and potato production in Kenya: A review of the determinants of practice. Clim. Dev. 2022, 14, 75–90. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Jerneck, A.; Olsson, L. More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. J. Rural Stud. 2013, 32, 114–125. [Google Scholar] [CrossRef]
- Rosengren, L. Agricultural Expansion and Deforestation; UN-REDD Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Mittal, S.; Kumar, P. Literacy, technology adoption, factor demand, and productivity: An econometric analysis. Indian J. Agric. Econ. 2000, 55, 490–499. [Google Scholar]
- Simtowe, F.; Asfaw, S.; Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeon pea in Malawi. Agric. Food Econ. 2016, 4, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Okoth, N.W. Factors Influencing Adoption of Climate-smart Agriculture as a Climate Change Adaptation in Tigania West-Meru County Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2019. [Google Scholar]
- Lado, C. The transfer of agricultural technology and the development of small-scale farming in rural Africa: Case studies from Ghana, Sudan, Uganda, Zambia and South Africa. Geo J. 1998, 45, 165–176. [Google Scholar]
- Pan, Y.; Smith, S.C.; Sulaiman, M. Agricultural extension and technology adoption for food security: Evidence from Uganda. Am. J. Agric. Econ. 2018, 100, 1012–1031. [Google Scholar] [CrossRef] [Green Version]
- Mizik, T. Climate-smart agriculture on small-scale farms: A systematic literature review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Jirström, M. The state and green revolutions in East Asia. In The African Food Crisis: Lessons from the Asian Green Revolution; CABI Publishing: Wallingford, UK, 2005; pp. 25–42. [Google Scholar]
- Vinya, R.; Syampungani, S.; Kasumu, E.C.; Monde, C.; Kasubika, R. Preliminary Study on the Drivers of Deforestation and Potential for REDD+ in Zambia; A consultancy report prepared for Forestry Department and FAO under the national UN-REDD+ Programme; Ministry of Lands and Natural Resources: Lusaka, Zambia, 2011.
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Al-Zahrani, K.H.; Aldosari, F.O.; Baig, M.B.; Shalaby, M.Y.; Straquadine, G.S. Role of agricultural extension service in creating decision making environment for the farmers to realize sustainable agriculture in Al-Qassim and Al-kharj regions-Saudi Arabia. JAPS J. Anim. Plant Sci. 2016, 26, 2016. [Google Scholar]
Household Characteristics | Lukweta Community | Vulamukoko Community | ||||
---|---|---|---|---|---|---|
SAI Adopters (n = 63) | SAI Non-Adopters (n = 93) | SAI Adopters (n = 76) | SAI Non-Adopters (n = 16) | |||
Mean (Std. Dev.) | Mean (Std. Dev.) | p-Value | Mean (Std. Dev.) | Mean (Std. Dev.) | p-Value | |
Household size | 6.825 (2.2471) | 6.696 (2.7843) | 0.759 | 6.303 (2.0332) | 6.063 (2.5682) | 0.683 |
Household members aged 16–59 years | 2.921 (1.4176) | 3.151 (1.6936) | 0.376 | 2.868 (1.4174) | 2.625 (1.1475) | 0.522 |
Age of household head (years) | 43.02 (11.508) | 43.86 (12.929) | 0.676 | 44.50 (10.961) | 45.31 (14.449) | 0.800 |
Household head years of farming | 21.38 (10.379) | 21.59 (11.570) | 0.908 | 20.03 (12.055) | 14.50 (13.962) | 0.108 |
Household head ability to read and write (1 = yes; 0 otherwise) | 0.84 (0.368) | 0.69 (0.466) | 0.030 | 0076 (0.428) | 0.75 (0.447) | 0.912 |
Number of work oxen owned | 2.66 (1.948) | 2.59 (1.219) | 0.827 | 2.69 (1.451) | 1.43 (0.535) | 0.029 |
Total farmland owned (ha) | 7.29 (7.558) | 5.27 (2.918) | 0.023 | 3.93 (2.782) | 3.13 (1.695) | 0.292 |
Total farmland cultivated (ha) | 5.37 (2.878) | 4.23 (1.931) | 0.003 | 4.05 (2.429) | 3.58 (1.564) | 0.462 |
Household members belonging to farmer groups/cooperatives (1 = yes; 0 otherwise) | 0.81 (0.396) | 0.49 (0.503) | 0.000 | 1.00 (0.000) | 0.81 (0.403) | 0.000 |
Has any household member benefited from training in the past 5 years | 0.79 (0.408) | 0.45 (0.500) | 0.000 | 0.92 (0.271) | 0.75 (0.447) | 0.046 |
Household head received crop production training (1 = yes; 0 otherwise) | 1.00 (0.000) | 1.26 (0.677) | 0.010 | 1.00 (0.000) | 1.00 (0.000) | |
Percent SAI adoption | 40.4 | 59.6 | 82.6 | 17.4 |
Variable | Adoption (%) | Improved Agronomic Practices | Legume-Based Soil Fertility Management Practices | Crop–Livestock Integration | Communality |
---|---|---|---|---|---|
Grow drought, pest, and disease stress-tolerant crops | 53% | 0.83 | 0.24 | 0.05 | 0.74 |
Use minimum tillage | 65% | 0.76 | 0.10 | 0.30 | 0.68 |
Green manure incorporation | 19% | 0.32 | 0.36 | 0.02 | 0.23 |
Integrated livestock–crop production | 28% | 0.26 | 0.24 | 0.29 | 0.21 |
Precision fertilizer application | 41% | 0.75 | 0.37 | −0.03 | 0.70 |
Agroforestry soil fertility practices | 35% | 0.56 | 0.35 | 0.01 | 0.44 |
Kraal manure soil fertility practices | 43% | 0.49 | 0.48 | 0.22 | 0.52 |
Green manure non-incorporation soil fertility practices | 16% | 0.21 | 0.71 | 0.02 | 0.56 |
Crop rotation | 78% | 0.44 | 0.09 | 0.61 | 0.57 |
Integrated pest management methods | 57% | 0.82 | 0.15 | 0.15 | 0.72 |
Crop diversification | 54% | 0.87 | 0.14 | 0.10 | 0.79 |
Cover crops | 19% | 0.23 | 0.79 | 0.07 | 0.69 |
Intercropping | 61% | 0.29 | 0.64 | 0.11 | 0.50 |
Extension trainings | 57% | 0.74 | 0.20 | 0.13 | 0.61 |
Herbicide weed control | 53% | 0.76 | 0.18 | 0.15 | 0.63 |
Crop variety diversification | 42% | 0.88 | 0.21 | 0.06 | 0.82 |
Designated grazing areas | 78% | −0.10 | 0.08 | 0.74 | 0.56 |
Eigenvalues | 8.13 | 1.39 | 1.17 | ||
Eigenvalues % contribution | 76.05 | 12.97 | 10.99 | ||
Cumulative % | 76.05 | 89.02 | 100.00 |
Variables | Independent Double Hurdle Model | |||
---|---|---|---|---|
1st Hurdle (Decision to Adopt SAI) | Marginal Effect in Probit Model | 2nd Hurdle (Intensity of SAI Use) | ||
Coefficient | Coefficient | SE | Coefficient | |
Constant | 1.570 ** (3.02) | - | - | 0.699 ** (4.80) |
Number of people in the household | −0.041 (−0.79) | 0.0019 | 0.0079 | 0.015 (1.18) |
Number of economically active adults | 0.073 (0.89) | 0.0059 | 0.0126 | −0.005 (−0.25) |
Age of the household head in years | 0.004 (0.33) | −0.0008 | 0.0023 | −0.003 (−0.75) |
Years in farming | −0.027 ** (−1.92) | −0.0016 | 0.0024 | 0.003 (0.71) |
Ability to read and write (1 = yes; 0 otherwise) | −0.035 (−0.17) | −0.0046 | 0.0362 | −0.002 (0.02) |
Number of work oxen owned | 0.065 (1.04) | −0.0041 | 0.0094 | −0.026 (−1.64) |
Farm size (ha) | −0.047 (−1.14) | −0.0095 | 0.0050 | −0.010 ** (−2.01) |
Total Cropped field size (ha) | −0.155 ** (-2.14) | −0.0231 | 0.0091 | −0.014 (−1.17) |
Affiliation to farmer association (1 = yes; 0 otherwise) | 0.424 (1.73) | 0.1625 | 0.0455 | 0.227 ** (3.49) |
Farmer extension training (1 = yes; 0 otherwise) | −0.290 (−0.55) | −0.1366 | 0.0678 | −0.278 ** (−2.09) |
Received crop production training (1 = yes; 0 otherwise) | 0.308 (0.62) | 0.1516 | 0.0766 | 0.274 ** (2.18) |
Cragg hurdle regression | Number of observations | 236 | ||
LR chi2(9) | 68.22 | |||
Prob > chi2 | 0.0000 | |||
Log likelihood = −98.206077 | Pseudo R2 | 0.2578 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamazakaza, P.; Kabwe, G.; Kuntashula, E.; Egeru, A.; Asiimwe, R. Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia. Land 2022, 11, 880. https://doi.org/10.3390/land11060880
Hamazakaza P, Kabwe G, Kuntashula E, Egeru A, Asiimwe R. Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia. Land. 2022; 11(6):880. https://doi.org/10.3390/land11060880
Chicago/Turabian StyleHamazakaza, Petan, Gillian Kabwe, Elias Kuntashula, Anthony Egeru, and Robert Asiimwe. 2022. "Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia" Land 11, no. 6: 880. https://doi.org/10.3390/land11060880
APA StyleHamazakaza, P., Kabwe, G., Kuntashula, E., Egeru, A., & Asiimwe, R. (2022). Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia. Land, 11(6), 880. https://doi.org/10.3390/land11060880