Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.3. Spatial Monitoring Method of Land Change
2.4. Selection and Analysis of Ecological Landscape Index
2.5. Contribution Rate of the Different Land Use Transformations on Total Grain Production
3. Results
3.1. Analysis of Land Use in the Quantitative and Spatial Changes in the Southern Sanjiang Plain of Northeast China from 1990 to 2020
3.2. Analysis of Continuous Cropland Structure Change and Land Conversion from 1990 to 2020
3.2.1. Analysis of Spatiotemporal Characteristics in Cropland Structure from 1990 to 2020
3.2.2. Analysis of Land Migration Tracking in Cropland Structure from 1990 to 2020
3.3. Analysis of Landscape Evolution Process at Different Scales from 1990 to 2020
3.4. Analysis of Total Grain Production and Its Impacts from the Evolution of Rapid Cropland Structure from 1990 to 2020
3.4.1. Crops’ Total Grain Production Changes and Their Evolutionary Processes in the Study Area
3.4.2. The Effects of Different Cropland Evolution on Total Grain Production from 1990 to 2020
4. Discussion
4.1. A Comparative Analysis of the New Finding of Land Change in 2020 in the Study Area and Its Previous Period in China
4.2. A Positive Food Security Signal in the Change in Cropland Structure in Northeast China
4.3. Grain of Our Study Area Is Not Only Served Locally, but Also Exported to Other Parts of the World
5. Conclusions
- (1)
- Coverage area of cropland continuously increased from 25,885.16 km2 to 29,611.58 km2, 30,391.87 km2 and 31,144.46 km2 in 1990, 2000, 2010 and 2020. Correspondingly, the land expansion rate constantly increased from 46.80 to 53.54%, 54.95 and 56.31%, showing that the proportion of cropland in the study area has exceeded half of the total area. Among the cropland structure, a sustained, rapid and intense paddy field expansion was monitored, with areas of 5513.41 km2 in 2000 to 12,311.63 km2 in 2020; in contrast, the area of upland crops decreased, with both values of 7.18 vs. 92.82% in 1900 to 39.53 vs. 60.47% in 2020.
- (2)
- Richness of landscape presented gradually complex characteristics, with SHDI from 0.258 to 0.671 during 1990–2020, leading to the fragmentation of PD with its value increasing from 0.158 in 1990 to 0.718 in 2020. This change weakened the connectivity among different land types and the dominance, and the degree of edge combination of patches continues to complicate. Landscape in this region has undergone complex changes with strong regularity.
- (3)
- Total grain production displayed a continuous increase, with the total production from 523.79 × 104 t to 1839.12 × 104 t, increasing by 3.51 times from 1990 to 2020. In addition, the crops experienced complex structural changes among the rice paddy, corn and soybean. For the impact of cropland on total grain production, the contribution rate of unchanged upland crops to grain increments reached 46.29%, considering that upland crops were the main cropland type in the whole study period, and the main conversion of internal cropland (i.e., the paddy fields converted from upland crops) contributed 12.17% from 1990 to 2020.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China. J. Sci. Food Agric. 2015, 95, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Aubry, C.; Kebir, L. Shortening food supply chains: A means for maintaining agriculture close to urban areas? The case of the French metropolitan area of Paris. Food Policy 2013, 41, 85–93. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Mohd Hanafiah, M. Sustaining life on earth system through clean air, pure water, and fertile soil. Environ. Sci. Pollut. Res. 2019, 26, 13679–13680. [Google Scholar] [CrossRef] [Green Version]
- Vasco, C.; Torres, B.; Jácome, E.; Torres, A.; Eche, D.; Velasco, C. Use of chemical fertilizers and pesticides in frontier areas: A case study in the Northern Ecuadorian Amazon. Land Use Policy 2021, 107, 105490. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Aubertot, J.-N.; Begg, G.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Hansen, J.G.; Hovmøller, M.S.; Jensen, J.E.; Jørgensen, L.N. Networking of integrated pest management: A powerful approach to address common challenges in agriculture. Crop Protect. 2016, 89, 139–151. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Olsen, V.M.; Fensholt, R.; Olofsson, P.; Bonifacio, R.; Butsic, V.; Druce, D.; Ray, D.; Prishchepov, A.V. The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing. Nat. Food 2021, 2, 990–996. [Google Scholar] [CrossRef]
- Xu, X.; Tang, Q. Spatiotemporal variations in damages to cropland from agrometeorological disasters in mainland China during 1978–2018. Sci. Total Environ. 2021, 785, 147247. [Google Scholar] [CrossRef] [PubMed]
- Mechiche-Alami, A.; Abdi, A.M. Agricultural productivity in relation to climate and cropland management in West Africa. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Hernandez-Ramirez, G.; Hatfield, J.L.; Parkin, T.B.; Sauer, T.J.; Prueger, J.H. Carbon dioxide fluxes in corn–soybean rotation in the midwestern US: Inter-and intra-annual variations, and biophysical controls. Agric. For. Meteorol. 2011, 151, 1831–1842. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Pu, C.; Ma, S.-T.; Liu, S.-L.; Xue, J.-F.; Wang, X.; Wang, Y.-Q.; Li, S.-S.; Lal, R.; Chen, F. Management-induced greenhouse gases emission mitigation in global rice production. Sci. Total Environ. 2019, 649, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Kumar, A.; Singh, S.; Malyan, S.K.; Baram, S.; Sharma, J.; Singh, R.; Pugazhendhi, A. Industrial wastes: Fly ash, steel slag and phosphogypsum-potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere 2020, 241, 124824. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.; Verardo, D.J.; Dokken, D.J. Land Use, land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rufino, I.A.A.; de Oliveira Galvão, C.; de Brito Leite Cunha, J.E. Land-Use Land Cover Change and Forestry (LULCCF). Clim. Action 2020, 9, 619–629. [Google Scholar]
- Yao, Z.; Zhang, L.; Tang, S.; Li, X.; Hao, T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. J. Geogr. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Wu, W.; Xiang, M.; Chen, D.; Long, Y.; Song, Q.; Liu, Y.; Lu, M.; Yu, Q. Spatio-temporal changes in global cultivated land over 2000–2010. Sci. Agric. Sin. 2018, 51, 1091–1105. [Google Scholar]
- Minghong, T.; Yuanyuan, L. Spatial and temporal variation of cropland at the global level from 1992 to 2015. J. Resour. Ecol. 2019, 10, 235–245. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, W.; Xu, X. Changes of population, built-up land, and cropland exposure to natural hazards in China from 1995 to 2015. Int. J. Disaster Risk Sci. 2019, 10, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; Luo, G.; Du, G.; DeMaeyer, P.; Yin, Z. A large-scale shift of cropland structure profoundly affects grain production in the cold region of China. J. Clean. Prod. 2021, 307, 127300. [Google Scholar] [CrossRef]
- Jin, X.; Shao, Y.; Zhang, Z.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y. The evaluation of land consolidation policy in improving agricultural productivity in China. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Yao, S.; Colman, D.R. Chinese agricultural policies and agricultural reforms. Oxf. Agrar. Stud. 1990, 18, 23–34. [Google Scholar] [CrossRef]
- Martin, W. Implications of reform and WTO accession for China’agricultural policies. Econ. Trans. 2001, 9, 717–742. [Google Scholar] [CrossRef]
- Peng, Z.; Wenhu, L.; Jun, S.; Pearson, S.; Hongsheng, Y. Natural coast protection and use in China: Implications of resource protection “Redline” policies. Coast. Manag. 2016, 44, 21–35. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, P.; Zhang, H. Variation character of grain yield per unit area in main grain-producing area of Northeast China. Chin. Geogr. Sci. 2007, 17, 110–116. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Gao, J.; Deng, W. Land use/cover changes, the environment and water resources in Northeast China. Environ. Manag. 2005, 36, 691–701. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Ping, X.; Jia, Q.; Li, R. Ten-year variability and environmental controls of ecosystem water use efficiency in a rainfed maize cropland in Northeast China. Field Crops Res. 2018, 226, 48–55. [Google Scholar] [CrossRef]
- Chen, F.; Fu, B.; Xia, J.; Wu, D.; Wu, S.; Zhang, Y.; Sun, H.; Liu, Y.; Fang, X.; Qin, B. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Sci. China Earth Sci. 2019, 62, 1665–1701. [Google Scholar] [CrossRef]
- Ye, Y.; Fang, X.; Ren, Y.; Zhang, X.; Chen, L. Cropland cover change in Northeast China during the past 300 years. Sci. China Ser. D Earth Sci. 2009, 52, 1172–1182. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhu, Z. Science of Landsat analysis ready data. Remote Sens. 2019, 11, 2166. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Fragstats v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 18 February 2022).
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Kindlmann, P.; Burel, F. Connectivity measures: A review. Landsc. Ecol. 2008, 23, 879–890. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Marks, B.J. Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Technol. Rep. PNW-GTR-351; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; pp. 1–122. [Google Scholar]
- Edwards, A.W.; Cavalli-Sforza, L.L. A method for cluster analysis. Biometrics 1965, 21, 362–375. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Huang, J.; Tu, Z.; Lin, J. Land-use dynamics and landscape pattern change in a coastal gulf region, southeast China. Int. J. Sustain. Dev. World Ecol. 2009, 16, 61–66. [Google Scholar] [CrossRef]
- Bai, Y.; Dai, J.; Huang, W.; Tan, T.; Zhang, Y. Water conservation policy and agricultural economic growth: Evidence of grain to green project in China. Urban Clim. 2021, 40, 100994. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Chong, L.; Liu, H.-J.; Qiang, F.; Guan, H.-X.; Qiang, Y.; Zhang, X.-L.; Kong, F.-C. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments. J. Integr. Agric. 2020, 19, 1885–1896. [Google Scholar]
- Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X.; Zhang, J. Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land 2022, 11, 696. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, L.; Jiang, S.; Zhu, Y. China’s food security challenge: Effects of food habit changes on requirements for arable land and water. J. Clean. Prod. 2019, 229, 739–750. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, X.; Du, H.; Li, Q.; Zhang, Z.; Qiu, M.; Yu, C. A review: Achievements and new obstacles in China’s food security revealed by grain and animal meat production. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; p. 012025. [Google Scholar]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Gong, B. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. J. Dev. Econ. 2018, 132, 18–31. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Xie, Y.; Yang, C. Analysis on the spatio-temporal evolution and influencing factors of China’s grain production. Environ. Sci. Pollut. Res. 2022, 29, 23834–23846. [Google Scholar] [CrossRef]
- Hejazi, M.; Marchant, M.A. China’s evolving agricultural support policies. Choices 2017, 32, 1–7. [Google Scholar]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Clustering analysis of soybean production to understand its spatiotemporal dynamics in the North China Plain. Sustainability 2020, 12, 6178. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Bai, W.; Liu, B. Spatiotemporal assessment of drought related to soybean production and sensitivity analysis in Northeast China. J. Appl. Meteorol. Climatol. 2017, 56, 937–952. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, P.; Wu, W.; You, L. Spatiotemporal changes of cropping structure in China during 1980–2011. J. Geogr. Sci. 2018, 28, 1659–1671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xiao, X.; Biradar, C.M.; Dong, J.; Qin, Y.; Menarguez, M.A.; Zhou, Y.; Zhang, Y.; Jin, C.; Wang, J. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci. Total Environ. 2017, 579, 82–92. [Google Scholar] [CrossRef]
- Fraser, E.D. The challenge of feeding a diverse and growing population. Physiol. Behav. 2020, 221, 112908. [Google Scholar] [CrossRef]
- Van den Broeck, G.; Maertens, M. Horticultural exports and food security in developing countries. Glob. Food Secur. 2016, 10, 11–20. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Name | Source | Purpose |
---|---|---|---|
Basic geographic data | Land use/cover data | http://www.igsnrr.ac.cn/ (accessed on 21 June 2022). | Monitoring land use changes |
Distribution map of water bodies | https://www.resdc.cn (accessed on 21 June 2022). | Assisting paddy analysis | |
Distribution map of residental area | https://www.resdc.cn (accessed on 21 June 2022). | Mapping of the study area | |
Administrative division | https://www.resdc.cn (accessed on 21 June 2022). | Analysis of land differences | |
Remotely sensed data | Digital elevation model | http://www.gscloud.cn/ (accessed on 21 June 2022). | Mapping of the study area |
Landsat Thematic Mapper | https://glovis.usgs.gov (accessed on 21 June 2022). | Land use interpretation | |
Landsat Enhanced Thematic Mapper | https://glovis.usgs.gov (accessed on 21 June 2022). | Land use interpretation | |
Landsat Operational Land Imager | https://glovis.usgs.gov (accessed on 21 June 2022). | Land use interpretation | |
Google Images | http://www.91weitu.com (accessed on 21 June 2022). | Accuracy verification | |
Faofen series satellites | http://www.gscloud.cn/ (accessed on 21 June 2022). | Accuracy verification | |
Grain statistics data | Crop type, yield per unit area, total production | http://tjj.hlj.gov.cn/tjsj/tjnj/ (accessed on 21 June 2022). | Grain analysis |
Full Names | Abbreviations | Equations |
---|---|---|
Patch Density | PD | |
Largest Patch Index | LPI | |
Landscape Shape Index | LSI | |
Connectance Index | CON | |
Shannon’s Diversity Index | SHDI |
1990 | 2000 | 2010 | 2020 | 1990–2000 | 2000–2010 | 2010–2020 | |
---|---|---|---|---|---|---|---|
Cropland | 25,885.16 | 29,611.58 | 30,391.87 | 31,144.46 | 3726.42 | 780.29 | 752.58 |
Forest land | 17,025.98 | 15,711.60 | 15,727.31 | 15,683.38 | −1314.38 | 15.70 | −43.93 |
Grassland | 4000.38 | 2646.55 | 2335.84 | 2102.90 | −1353.82 | −310.71 | −232.94 |
Water | 2789.25 | 2713.83 | 2668.86 | 2600.15 | −75.42 | −44.97 | −68.71 |
Construction land | 1274.97 | 1312.93 | 1343.76 | 1411.19 | 37.96 | 30.83 | 67.43 |
Unused land | 4332.06 | 3311.31 | 2840.17 | 2365.74 | −1020.75 | −471.14 | −474.43 |
Total Area | 55,307.80 | 55,307.80 | 55,307.80 | 55,307.80 | 0.00 | 0.00 | 0.00 |
Forest Land | Grass Land | Water Land | Construction Land | Unused Land | Paddy Fields | Upland Crops | 1990 Total | |
---|---|---|---|---|---|---|---|---|
Forest land | 15,584.10 | 18.92 | 0.41 | 4.00 | 1.61 | 100.74 | 1316.20 | 17,025.98 |
Grassland | 15.73 | 2060.81 | 0.69 | 4.91 | 2.20 | 1164.63 | 751.42 | 4000.38 |
Water land | 0.30 | 0.27 | 2572.28 | 1.49 | 19.08 | 139.63 | 56.20 | 2789.25 |
Construction land | 0.17 | 0.00 | 0.04 | 1266.34 | 0.00 | 6.69 | 1.72 | 1274.97 |
Unused land | 1.56 | 3.19 | 3.20 | 3.43 | 2314.94 | 1615.09 | 390.65 | 4332.06 |
Paddy fields | 0.04 | 0.48 | 7.80 | 0.52 | 1816.03 | 32.67 | 1857.54 | |
Upland crops | 81.47 | 19.24 | 23.53 | 123.22 | 27.38 | 7468.82 | 16,283.97 | 24,027.63 |
2020 Total | 15,683.38 | 2102.90 | 2600.15 | 1411.19 | 2365.74 | 12,311.63 | 18,832.82 | 55,307.80 |
Scales | Land Types | Year | PD | LPI | LSI | CONNECT | SHDI |
---|---|---|---|---|---|---|---|
Landscape | Cropland | 1990 | 0.158 | 39.918 | 82.207 | 0.206 | 0.258 |
2000 | 0.542 | 34.901 | 121.457 | 0.074 | 0.481 | ||
2010 | 0.673 | 33.167 | 125.107 | 0.058 | 0.603 | ||
2020 | 0.718 | 23.261 | 127.942 | 0.043 | 0.671 | ||
Types | Paddy fields | 1990 | 0.083 | 5.882 | 56.951 | 0.064 | |
2000 | 0.211 | 12.036 | 123.673 | 0.069 | |||
2010 | 0.204 | 18.597 | 126.093 | 0.070 | |||
2020 | 0.189 | 19.697 | 132.398 | 0.171 | |||
Upland crops | 1990 | 0.075 | 39.918 | 81.492 | 0.249 | ||
2000 | 0.331 | 34.901 | 123.643 | 0.076 | |||
2010 | 0.469 | 33.167 | 132.428 | 0.056 | |||
2020 | 0.528 | 23.261 | 136.529 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, R. Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China. Land 2022, 11, 1159. https://doi.org/10.3390/land11081159
Pan T, Zhang R. Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China. Land. 2022; 11(8):1159. https://doi.org/10.3390/land11081159
Chicago/Turabian StylePan, Tao, and Ru Zhang. 2022. "Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China" Land 11, no. 8: 1159. https://doi.org/10.3390/land11081159
APA StylePan, T., & Zhang, R. (2022). Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China. Land, 11(8), 1159. https://doi.org/10.3390/land11081159