Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study Site
2.2. Laboratory Experimental Design
2.3. Sample Collection
2.4. Sample Analysis
2.5. Statistical Analysis
3. Results
3.1. Subsection Stormwater Chemistry
3.2. Overall Stormwater Quantity and Quality Performance for All Storm Events
3.3. Quantity and Quality Performance in Different Stormwater Concentration Levels
4. Discussion
4.1. Using Plants in GI to Manage Deicing Salt
4.2. Performance by Plant Species and Changes in Plant Health
4.3. Different Salt Concentrations Yield Different Removal Rates
4.4. Salt Removal Decreased over Sequential Storms
5. Conclusions
- The potential of vegetation to mitigate deicing salt loading in BR for all inflow salt concentration levels is BC > BWI > blank.
- Vegetated columns reduced stormwater volume loading for all experimental salt levels in the order: BC > BWI > blank.
- The highest salt removal of all columns was observed for the intermediate salt concentration inflow.
- For all columns, the best salt load reduction was observed for the first storm event, with performance decreasing with repeated salt loadings.
- Additional study is encouraged to simulate the bioretention and explore the potential of vegetation in green infrastructure to mitigate deicing salt (NaCl) under winter conditions. It is also recommended to study the mitigation of other kinds of salt ions (e.g., K+, SO42−) to water resources by green infrastructure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dhakal, K.P.; Chevalier, L.R. Urban Stormwater Governance: The Need for a Paradigm Shift. Environ. Manag. 2016, 57, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Spromberg, J.A.; Baldwin, D.H.; Damm, S.E.; McIntyre, J.K.; Huff, M.; Sloan, C.A.; Anulacion, B.F.; Davis, J.W.; Scholz, N.L. Coho Salmon Spawner Mortality in Western US Urban Watersheds: Bioinfiltration Prevents Lethal Storm Water Impacts. J. Appl. Ecol. 2016, 53, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices in Two Urbanized Watersheds: Retrofitting with Rain Barrel/Cistern and Porous Pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Ureta, J.; Motallebi, M.; Scaroni, A.E.; Lovelace, S.; Ureta, J.C. Understanding the Public’s Behavior in Adopting Green Stormwater Infrastructure. Sustain. Cities Soc. 2021, 69, 102815. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key Issues for Sustainable Urban Stormwater Management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef]
- Al Bakri, D.; Rahman, S.; Bowling, L. Sources and Management of Urban Stormwater Pollution in Rural Catchments, Australia. J. Hydrol. 2008, 356, 299–311. [Google Scholar] [CrossRef]
- Burgis, C.R.; Hayes, G.M.; Henderson, D.A.; Zhang, W.; Smith, J.A. Green Stormwater Infrastructure Redirects Deicing Salt from Surface Water to Groundwater. Sci. Total Environ. 2020, 729, 138736. [Google Scholar] [CrossRef]
- Granato, G.E.; DeSimone, L.A.; Barbaro, J.R.; Jeznach, L.C. Methods for Evaluating Potential Sources of Chloride in Surface Waters and Groundwaters of the Conterminous United States; U. S. Geological Survey: Reston, VA, USA, 2015.
- Hintz, W.D.; Relyea, R.A. Impacts of Road Deicing Salts on the Early-Life Growth and Development of a Stream Salmonid: Salt Type Matters. Environ. Pollut. 2017, 223, 409–415. [Google Scholar] [CrossRef]
- Increased Salinization of Fresh Water in the Northeastern United States|PNAS. Available online: https://www.pnas.org/doi/abs/10.1073/pnas.0506414102 (accessed on 20 May 2022).
- Mineral Commodity Summaries 2019; Mineral Commodity Summaries; U. S. Geological Survey: Reston, VA, USA, 2019.
- Corsi, S.R.; De Cicco, L.A.; Lutz, M.A.; Hirsch, R.M. River Chloride Trends in Snow-Affected Urban Watersheds: Increasing Concentrations Outpace Urban Growth Rate and Are Common among All Seasons. Sci. Total Environ. 2015, 508, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Equiza, M.A.; Calvo-Polanco, M.; Cirelli, D.; Señorans, J.; Wartenbe, M.; Saunders, C.; Zwiazek, J.J. Long-Term Impact of Road Salt (NaCl) on Soil and Urban Trees in Edmonton, Canada. Urban For. Urban Green. 2017, 21, 16–28. [Google Scholar] [CrossRef]
- Robinson, H.K.; Hasenmueller, E.A.; Chambers, L.G. Soil as a Reservoir for Road Salt Retention Leading to Its Gradual Release to Groundwater. Appl. Geochem. 2017, 83, 72–85. [Google Scholar] [CrossRef]
- Stagge, J.H.; Davis, A.P.; Jamil, E.; Kim, H. Performance of Grass Swales for Improving Water Quality from Highway Runoff. Water Res. 2012, 46, 6731–6742. [Google Scholar] [CrossRef]
- Kim, H.; Kim, G. An Effectiveness Study on the Use of Different Types of LID for Water Cycle Recovery in a Small Catchment. Land 2021, 10, 1055. [Google Scholar] [CrossRef]
- Shafique, M. Green Stormwater Infrastructure with Low Impact Development Concept: A Review of Current Research. Desalin. Water Treat. 2017, 83, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Hsieh, C.; Davis, A.P. Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, J.K.; Davis, J.W.; Hinman, C.; Macneale, K.H.; Anulacion, B.F.; Scholz, N.L.; Stark, J.D. Soil Bioretention Protects Juvenile Salmon and Their Prey from the Toxic Impacts of Urban Stormwater Runoff. Chemosphere 2015, 132, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Akan, A.O. Preliminary Design Aid for Bioretention Filters. J. Hydrol. Eng. 2013, 18, 318–323. [Google Scholar] [CrossRef]
- Leroy, M.; Portet-Koltalo, F.; Legras, M.; Lederf, F.; Moncond’huy, V.; Polaert, I.; Marcotte, S. Performance of Vegetated Swales for Improving Road Runoff Quality in a Moderate Traffic Urban Area. Sci. Total Environ. 2016, 566–567, 113–121. [Google Scholar] [CrossRef]
- Li, H. Green Infrastructure for Highway Stormwater Management: Field Investigation for Future Design, Maintenance, and Management Needs. J. Infrastruct. Syst. 2015, 21, 05015001. [Google Scholar] [CrossRef]
- Choi, H.; Hong, J.; Lee, S.; Kim, L.H. Assessment of Salt Resistance and Performances of LID Applicable Plants. J. Wetl. Res. 2016, 18, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The Role of Plants in Bioretention Systems; Does the Science Underpin Current Guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Muerdter, C.; Özkök, E.; Li, L.; Davis, A.P. Vegetation and Media Characteristics of an Effective Bioretention Cell. J. Sustain. Water Built Environ. 2016, 2, 04015008. [Google Scholar] [CrossRef]
- Treatment of Salted Road Runoffs Using Typha Latifolia, Spergularia Canadensis, and Atriplex Patula: A Comparison of Their Salt Removal Potential. Available online: https://www.astm.org/jai102173.html (accessed on 26 January 2022).
- Hayes, G.M.; Burgis, C.; Zhang, W.; Henderson, D.; Smith, J.A. Runoff Reduction by Four Green Stormwater Infrastructure Systems in a Shared Environment. J. Sustain. Water Built Environ. 2021, 7, 04021004. [Google Scholar] [CrossRef]
- Burgis, C.R.; Hayes, G.M.; Zhang, W.; Henderson, D.A.; Macko, S.A.; Smith, J.A. Tracking Denitrification in Green Stormwater Infrastructure with Dual Nitrate Stable Isotopes. Sci. Total Environ. 2020, 747, 141281. [Google Scholar] [CrossRef]
- Climate Data Online (CDO)|National Climatic Data Center (NCDC). Daily Summaries Station Details: Washington Reagan National Airport, VA, USA, Ghcnd:USW00013743. Available online: https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00013743/detail (accessed on 8 June 2022).
- Klink, A.; Polechońska, L.; Cegłowska, A.; Stankiewicz, A. Typha Latifolia (Broadleaf Cattail) as Bioindicator of Different Types of Pollution in Aquatic Ecosystems—Application of Self-Organizing Feature Map (Neural Network). Environ. Sci. Pollut. Res. 2016, 23, 14078–14086. [Google Scholar] [CrossRef]
CDA (m2) | Impervious% | Footprint (m2) | Engineered Storage (m3) | InflowType | Outflow Type | Subsurface Layers (Surface → Down) | Mulch Depth (cm) | Engineered Soil Depth (cm) | Underlying Gravel Depth (cm) | Vegetation |
---|---|---|---|---|---|---|---|---|---|---|
curb and gutter sewer | 10.2 cm diameter underdrain + bypass channel | 15.2 cm ponding with mulch and vegetation, 76.2 cm ESM (3.2% clay, 5.6% silt, 91.2% sand), 10.2 cm VDOT #8 stone (+ underdrain), 30.5 cm VDOT #57 stone | Blue Wild Indigo | |||||||
Marsh Marigold | ||||||||||
47,753 | 35 | 1012 | 447 | 5 | 76.2 | 40.7 | Fox Sedge | |||
Buttonbush | ||||||||||
Winterberry | ||||||||||
Sweetbay | ||||||||||
Rough Avens | ||||||||||
Cardinal flower |
Storm No. | Rain Depth (cm) | Duration Time (h) | Area of BR Basin (m2) | Inflow Volume to BR Basin (L) | Area of Each Soil Column (m2) | Proportional Inflow Volume for Each Soil Column (L) |
---|---|---|---|---|---|---|
1 | 0.74 | 3.3 | 78,101.0 | 16.6 | ||
2 | 1.01 | 4.3 | 57,532.7 | 12.2 | ||
3 | 2.29 | 6.0 | 862.4 | 214,782.2 | 0.183 | 45.6 |
4 | 1.91 | 5.5 | 307,237.3 | 65.2 | ||
5 | 2.44 | 8.7 | 261,833.0 | 55.6 |
Deicing Salt Concentration Level (ppm) | Storm No. | Duration Time (h) | Inflow Volume (L) | Inflow Cl− Concentration (ppm) | Inflow Na+ Concentration (ppm) |
---|---|---|---|---|---|
1 | 3.3 | 16.6 | 34.1 | 26.0 | |
2 | 4.3 | 12.2 | 31.5 | 23.3 | |
Low | 3 | 6.0 | 45.6 | 33.0 | 26.1 |
(0 < CIn < 40) | 4 | 5.5 | 65.2 | 33.1 | 20.1 |
5 | 8.7 | 55.6 | 33.2 | 22.7 | |
1 | 3.3 | 16.6 | 149.5 | 76.2 | |
2 | 4.3 | 12.2 | 183.5 | 93.2 | |
Medium | 3 | 6.0 | 45.6 | 167.9 | 84.2 |
(40 < CIn < 200) | 4 | 5.5 | 65.2 | 134.0 | 49.6 |
5 | 8.7 | 55.6 | 135.4 | 53.3 | |
1 | 3.3 | 16.6 | 1545.8 | 689.7 | |
2 | 4.3 | 12.2 | 1863.6 | 697.7 | |
High | 3 | 6.0 | 45.6 | 1698.6 | 627.0 |
(500 < CIn < 2000) | 4 | 5.5 | 65.2 | 1906.5 | 668.8 |
5 | 8.7 | 55.6 | 1744.8 | 561.8 |
Inflow (L) | Inflow Concentration (mg/L) | Inflow Mass (mg) | Column | Outflow (L) | OUT_ Cl− Concentration (mg/L) | OUT_ Cl− Mass (mg) | OUT_ Na+ Concentration (mg/L) | OUT_ Na+ Mass (mg) |
---|---|---|---|---|---|---|---|---|
Cl− | Cl− | Blank 1 | 15.6 | 23.1 | 360 | 9.3 | 145 | |
34.1 | 566 | Blank 2 | 15.6 | 22.1 | 345 | 8.8 | 137 | |
BWI 1 | 14.2 | 22.0 | 312 | 9.4 | 133 | |||
16.6 | Na+ | Na+ | BWI 2 | 14.6 | 21.7 | 317 | 9.2 | 134 |
26.0 | 432 | BC 1 | 14.0 | 14.5 | 203 | 8.6 | 120 | |
BC 2 | 14.0 | 18.5 | 259 | 8.5 | 119 | |||
Cl− | Cl− | Blank 1 | 9.4 | 24.3 | 228 | 11.1 | 104 | |
31.5 | 384 | Blank 2 | 9.8 | 23.5 | 230 | 10.6 | 104 | |
BWI 1 | 10.6 | 25.4 | 269 | 11.5 | 122 | |||
12.2 | Na+ | Na+ | BWI 2 | 11.0 | 23.8 | 262 | 10.9 | 120 |
23.3 | 284 | BC 1 | 8.2 | 15.0 | 123 | 10.3 | 84 | |
BC 2 | 9.4 | 19.4 | 182 | 9.9 | 93 | |||
Cl− | Cl− | Blank 1 | 41.5 | 32.0 | 1328 | 16.0 | 664 | |
33.0 | 1505 | Blank 2 | 42.9 | 30.9 | 1326 | 13.6 | 583 | |
BWI 1 | 43.1 | 32.4 | 1396 | 13.9 | 599 | |||
45.6 | Na+ | Na+ | BWI 2 | 39.9 | 31.2 | 1245 | 13.8 | 551 |
26.1 | 1190 | BC 1 | 35.8 | 19.7 | 705 | 11.7 | 419 | |
BC 2 | 38.0 | 25.7 | 977 | 12.6 | 479 | |||
Cl− | Cl− | Blank 1 | 60.5 | 33.9 | 2051 | 16.1 | 974 | |
33.1 | 2158 | Blank 2 | 60.3 | 33.0 | 1990 | 11.6 | 699 | |
BWI 1 | 49.2 | 34.8 | 1712 | 14.2 | 699 | |||
65.2 | Na+ | Na+ | BWI 2 | 56.2 | 34.8 | 1956 | 15.3 | 860 |
20.1 | 1311 | BC 1 | 50.7 | 23.8 | 1207 | 14.8 | 750 | |
BC 2 | 48.4 | 27.8 | 1346 | 13.2 | 639 | |||
Cl− | Cl− | Blank 1 | 51.8 | 34.7 | 1797 | 20.8 | 1077 | |
33.2 | 1846 | Blank 2 | 52.0 | 34.6 | 1799 | 18.4 | 957 | |
BWI 1 | 46.1 | 35.6 | 1641 | 22.9 | 1056 | |||
55.6 | Na+ | Na+ | BWI 2 | 49.7 | 35.9 | 1784 | 21.1 | 1049 |
22.7 | 1262 | BC 1 | 43.9 | 24.0 | 1054 | 17.7 | 777 | |
BC 2 | 46.0 | 29.7 | 1366 | 17.7 | 814 |
Inflow (L) | Inflow Concentration (mg/L) | Inflow Mass (mg) | Column | Outflow (L) | OUT_ Cl− Concentration (mg/L) | OUT_ Cl− Mass (mg) | OUT_ Na+ Concentration (mg/L) | OUT_ Na+ Mass (mg) |
---|---|---|---|---|---|---|---|---|
Cl− | Cl− | Blank 1 | 13.0 | 45.2 | 588 | 24.2 | 315 | |
149.5 | 2482 | Blank 2 | 13.9 | 44.6 | 620 | 24.0 | 334 | |
BWI 1 | 9.1 | 45.2 | 411 | 29.4 | 268 | |||
16.6 | Na+ | Na+ | BWI 2 | 9.4 | 40.5 | 381 | 22.8 | 214 |
76.2 | 1265 | BC 1 | 3.0 | 36.9 | 111 | 24.6 | 74 | |
BC 2 | 0.1 | 75.1 | 8 | 28.6 | 3 | |||
Cl− | Cl− | Blank 1 | 10.3 | 72.4 | 746 | 29.1 | 300 | |
183.5 | 2239 | Blank 2 | 10.5 | 69.7 | 732 | 27.3 | 287 | |
BWI 1 | 8.2 | 65.7 | 539 | 30.0 | 246 | |||
12.2 | Na+ | Na+ | BWI 2 | 9.8 | 56.0 | 549 | 25.1 | 246 |
93.2 | 1137 | BC 1 | 1.5 | 60.9 | 91 | 24.3 | 36 | |
BC 2 | 4.1 | 65.9 | 270 | 29.4 | 121 | |||
Cl− | Cl− | Blank 1 | 37.2 | 112.9 | 4200 | 37.7 | 1402 | |
167.9 | 7656 | Blank 2 | 37.6 | 116.7 | 4388 | 38.0 | 1429 | |
BWI 1 | 23.0 | 111.1 | 2555 | 37.6 | 865 | |||
45.6 | Na+ | Na+ | BWI 2 | 27.2 | 115.7 | 3147 | 37.1 | 1009 |
84.2 | 3840 | BC 1 | 6.8 | 137.4 | 934 | 47.7 | 324 | |
BC 2 | 8.2 | 163.8 | 1343 | 63.1 | 517 | |||
Cl− | Cl− | Blank 1 | 57.5 | 133.7 | 7688 | 36.8 | 2116 | |
133.9 | 8730 | Blank 2 | 57.6 | 133.4 | 7684 | 38.8 | 2235 | |
BWI 1 | 41.8 | 141.4 | 5911 | 39.7 | 1659 | |||
65.2 | Na+ | Na+ | BWI 2 | 41.4 | 139.7 | 5784 | 40.4 | 1673 |
49.6 | 3234 | BC 1 | 19.0 | 158.1 | 3004 | 60.7 | 1153 | |
BC 2 | 22.0 | 164.9 | 3628 | 53.7 | 1181 | |||
Cl− | Cl− | Blank 1 | 47.1 | 108.5 | 5110 | 43.9 | 2068 | |
135.4 | 7528 | Blank 2 | 47.8 | 120.8 | 5774 | 47.3 | 2261 | |
BWI 1 | 44.7 | 117.3 | 5243 | 51.8 | 2315 | |||
55.6 | Na+ | Na+ | BWI 2 | 43.6 | 116.2 | 5066 | 45.7 | 1993 |
53.3 | 2963 | BC 1 | 20.1 | 192.0 | 3859 | 78.6 | 1580 | |
BC 2 | 18.3 | 178.3 | 3263 | 76.5 | 1400 |
Inflow (L) | Inflow Concentration (mg/L) | Inflow Mass (mg) | Column | Outflow (L) | OUT_ Cl− Concentration (mg/L) | OUT_ Cl− Mass (mg) | OUT_ Na+ Concentration (mg/L) | OUT_ Na+ Mass (mg) |
---|---|---|---|---|---|---|---|---|
Cl− | Cl− | Blank 1 | 15.1 | 229.1 | 3459 | 53.4 | 806 | |
1545.8 | 25,660 | Blank 2 | 15.6 | 260.8 | 4068 | 60.1 | 938 | |
BWI 1 | 11.4 | 141.8 | 1617 | 40.4 | 461 | |||
16.6 | Na+ | Na+ | BWI 2 | 13.9 | 171.7 | 2387 | 128.0 | 1779 |
689.7 | 11,449 | BC 1 | 9.0 | 256.8 | 2311 | 75.1 | 676 | |
BC 2 | 9.5 | 296.1 | 2813 | 83.4 | 792 | |||
Cl− | Cl− | Blank 1 | 11.4 | 516.3 | 5886 | 112.3 | 1280 | |
1863.6 | 22,736 | Blank 2 | 10.7 | 571.5 | 6115 | 139.9 | 1497 | |
BWI 1 | 10.6 | 288.3 | 3056 | 59.3 | 629 | |||
12.2 | Na+ | Na+ | BWI 2 | 10.6 | 346.7 | 3675 | 72.3 | 766 |
697.7 | 8512 | BC 1 | 5.8 | 494.4 | 2868 | 118.3 | 686 | |
BC 2 | 7.4 | 579.3 | 4287 | 145.0 | 1073 | |||
Cl− | Cl− | Blank 1 | 40.1 | 1458.0 | 58,466 | 362.3 | 14,528 | |
1698.6 | 77,456 | Blank 2 | 40.5 | 1440.8 | 58,352 | 358.4 | 14,515 | |
BWI 1 | 36.9 | 1389.1 | 51,258 | 292.9 | 10,808 | |||
45.6 | Na+ | Na+ | BWI 2 | 38.1 | 1446.1 | 55,096 | 334.2 | 12,733 |
627.0 | 28,591 | BC 1 | 35.3 | 1682.3 | 59,385 | 410.8 | 14,501 | |
BC 2 | 31.1 | 1780.9 | 55,386 | 416.5 | 12,953 | |||
Cl− | Cl− | Blank 1 | 53.8 | 1939.2 | 104,329 | 704.5 | 37,902 | |
1906.5 | 124,304 | Blank 2 | 54.2 | 1632.5 | 88,482 | 508.9 | 27,582 | |
BWI 1 | 52.5 | 1917.3 | 100,658 | 615.5 | 32,314 | |||
65.2 | Na+ | Na+ | BWI 2 | 52.1 | 1803.0 | 93,936 | 633.9 | 33,026 |
668.8 | 43,606 | BC 1 | 42.7 | 2314.6 | 98,833 | 682.0 | 29,121 | |
BC 2 | 43.3 | 2317.2 | 100,335 | 666.7 | 28,868 | |||
Cl− | Cl− | Blank 1 | 50.9 | 1836.4 | 93,473 | 562.5 | 28,631 | |
1744.8 | 97,011 | Blank 2 | 53.0 | 1763.1 | 93,444 | 519.9 | 27,555 | |
BWI 1 | 51.2 | 1763.9 | 90,312 | 531.4 | 27,208 | |||
55.6 | Na+ | Na+ | BWI 2 | 50.1 | 1838.4 | 92,104 | 560.7 | 28,091 |
561.8 | 31,236 | BC 1 | 42.9 | 1876.9 | 80,519 | 568.5 | 24,389 | |
BC 2 | 42.1 | 1855.2 | 78,104 | 570.3 | 24,010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Burgis, C.R.; Hayes, G.M.; Henderson, D.A.; Smith, J.A. Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation. Land 2022, 11, 907. https://doi.org/10.3390/land11060907
Zhang W, Burgis CR, Hayes GM, Henderson DA, Smith JA. Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation. Land. 2022; 11(6):907. https://doi.org/10.3390/land11060907
Chicago/Turabian StyleZhang, Wuhuan, Charles R. Burgis, Gail M. Hayes, Derek A. Henderson, and James A. Smith. 2022. "Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation" Land 11, no. 6: 907. https://doi.org/10.3390/land11060907
APA StyleZhang, W., Burgis, C. R., Hayes, G. M., Henderson, D. A., & Smith, J. A. (2022). Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation. Land, 11(6), 907. https://doi.org/10.3390/land11060907