Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China
Abstract
:1. Introduction
- (1)
- To construct a conceptual framework for LUMF in DPAs in less developed region;
- (2)
- To establish a comprehensive evaluation indicator system for evaluation of land use multi-functionality;
- (3)
- To reveal the functional level of land use and its spatial differentiation characteristics, and perform coupling analysis on LUFs;
- (4)
- To put forward an improved method for identifying dominant functions of all counties (districts) in the study area;
- (5)
- To propose land use function schemes and corresponding governance strategies.
2. Conceptual Framework
3. Materials and Methods
3.1. Overview of the Study Area and Data Source
3.1.1. Overview of the Study Area
3.1.2. Data Source
3.2. Building of Indicator System
3.3. Methods
3.3.1. Calculation of Index Weight
3.3.2. Calculation of LUF Indexes
3.3.3. Zoning Methods for LUFs
4. Result Analysis
4.1. General Characteristic of LUFs
4.2. Spatial Differentiation Characteristics of LUFs
4.2.1. Agricultural Production Function
4.2.2. Economic Development Function
4.2.3. Social Security Function
4.2.4. Ecological Maintenance Function
4.3. Identification of Dominant LUFs
4.4. Functional Zoning of Land Use
4.5. Zoning Governance Strategies
5. Discussion
5.1. The Overall Level of Multi-Functionality
5.2. The Conflicts of Land Use
5.3. Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, L.S.; Bunce, M.; Taylor, L.; Luka, N.; Maurer, J. Contested ground: The dynamics of peri-urban growth in the Toronto region. Can. J. Reg. Sci. 2003, 26, 251–270. [Google Scholar]
- Friedberger, M. The rural-urban fringe in the late twentieth century. Agric. Hist. 2000, 72, 502–514. [Google Scholar] [CrossRef]
- de Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Müller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecol. Indic. 2006, 6, 238–249. [Google Scholar] [CrossRef]
- Verburg, P.H.; Van De Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Meng, J.J.; Cheng, H.R.; Li, F.; Han, Z.Y.; Wei, C.J.; Wu, Y.D.; You, N.W.; Zhu, L.K. Spatial-temporal trade-offs of land multi-functionality and function zoning at finer township scale in the middle reaches of the Heihe River. Land Use Policy 2022, 115, 106019. [Google Scholar] [CrossRef]
- Meng, J.J.; Wang, Q.; Li, F.; Guo, L.R. Assessing multifunctional land use in the middle reach of the Heihe River basin based on spatial variances. Geogr. Res. 2019, 38, 369–382. (In Chinese) [Google Scholar] [CrossRef]
- Steinhäußer, R.; Siebert, R.; Steinführer, A.; Hellmich, M. National and regional land use trade-offs in Germany from the perspective of stakeholders. Land Use Policy 2015, 49, 183–194. [Google Scholar] [CrossRef]
- Slee, B. Social indicators of multifunctional rural land use: The case of forestry in the UK. Agric. Ecosyst. Environ. 2007, 120, 31–40. [Google Scholar] [CrossRef]
- Zou, L.L.; Liu, Y.S.; Yang, J.X.; Yang, S.F.; Wang, Y.S.; Zhi, C.; Hu, X.D. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Liu, P.J.; Hu, Y.C.; Jia, W.T. Land use optimization study based on FLUS model and ecosystem services–setting Jinan City as an example. Urban Clim. 2021, 40, 100984. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Long, H.L.; Tu, S.S.; Ma, L.; Wang, L.Z. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Vereijken, P.H. Multifunctionality: Applying the OECD Framework, A Review of Literature in The Netherlands. Paris Oecd P 2001, 1–27. Available online: https://edepot.wur.nl/39821 (accessed on 9 May 2022).
- Wilson, G.A. The spatiality of multifunctional agriculture: A human geography perspective. Geoforum 2009, 40, 269–280. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Hu, W.Y.; Li, M.R.; Guo, Z.X.; Wang, L.Y.; Wu, L.H. Multiscale research on spatial supply-demand mismatches and synergic strategies of multifunctional cultivated land. J. Environ. Manag. 2021, 299, 113065. [Google Scholar] [CrossRef]
- Marsden, T.; Sonnino, R. Rural development and the regional state: Denying multifunctional agriculture in the UK. J. Rural Stud. 2008, 24, 422–431. [Google Scholar] [CrossRef]
- Tao, J.; Fu, M.C.; Sun, J.J.; Zheng, X.Q.; Zhang, J.J.; Zhang, D.X. Multifunctional assessment and zoning of crop production system based on set pair analysis-A comparative study of 31 provincial regions in mainland China. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1400–1416. [Google Scholar] [CrossRef]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wang, M.Z.; Qu, Y.B.; Zhou, D.Y.; Ma, W.Q. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Monti, M.A.; Brigolin, D.; Franzoi, P.; Libralato, S.; Pastres, R.; Solidoro, C.; Zucchetta, M.; Pranovi, F. Ecosystem functioning and ecological status in the Venice lagoon, which relationships? Ecol. Indic. 2021, 133, 108461. [Google Scholar] [CrossRef]
- Zou, L.L.; Liu, Y.S.; Wang, J.Y.; Yang, Y.Y. An analysis of land use conflict potentials based on ecologi-cal-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Ma, J.; Chen, Y. Study on change in value of ecosystem service function of Tarim River. Acta Ecol. Sin. 2010, 30, 67–75. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.M.; Gao, B.P.; Zheng, K.J.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R. Modelling dynamic ecosystem services. Nat. Sustain. 2021, 4, 928–929. [Google Scholar] [CrossRef]
- Zepharovich, E.; Ceddia, M.G.; Rist, S. Social multi-criteria evaluation of land-use scenarios in the Chaco Salteño: Complementing the three-pillar sustainability approach with environmental justice. Land Use Policy 2021, 101, 105175. [Google Scholar] [CrossRef]
- Singh, S.; Upadhyay, P.S.; Powar, S. Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Appl. Energy 2022, 308, 118235. [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Mossello, M.T.; et al. Land Use Functions—A Multifunctionality Approach to Assess the Impact of Land Use Changes on Land Use Sustainability BT. In Sustainability Impact Assessment of Land Use Changes; Helming, K., Pérez-Soba, M., Tabbush, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 375–404. ISBN 978-3-540-78648-1. [Google Scholar]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Reidsma, P.; König, H.; Feng, S.; Bezlepkina, I.; Nesheim, I.; Bonin, M.; Sghaïer, M.; Purushothaman, S.; Sieber, S.; van Ittersum, M.; et al. Methods and tools for integrated assessment of land use policies on sustainable development in developing countries. Land Use Policy 2011, 28, 604–617. [Google Scholar] [CrossRef]
- Helming, K. Impact Assessment for Multifunctional Land Use BT. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 223–234. ISBN 978-3-319-01017-5. [Google Scholar]
- Xue, Z.C.; Zhen, L.; Miah, M.G.; Shoyama, K. Impact assessment of land use functions on the sustainable regional development of representative Asian countries–A comparative study in Bangladesh, China and Japan. Sci. Total Environ. 2019, 694, 133689. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Wang, L.; Lin, Z.L. Assessing urbanization quality using structure and function analyses: A case study of the urban agglomeration around hangzhou bay (UAHB), China. Habitat Int. 2015, 49, 165–176. [Google Scholar] [CrossRef]
- Li, G.D.; Fang, C.L. Quantitative function identification and analysis of urban ecological-production-living spaces. Acta Geogr. Sin. 2016, 71, 49–65. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Lin, Z.L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Sylla, M.; Hagemann, N.; Szewranski, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Bai, R.; Shi, Y.; Pan, Y. LandUse classifying and identification of the production-living-ecological space of island villages—a case study of islands in the western sea area of Guangdong Province. Land 2022, 11, 705. [Google Scholar] [CrossRef]
- de Groot, R.; Hein, L. Concept and valuation of landscape functions at different scales BT. In Multifunctional Land Use: Meeting Future Demands for Landscape Goods and Services; Mander, Ü., Wiggering, H., Helming, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 15–36. ISBN 978-3-540-36763-5. [Google Scholar]
- Spataru, A.; Faggian, R.; Docking, A. Principles of multifunctional agriculture for supporting agriculture in metropolitan peri-urban areas: The case of Greater Melbourne, Australia. J. Rural Stud. 2020, 74, 34–44. [Google Scholar] [CrossRef]
- Dewi, S.; van Noordwijk, M.; Ekadinata, A.; Pfund, J.L. Protected areas within multifunctional landscapes: Squeezing out intermediate land use intensities in the tropics? Land Use Policy 2013, 30, 38–56. [Google Scholar] [CrossRef]
- Song, J.C.; Tong, X.Y.; Wang, L.Z.; Zhao, C.L.; Prishchepov, A.V. Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach. Landsc. Urban Plan. 2019, 190, 103580. [Google Scholar] [CrossRef]
- Kumakoshia, Y.; Koizumib, H.; Yoshimura, Y. Diversity and density of urban functions in station areas. Comput. Environ. Urban 2021, 89, 101679. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.W.; Sun, Q.K.; Wang, S.H. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Jiang, T.H.; Shi, G.Q.; Zhang, Y.N. Multifunctional rural transition along China’s Yangtze River Transect: Spatial differentiation and economic relevance. Environ. Sci. Pollut. Res. 2021, 28, 60726–60740. [Google Scholar] [CrossRef]
- Zhu, C.M.; Lin, Y.; Zhang, J.; Gan, M.Y.; Xu, H.W.; Li, W.Y.; Yuan, S.F.; Wang, K. Exploring the relationship between rural transition and agricultural eco-environment using a coupling analysis: A case study of Zhejiang Province, China. Ecol. Indic. 2021, 127, 107733. [Google Scholar] [CrossRef]
- Long, H.L.; Ma, L.; Zhang, Y.N.; Qu, L.L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional Peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Seifloo, T.B.; Yuzer, M.A. A methodology for estimation of land use changes in an urban area with the emergence of a new impact factor. MethodsX 2020, 7, 101013. [Google Scholar] [CrossRef]
- Prabhakar, S.V.R.K. A succinct review and analysis of drivers and impacts of agricultural land transformations in Asia. Land Use Policy 2021, 102, 105238. [Google Scholar] [CrossRef]
- Zhao, J.M.; Zhu, D.L.; Cheng, J.; Jiang, X.; Lun, F.; Zhang, Q. Does regional economic integration promote urban land use efficiency? Evidence from the Yangtze River Delta, China. Habitat Int. 2021, 116, 102404. [Google Scholar] [CrossRef]
- Zhu, C.M.; Dong, B.Y.; Li, S.N.; Lin, Y.; Shahtahmassebi, A.R.; You, S.X.; Zhang, J.; Gan, M.Y.; Yang, L.X.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.N.; Lin, N.F.; Lin, Y.; Yuan, S.F.; Zhang, L.; Zhu, J.X.; Wang, K.; Gan, M.Y.; Zhu, C.M. Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China. Land Use Policy 2022, 116, 106058. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Long, H.L.; Liu, Y.S. Rural restructuring in China. J. Rural Stud. 2016, 47, 387–391. [Google Scholar] [CrossRef]
- Fan, Y.T.; Jin, X.B.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.H.; Xiang, X.M.; Zhou, Y.K. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Long, H.L.; Ge, D.Z.; Zhang, Y.N.; Tu, S.S.; Qu, Y.; Ma, L. Changing man-land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manag. 2018, 209, 440–451. [Google Scholar] [CrossRef]
- Zhuo, C.F.; Deng, F. How does China’s Western Development Strategy affect regional greeneconomic efficiency? Sci. Total Environ. 2020, 7070, 135939. [Google Scholar] [CrossRef] [PubMed]
- Van Huylenbroeck, G.; Vandermeulen, V.; Mettepenningen, E.; Verspecht, A. Multifunctionality of agriculture: A review of definitions, evidence and instruments. Living Rev. Landsc. Res. 2007, 1, 1–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Y.; Chen, Y.F. Territorial multi-functionality evaluation and decision-making mechanism at county scale in China. Acta Geogr. Sin. 2011, 66, 1379–1389. (In Chinese) [Google Scholar] [CrossRef]
- Luo, Y.L.; Li, T.S.; Zhang, C.X.; Zhai, Z.Y. Town territorial multi-functionality evaluation and the dominant function orientation: A case of Jinhu County. Hum. Geogr. 2016, 31, 94–101. (In Chinese) [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. (In Chinese) [Google Scholar]
- Li, X.; Fang, B.; Yin, R.M.; Song, H.F. Spatial-temporal change and collaboration/trade-off relationship of “produc-tion-living-ecological” functions in county area of Jiangsu province. J. Nat. Resour. 2019, 34, 2363–2377. (In Chinese) [Google Scholar] [CrossRef]
- Ji, Y.; Huang, G.H.; Sun, W. Risk assessment of hydropower stations through an integrated fuzzy entropy-weight multiple criteria decision making method: A case study of the Xiangxi River. Expert Syst. Appl. 2015, 42, 5380–5389. [Google Scholar] [CrossRef]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Zhang, J.; Gao, Y.; Hong, J.; Zuo, J.; Liu, W. Assessment of the sustainable development capacity with the entropy weight coefficient method. Sustainability 2015, 7, 13542–13563. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, D. Assessment and forecast of Beijing and Shanghai’s urban ecosystem health. Sci. Total Environ. 2014, 487, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Bellin, A.; Majone, B.; Cainelli, O.; Alberici, D.; Villa, F. A continuous coupled hydrological and water resources management model. Environ. Model. Softw. 2016, 75, 176–192. [Google Scholar] [CrossRef]
- Tomal, M. Evaluation of coupling coordination degree and convergence behavior of local development: A spatiotemporal analysis of all Polish municipalities over the period 2003–2019. Sustain. Cities Soc. 2021, 71, 10299. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, Y.; Zhou, Y.; Shi, Y.L.; Zhu, X.D. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Y.H. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Shan, L.P.; Yu, A.T.W.; Wu, Y.Z. Strategies for risk management in urban–rural conflict: Two case studies of land acquisition in urbanizing China. Habitat Int. 2017, 59, 90–100. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Tu, S.S.; Long, H.L. Rural restructuring in China: Theory, approaches and study prospect. J. Geogr. Sci. 2017, 27, 1169–1184. [Google Scholar] [CrossRef]
- Liu, Y.S. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geogr. Sin. 2018, 73, 637–650. (In Chinese) [Google Scholar] [CrossRef]
- Sun, X.; Zhu, B.; Zhang, K.; Zeng, S.; Li, H.; Wang, K.; Dong, B.; Zhou, Z.F.; Zhou, C.C. New indices system for quan-tifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978–2018. Sci. Total Environ. 2022, 804, 150180. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Li, S.; Zhang, L. Spatial-temporal characteristics of the coupling coordination of social security and economic development in China during 2002–2018. Reg. Sustain. 2021, 2, 116–129. [Google Scholar] [CrossRef]
- Yu, A.T.W.; Wu, Y.Z.; Shen, J.H.; Zhang, X.L.; Shen, L.Y.; Shan, L.P. The key causes of urban-rural conflict in China. Habitat Int. 2015, 49, 65–73. [Google Scholar] [CrossRef]
- Kangas, K.; Brown, G.; Kivinen, M.; Tolvanen, A.; Tuulentie, S.; Karhu, J.; Markovaara-Koivisto, M.; Eilu, P.; Tarvainen, O.; Simil, J.; et al. Land use synergies and conflicts identification in the framework of compatibility analyses and spatial assessment of ecological, socio-cultural and economic values. J. Environ. Manag. 2022, 316, 115174. [Google Scholar] [CrossRef] [PubMed]
- Li, S.N.; Zhu, C.M.; Lin, Y.; Dong, B.Y.; Chen, B.J.; Si, B.; Li, Y.J.; Deng, X.D.; Gan, M.Y.; Zhang, J.; et al. Conflicts between agricultural and ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions. J. Clean. Prod. 2021, 317, 128453. [Google Scholar] [CrossRef]
- Stockdale, A.; Barker, A. Sustainability and the multifunctional landscape: An assessment of approaches to planning and management in the Cairngorms National Park. Land Use Policy 2009, 26, 479–492. [Google Scholar] [CrossRef]
- Lovell, S.T.; DeSantis, S.; Nathan, C.A.; Olson, M.B.; Méndez, V.E.; Kominami, H.C.; Erickson, D.L.; Morris, K.S.; Morris, W.B. Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agric. Syst. 2010, 103, 327–341. [Google Scholar] [CrossRef]
- Saarikoski, H.; Raitio, K.; Barry, J. Understanding ‘successful’ conflict resolution: Policy regime changes and new interactive arenas in the Great Bear Rainforest. Land Use Policy 2013, 32, 271–280. [Google Scholar] [CrossRef]
- Ye, C.; Liu, Z.M. Rural-urban co-governance: Multi-scale practice. Sci. Bull. 2020, 65, 778–780. [Google Scholar] [CrossRef]
Functional Layer | Situational Layer | Indicator Layer | Indicator Connotation or Calculation Method | Index Weight |
---|---|---|---|---|
Agricultural production function (PF) | Status | Output value of primary industry PS1 (RMB 10,000) | Reflecting the overall level of agricultural development in each county. | 0.0934 |
Area of cultivated land PS2 (hectares) | Reflecting the supply capacity of cultivated land resources in grain production. | 0.1213 | ||
Planting area of crops PS3 (hectares) | Reflecting the supply of land resources in the production of non-food crops in an indirect way. | 0.1286 | ||
Total grain output PS4 (tons) | Reflecting the food supply situation. | 0.1566 | ||
Trend | Growth rate of output value of primary industry Pt1 (%) | The average growth in the past five years, reflecting the agricultural development trend. | 0.0995 | |
Grain yield growth rate Pt1 (%) | The average growth in the past five years, reflecting the sustainable supply capacity of grain. | 0.0524 | ||
Change rate of land reclamation rate Pt1 (%) | The average value of the last five years, reflecting the utilization efficiency and structural changes of land resources. | 0.1307 | ||
Change rate of grain supply–demand ratio Pt1 (%) | To be calculated according to the grain output/(total population × 0.4) [58], reflecting the supply and demand of production. | 0.2173 | ||
Economic development function (DF) | Status | GDP dt1 (RMB 10,000) | Reflecting the overall economic development in each county. | 0.0978 |
Per capital GDP dt2 (RMB) | Reflecting the output level of each county. | 0.0467 | ||
General budgetary revenue dt3 (RMB 10,000) | Reflecting the economic operation efficiency. | 0.0972 | ||
Fixed-asset investment in urban area dt4 (RMB 10,000) | Reflecting the urban economic development capacity. | 0.0576 | ||
Output value of tertiary industry dt5 (RMB 10,000) | Reflecting the overall development level of the service sector. | 0.1314 | ||
Area of urban land dt6 (hectares) | Reflecting the level of land use security for economic development. | 0.0693 | ||
Trend | Economic growth rate ds1 (%) | The average growth rate in the past five years, reflecting the general trend of economic growth. | 0.0470 | |
Growth rate of output value of tertiary industry ds2 (%) | The average growth rate in the past five years, reflecting the growth trend of THE tertiary industry. | 0.0852 | ||
Per capita GDP growth rate ds3 (%) | The average growth rate in the past five years, reflecting the sustainability of regional output and creativity. | 0.0440 | ||
Growth rate of fiscal revenue ds4 (%) | The average growth rate in the past five years, reflecting the economic operation trend. | 0.3135 | ||
Industrial structure ds5 | The proportion of total output value of second and third industries in GDP, reflecting the industrial structure evolution trend. | 0.0103 | ||
Social security function (SF) | Status | Per capita balance of urban and rural residents wt1 (RMB) | Reflecting the affluence of urban and rural residents. | 0.1039 |
Total retail sales of consumer goods per capita wt2 (RMB) | Reflecting the improvement of social purchasing power, consumption level, and material and cultural life level. | 0.1385 | ||
Number of beds in health facilities for every 10,000 people wt3 (Nr.) | The number of beds in health institutions/resident population, reflecting the medical and health level. | 0.0666 | ||
Basic education attraction wt4 (people) | The number of primary and secondary students in school, reflecting the quality difference in basic education and education equity. | 0.0717 | ||
Transport network density wt5 (km/km2) | The highway mileage/area of each county, reflecting the supporting capacity of transportation infrastructure to regional development. | 0.0707 | ||
Population urbanization rate wt6 (%) | The urbanization rate of permanent population, reflecting the urbanization level. | 0.0487 | ||
Trend | Growth rate of permanent population ws1 (%) | The average growth rate in the past five years, reflecting the regional population attraction | 0.0734 | |
The change rate of employment in the secondary and tertiary industries ws2 (%) | The accession rate of employment in secondary and tertiary industries over the last five years. | 0.2741 | ||
Income growth rate of urban and rural residents ws3 (%) | Reflecting the improvement in the living standards of the residents. | 0.0503 | ||
Urban–rural income ratio ws4 | Reflecting the trend of integrated urban and rural development. | 0.1021 | ||
Ecological maintenance function (EF) | Status | Ecological service value et1 (RMB 10,000) | The value of ecological service calculated by the reference [60]. | 0.2589 |
Average ecological service value of land et2 (RMB 10, 000/km2) | Ecological service value per unit area, reflecting the ability of ecological construction and level of ecological protection. | 0.0457 | ||
Forest coverage et3 (%) | Reflecting the richness of forest resources and the status of ecological balance. | 0.1293 | ||
Carbon sequestration capacity of vegetation et4 (ton) | The NPP value, reflecting the capacity of natural carbon sequestration and the positive impact of vegetation on the environment. | 0.0661 | ||
Trend | Biological abundance index es1 | Calculations according to the land use type assignment: Abio × (0.35 × Sforst + 0.21 × Sgrassland + 0.28 × Swaters + 0.11 × Sfarmland + 0.04 × Sland for construction + 0.01 × Sunused land)/Sregion [61], reflecting the biological diversity and ecological governance level. | 0.1502 | |
Green Development Index es2 | With the green development index and public satisfaction index in the annual evaluation results of ecological civilization progress used, reflecting the regional transformation and development, public participation, public perception, and ecological awareness 1 | 0.1303 | ||
Public satisfaction index es3 | 0.2195 |
Classification Criteria | PFV | DFV | SFV | EFV |
---|---|---|---|---|
Q1 = (n + 1)/4 | 0.149 | 0.069 | 0.223 | 0.318 |
Q2 = (n + 1)/2 | 0.224 | 0.097 | 0.271 | 0.436 |
Q3 = 3(n + 1)/4 | 0.460 | 0.192 | 0.468 | 0.579 |
Dominant Functions | Classification of Land Use Multi-Functional Index (M) | Classification of Coupling Degree (C) | Zoning Rules | Zoning Type |
---|---|---|---|---|
No | Low | Medium, high | M = low and C ≥ medium | Optimization and upgrading areas |
Medium | Medium, high | M = medium and C ≥ medium | Key upgrading areas | |
Yes | Low | Low, medium, high | M = low and C ≥ low | Potential upgrading areas |
Medium, high | Low | M ≥ medium and C = low | Synergistic optimization areas | |
Medium, high | Medium, high | M ≥ medium and C ≥ medium | Moderate optimization areas |
Counties/Districts | Index Value | Counties/Districts | The Index Value | Counties/Districts | Index Value | Counties/Districts | Index Value |
---|---|---|---|---|---|---|---|
Chengguan | 0.380 | Pingchuan | 0.078 | Jishishan | 0.086 | Minhe | 0.293 |
Qilihe | 0.281 | Jingyuan | 0.178 | Chengdong | 0.211 | Huzhu | 0.373 |
Xigu | 0.220 | Jingtai | 0.151 | Chengzhong | 0.273 | Hulong | 0.195 |
An’ning | 0.214 | Anding | 0.277 | Chengxi | 0.402 | Xunhua | 0.195 |
Honggu | 0.099 | Longxi | 0.165 | Chengbei | 0.262 | Haiyan | 0.183 |
Yongdeng | 0.138 | Weiyuan | 0.164 | Datong | 0.206 | Tongren | 0.148 |
Gaolan | 0.122 | Lintao | 0.184 | Hunagzhong | 0.327 | Jianzha | 0.180 |
Yuzhong | 0.196 | Linxia | 0.147 | Huangyuan | 0.147 | Gonghe | 0.260 |
Lanzhou New Area | 0.167 | Yongjing | 0.126 | Ledu | 0.294 | Guide | 0.138 |
Baiyin | 0.148 | Dongxiang | 0.096 | Ping’an | 0.261 | Guinan | 0.140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhang, X.; Shi, P. Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China. Land 2022, 11, 897. https://doi.org/10.3390/land11060897
Luo J, Zhang X, Shi P. Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China. Land. 2022; 11(6):897. https://doi.org/10.3390/land11060897
Chicago/Turabian StyleLuo, Jun, Xuebing Zhang, and Peiji Shi. 2022. "Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China" Land 11, no. 6: 897. https://doi.org/10.3390/land11060897
APA StyleLuo, J., Zhang, X., & Shi, P. (2022). Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China. Land, 11(6), 897. https://doi.org/10.3390/land11060897