Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application
1. Introduction to the Special Issue—Arable Land Quality: Observation, Estimation, Optimization, and Application
2. Challenges in Studying Arable Land Quality: From Science to Policy
3. Major Topics in This Special Issue
- Theories and methods for arable land quality evaluation and regional practices;
- Observation and simulation of arable land quality indicators;
- Spatiotemporal variation in regional arable land quality and its main factors;
- Arable land quality, soil functions and ecosystem health;
- Arable land quality, ecosystem services and agricultural intensification;
- Landscape optimization considering arable land quality;
- Applications of arable land quality in land use and restoration;
- Paths for protecting arable land quality.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization (FAO). The State of Food Insecurity in the World; FAO Soil Bulletin: Rome, Italy, 2012. [Google Scholar]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P. A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Valujeva, K.; O’Sullivan, L.; Gutzler, C.; Fealy, R.; Schulte, R.P.O. The challenge of managing soil functions at multiple scales: An optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy 2016, 58, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Song, C.; Cheng, F.; Zhang, L.; Cheng, C.; Zhang, Z.; Yang, J.; Zhu, D. Cultivated land health-productivity comprehensive evaluation and its pilot evaluation in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 66–78. (In Chinese) [Google Scholar]
- Parr, J.; Papendick, R.; Hornick, S.; Meyer, R. Soil quality: Attributes and relationships to alternative and sustainable agriculture. Am. J. Altern. Agric. 1992, 7, 5–11. [Google Scholar] [CrossRef]
- Andrews, S.; Karlen, D.; Cambardella, C. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Drobnik, T.; Greiner, L.; Keller, A.; Gret-Regamey, A. Soil quality indicators—From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis—Humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pu, L.; Zhou, F. Preliminary Study on Concept and Measurement of Land Quality. J. Nanjing Univ. (Nat. Sci.) 2003, 40, 378–388. (In Chinese) [Google Scholar]
- Chen, Y.; Wang, J.; Xiao, B.; Fang, L.; Yang, R. Trends in the change of cultivated land quality of China. Chin. J. Agric. Resour. Reg. Plan. 2011, 32, 1–5. (In Chinese) [Google Scholar]
- Shen, R.; Chen, M.; Kong, X.; Li, Y.; Tong, Y.; Wang, J.; Li, T.; Lu, M. Conception and evaluation of quality of arable land strategies for its management. ACTA Pedol. Sin. 2012, 49, 1210–1217. [Google Scholar]
- Du, G.; Liu, Y.; Yu, F.; Liu, M.; Zheng, H. Evolution of concepts of cultivated land quality and recognition. Trans. Chin. Soc. Agric. Eng. 2016, 32, 243–249. [Google Scholar]
- Kong, X.B. China must protect high-quality arable land. Nature 2014, 506, 7486. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ. 2022, 326, 107757. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Shen, S.; Gao, P.; Cheng, C.; Cheng, F.; Wan, C.; Zhu, D. Spatial pattern of arable land-use intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sust. 2013, 5, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial differentiation characteristics and driving factors of agricultural ecoefficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2021, 288, 125466. [Google Scholar] [CrossRef]
- Gao, P.; Wang, H.; Cushman, S.A.; Cheng, C.; Song, C.; Ye, S. Sustainable land-use optimization using NSGA-II: Theoretical and experimental comparisons of improved algorithms. Landsc. Ecol. 2021, 36, 1877–1892. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. (In Chinese) [Google Scholar]
- Klingebiel, A.; Montgomery, P. Land Capability Classification; US Department of Agriculture Handbook: Washington, DC, USA, 1961; p. 210. [Google Scholar]
- Food and Agriculture Organization (FAO). A Framework for Land Evaluation; FAO Soil Bulletin: Rome, Italy, 1976. [Google Scholar]
- Food and Agriculture Organization (FAO). Guidelines: Land Evaluation for Irrigated Agriculture; FAO Soil Bulletin: Rome, Italy, 1985. [Google Scholar]
- Pease, J.R.; Coughlin, R.E. Land Evaluation and Site Assessment: A Guidebook for Rating Agricultural Lands; Soil and Water Conservation Society: Ankeny, IA, USA, 2000. [Google Scholar]
- Smit, B.; Brklacich, M.; Dumanski, J.; Macdonald, K.B.; Miller, M.H. Integral land evaluation and its application to policy. Can. J. Soil Sci. 1984, 64, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). FESLM: An International Framework for Evaluating Sustainable Land Management; World Soil Resources Report No. 73; FAO: Rome, Italy, 1993. [Google Scholar]
- Huber, S.; Prokop, G.; Arrouays, D.; Banko, G.; Bispo, A.; Jones, R.J.A.; Kibblewhite, M.; Lexer, W.; Moller, A.; Rickson, R.J.; et al. Environmental Assessment of Soil for Monitoring Volume I: Indicators & Criteria; Office for Official Publications of the European Communities: Luxembourg, 2008; pp. 45–48. [Google Scholar]
- Cheng, F.; Wang, H.; Yun, W. Study on Investigation and Assessment of Cultivated Land Quality Grade in China. China Land Sci. 2014, 28, 75–82. (In Chinese) [Google Scholar]
- Wan, C.; Kuzyakov, Y.; Cheng, C.; Ye, S.; Gao, B.; Gao, P.; Ren, S.; Yun, W. Soil sampling design for arable land quality observation by using SPCOSA-CLHS hybrid approach. Land Degrad. Dev. 2021, 32, 4889–4906. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, D.; Yao, X.; Zhang, N.; Fang, S.; Li, L. Development of a Highly Flexible Mobile GIS-Based System for Collecting Arable Land Quality Data. IEEE J.-Stars. 2014, 7, 4432–4441. [Google Scholar] [CrossRef]
- Li, Z.; Lun, F.; Liu, M.; Xiao, X.; Wang, C.; Wang, L.; Xu, Y.; Qi, W.; Sun, D. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manag. 2021, 277, 111402. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Ye, S.; Liu, D.; Yao, X.; Tang, H.; Xiong, Q.; Zhuo, W.; Du, Z.; Huang, J.; Su, W.; Shen, S.; et al. RDCRMG: A Raster Dataset Clean & Reconstitution Multi-Grid Architecture for Remote Sensing Monitoring of Vegetation Dryness. Remote Sens. 2018, 10, 1376. [Google Scholar]
- Yao, X.C.; Mokbel, M.F.; Alarabi, L.; Eldawy, A.; Yang, J.; Yun, W.; Li, L.; Ye, S.; Zhu, D. Spatial coding-based approach for partitioning big spatial data in Hadoop. Comput. Geosci. 2017, 106, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Mokbel, M.; Ye, S.; Li, G.; Alarabi, L.; Eldawy, A.; Zhao, Z.; Zhao, L.; Zhu, D. LandQv2: A MapReduce-Based System for Processing Arable Land Quality Big Data. Int. J. Geo-Inf. 2018, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Yan, T.; Yue, Y.; Lin, W.; Li, L.; Yao, X.; Mu, Q.; Li, Y.; Zhu, D. Developing a reversible rapid coordinate transformation model for the cylindrical projection. Comput. Geosci. 2016, 89, 44–56. [Google Scholar] [CrossRef]
- Wang, K.; Ye, S.; Gao, P.; Yao, X.; Zhao, Z. Optimization of Numerical Methods for Transforming UTM Plane Coordinates to Lambert Plane Coordinates. Remote Sens. 2022, 14, 2056. [Google Scholar] [CrossRef]
- Kong, X.; Liu, L.; Qin, J. Arable Land Evaluation Based on the Household Land Use Behavior in Daxing District of Beijing. Acta Geogr. Sin. 2008, 8, 856–868. (In Chinese) [Google Scholar]
- Wen, L.; Kong, X.; Zhang, B.; Sun, X.; Xin, Y.; Zhang, Q. Construction and application of arable land quality evaluation system based on sustainable development demand. Trans. Chin. Soc. Agric. Eng. 2019, 35, 234–242. (In Chinese) [Google Scholar]
- Ma, R.M.; Ma, R.H.; Han, D.M.; Yun, W.J. Construction of cultivated land quality evaluation system in provincial level based on multilevel indicators. Trans. CSAE 2018, 34, 249–257. (In Chinese) [Google Scholar]
- Song, C.; Cheng, C.; Shi, P. Geography complexity: New connotations of geography in the new era. Acta Geogr. Sin. 2018, 73, 1204–1213. (In Chinese) [Google Scholar]
- Ye, S.; Song, C.; Gao, P.; Liu, C.; Cheng, C. Visualizing clustering characteristics of multidimensional arable land quality indexes at the county level in mainland China. Environ. Plan. A: Econ. Space 2022, 54, 222–225. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Song, C.; Kuzyakov, Y.; Cheng, F.; Kong, X.; Feng, Z.; Gao, P. Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application. Land 2022, 11, 947. https://doi.org/10.3390/land11060947
Ye S, Song C, Kuzyakov Y, Cheng F, Kong X, Feng Z, Gao P. Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application. Land. 2022; 11(6):947. https://doi.org/10.3390/land11060947
Chicago/Turabian StyleYe, Sijing, Changqing Song, Yakov Kuzyakov, Feng Cheng, Xiangbin Kong, Zhe Feng, and Peichao Gao. 2022. "Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application" Land 11, no. 6: 947. https://doi.org/10.3390/land11060947
APA StyleYe, S., Song, C., Kuzyakov, Y., Cheng, F., Kong, X., Feng, Z., & Gao, P. (2022). Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application. Land, 11(6), 947. https://doi.org/10.3390/land11060947