Land Misallocation and Carbon Emissions: Evidence from China
Abstract
:1. Introduction
2. Influence Mechanism and Theoretical Hypothesis
2.1. Land Resource Misallocation Affects Carbon Emissions by Hindering the Upgrading of the Industrial Structure
2.2. Land Resource Misallocation Affects Carbon Emissions by Inhibiting Green Innovation and Technological Progress
2.3. Land Resource Misallocation Affects Carbon Emissions by Reducing the Effect of Economic Agglomeration
3. Model and Data
3.1. Model Settings
3.2. Variables, Indicators and Data Source
4. Results and Discussion
4.1. Benchmark Regression and Analysis
4.2. Robustness Test
4.2.1. Substitution of Core Explanatory Variables
4.2.2. Analysis after Winsorization and Truncation of Outliers
4.2.3. Endogeneity Test
4.3. Mechanism Test
4.4. Further Analysis
4.4.1. Spatial Spillover Effect Test
4.4.2. Heterogeneity Analysis Based on Different City Levels
4.4.3. Heterogeneity Analysis Based on Different Regions
4.5. Policy Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | National Centers for Environmental Information https://ngdc.noaa.gov/eog/download.html (accessed on 17 June 2022). |
2 | National Centers for Environmental Information https://ngdc.noaa.gov/eog/download.html (2006) (accessed on 17 June 2022). |
3 | Running, S. et al. MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055. NASA EOSDIS Land Processes DAAC https://lpdaac.usgs.gov/products/mod17a3v055/ (2011) (accessed on 17 June 2022). |
4 | All results in this paper are generated using MATLAB (R2017b) and Arc GIS (10.5). |
5 | The transaction land area used to calculate the price of industrial land r is different from the area of industrial land S in Equation (4), where, S is the stock of industrial land, used to measure the marginal output of industrial land, which serves for the same purpose as the capital stock in the product function. while the area of transacted land obtained using crawler is the flow, which is used to measure the actual transaction price of land in each city. |
6 | The factors for converting natural gas, liquefied petroleum gas and electricity into standard coal are1.3300kg standard coal/m3, 1.7143kg standard coal/kg, and 0.1229kg standard coal/kWh, respectively. |
7 | Manufacturing complexity at the city level: , where is the technological complexity of industry m in the year t, which is the simple average of the technological complexity of HS 6-digit level products of the industry m in the year t; is the total industrial output value of the manufacturing industry m of city i in year t. The technological complexity of HS 6-digit level product k in the year t is , where, is the proportion of exports of product k of country n to the country’s total exports in the year t,
refers to the GDP of country in the year t. |
References
- Mi, Z.; Wei, Y.M.; Wang, B.; Meng, J.; Liu, Z.; Shan, Y.; Liu, J.; Guan, D. Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030. J. Clean. Prod. 2017, 142, 2227–2236. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhang, M. The non-linear impact of industrial structure on CO2 emissions in China. Appl. Econ. Lett. 2020, 27, 576–579. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, Y.; Zhang, N.; Wang, D.; Shan, Y.; Ren, J. CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Resour. Conserv. Recycl. 2021, 174, 105760. [Google Scholar] [CrossRef]
- Okushima, S.; Tamura, M. What causes the change in energy demand in the economy?: The role of technological change. Energy Econ. 2010, 32, S41–S46. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Sun, T.; Feng, Q. Capital allocation efficiency, technological innovation and vehicle carbon emissions: Evidence from a panel threshold model of Chinese new energy vehicles enterprises. Sci. Total Environ. 2021, 784, 147104. [Google Scholar] [CrossRef]
- Lin, B.; Li, J. Transformation of China’s energy structure under the constraints of environmental governance: An analysis based on coal and carbon dioxide peaks. China Soc. Sci. 2015, 9, 84–107. [Google Scholar]
- Andersson, F.N.; Karpestam, P. CO2 emissions and economic activity: Short-and long-run economic determinants of scale, energy intensity and carbon intensity. Energy Policy 2013, 61, 1285–1294. [Google Scholar] [CrossRef]
- Yin, J.; Ding, Q.; Fan, X. Direct and indirect contributions of energy consumption structure to carbon emission intensity. Int. J. Energy Sect. Manag. 2021, 15, 665–677. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt—empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. 2021, 28, 66914–66929. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Hachem, M.; Saleh, N.; Bensefa-Colas, L.; Momas, I. Determinants of ultrafine particles, black carbon, nitrogen dioxide, and carbon monoxide concentrations inside vehicles in the Paris area: PUF-TAXI study. Indoor Air 2021, 31, 848–859. [Google Scholar] [CrossRef]
- Xie, R.; Wei, D.; Han, F.; Lu, Y.; Fang, J.; Liu, Y.; Wang, J. The effect of traffic density on smog pollution: Evidence from Chinese cities. J. Technol. Forecast. Soc. Chang. 2019, 144, 421–427. [Google Scholar] [CrossRef]
- Zhang, Z.; Hewings, G.J. The effects of direct trade within China on regional and national CO2 emissions. Energy Econ. 2014, 46, 161–175. [Google Scholar] [CrossRef]
- Dou, Y.; Zhao, J.; Malik, M.N.; Dong, K. Assessing the impact of trade openness on CO2 emissions: Evidence from China-Japan-ROK FTA countries. J. Environ. Manag. 2021, 296, 113241. [Google Scholar] [CrossRef]
- Song, W.; Mao, H.; Han, X. The two-sided effects of foreign direct investment on carbon emissions performance in China. Sci. Total Environ. 2021, 791, 148331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Structural decomposition analysis of sources of decarbonizing economic development in China; 1992–2006. Ecol. Econ. 2009, 68, 2399–2405. [Google Scholar] [CrossRef]
- Qu, S.; Liang, S.; Xu, M. CO2 emissions embodied in interprovincial electricity transmissions in China. Environ. Sci. Technol. 2017, 51, 10893–10902. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Tang, D. Environmental regulations, Chinese-style fiscal decentralization, and carbon emissions: From the perspective of moderating effect. Stoch. Environ. Res. Risk Assess. 2021, 35, 1985–1998. [Google Scholar] [CrossRef]
- Du, J.; Sun, Y. The nonlinear impact of fiscal decentralization on carbon emissions: From the perspective of biased technological progress. Environ. Sci. Pollut. Res. 2021, 28, 29890–29899. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Ahmad, M.; Tan, Z.; Adebayo, T.S.; Li, R.Y.M.; Kirikkaleli, D. The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability. Energy 2021, 234, 121243. [Google Scholar] [CrossRef]
- Safi, A.; Chen, Y.; Wahab, S.; Zheng, L.; Rjoub, H. Does environmental taxes achieve the carbon neutrality target of G7 economies? Evaluating the importance of environmental R&D. J. Environ. Manag. 2021, 293, 112908. [Google Scholar] [CrossRef]
- Tan, H. The Spatial Agglomeration of Producer Services and Manufacturing Industry: A Study Based on Trade Costs. World Econ. 2015, 38, 171–192. [Google Scholar]
- Atkinson, S.E.; Cornwell, C. Parametric estimation of technical and allocative inefficiency with panel data. Int. Econ. Rev. 1994, 35, 231–243. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, X. Path Analysis of the Impact of Land Resource Allocation System and Supply Mode on Real Estate Market. China Soft Sci. 2011, 5, 29–36. [Google Scholar] [CrossRef]
- McMillan, J.; Whalley, J.; Zhu, L. The impact of China’s economic reforms on agricultural productivity growth. J. Political Econ. 1989, 97, 781–807. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H. Is the mismatch of land resources hindering the upgrading of industrial structure? Empirical Evidence from 35 Large and Medium Cities in China. Financ. Econ. Res. 2017, 9, 110–121. [Google Scholar] [CrossRef]
- Restuccia, D.; Rogerson, R. Policy distortions and aggregate productivity with heterogeneous establishments. Rev. Econ. Dyn. 2008, 11, 707–720. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government intervention and land misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Tan, H.; Zheng, J. The mystery of coexistence of rapid economic growth and lag of service industry in China–based on the perspective of sector TFP. China Ind. Econ. 2012, 9, 5–17. [Google Scholar] [CrossRef]
- Wang, D.; Ren, C.; Zhou, T. Understanding the impact of land finance on industrial structure change in China: Insights from a spatial econometric analysis. Land Use Policy 2021, 103, 105323. [Google Scholar] [CrossRef]
- Chen, B.; Yao, Y. The cursed virtue: Government infrastructural investment and household consumption in Chinese provinces. Oxf. Bull. Econ. Stat. 2011, 73, 856–877. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Chen, W. Land misallocation and urban air quality in China. Environ. Sci. Pollut. Res. 2021, 28, 58387–58404. [Google Scholar] [CrossRef] [PubMed]
- Ulph, A. Harmonization and optimal environmental policy in a federal system with asymmetric information. J. Environ. Econ. Manag. 2000, 39, 224–241. [Google Scholar] [CrossRef]
- Fredriksson, P.G.; List, J.A.; Millimet, D.L. Bureaucratic corruption, environmental policy and inbound US FDI: Theory and evidence. J. Public Econ. 2003, 87, 1407–1430. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.E.; Hunter, W.J. The impact of economic opportunity, amenities and fiscal factors on age-specific migration rates. J. Reg. Sci. 1992, 32, 349–365. [Google Scholar] [CrossRef]
- Dustmann, C.; Okatenko, A. Out-migration, wealth constraints, and the quality of local amenities. J. Dev. Econ. 2014, 110, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.H.; Slaughter, M.J. The Rybczynski Theorem, Factor-Price Equalization, and Immigration: Evidence from US States; NBER Working Paper No. 7074; National Bureau of Economic Research: Cambridge, England, 1999; Available online: https://www.nber.org/papers/w7074 (accessed on 17 June 2022).
- Du, J.; Peiser, R.B. Land supply, pricing and local governments’ land hoarding in China. Reg. Sci. Urban. Econ. 2014, 48, 180–189. [Google Scholar] [CrossRef]
- Cai, F.; Wang, M.; Qu, Y. China’s Industrial Reconfiguration and Labor Mobility Trends. China Ind. Econ. 2009, 8, 5–16. [Google Scholar] [CrossRef]
- Qu, F.; Tan, R. Sustainable Governance of Non-Agricultural Land in China, 1st ed.; Science Press: Beijing, China, 2010; pp. 4–13. [Google Scholar]
- Duan, W.; Liu, D.; Pi, Y. The Formation Mechanism of Modern Service Industry Agglomeration: Theoretical and Empirical Analysis from a Spatial Perspective. World Econ. 2016, 3, 144–165. [Google Scholar]
- Liu, Y.; Xia, J.; Li, Y. Producer Service Industry Agglomeration and Manufacturing Upgrade. China Ind. Econ. 2017, 7, 24–42. [Google Scholar] [CrossRef]
- Gaulier, G.; Lemoine, F.; Ünal-Kesenci, D. China’s integration in East Asia: Production sharing, FDI & high-tech trade. Econ. Chang. Restruct. 2007, 40, 27–63. [Google Scholar] [CrossRef]
- Ke, S.; He, M.; Yuan, C. Synergy and co-agglomeration of producer services and manufacturing: A panel data analysis of Chinese cities. Reg. Stud. 2014, 48, 1829–1841. [Google Scholar] [CrossRef]
- Preissl, B. The German Service Gap Or: Re-Organising The Manufacturing—Services Puzzle. Metroeconomica 2007, 58, 457–478. [Google Scholar] [CrossRef]
- Francois, J.; Hoekman, B. Services trade and policy. J. Econ. Lit. 2010, 48, 642–692. [Google Scholar] [CrossRef] [Green Version]
- Goe, W.R. Factors associated with the development of nonmetropolitan growth nodes in producer services industries, 1980–1990. Rural. Sociol. 2002, 67, 416–441. [Google Scholar] [CrossRef]
- Chen, T.; Kung, J.S. Do land revenue windfalls create a political resource curse? Evidence from China. J. Dev. Econ. 2016, 123, 86–106. [Google Scholar] [CrossRef]
- Zhong, T.; Zhang, X.; Huang, X.; Liu, F. Blessing or curse? Impact of land finance on rural public infrastructure development. Land Use Policy 2019, 85, 130–141. [Google Scholar] [CrossRef]
- Huang, D.; Chan, R.C. On ‘Land Finance’ in urban China: Theory and practice. Habitat Int. 2018, 75, 96–104. [Google Scholar] [CrossRef]
- Braun, E.; Wield, D. Regulation as a means for the social control of technology. Technol. Anal. Strateg. Manag. 1994, 6, 259–272. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy technological progress, energy consumption, and CO2 emissions: Empirical evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Holmstrom, B.; Milgrom, P. Multitask principal-agent analyses: Incentive contracts, asset ownership, and job design. J. Law Econ. Organ. 1991, 7, 24–52. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wang, S.; Ahmad, F.; Chandio, A.A.; Ahmad, M.; Xue, D. The nexus between misallocation of land resources and green technological innovation: A novel investigation of Chinese cities. Clean Technol. Environ. Policy 2021, 23, 2101–2115. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Skitmore, M.; Song, Y.; Hui, E.C. Industrial land price and its impact on urban growth: A Chinese case study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, D.; Santaeulalia-Llopis, R. Land Misallocation and Productivity; NBER working paper, No.w23128; National Bureau of Economic Research: Cambridge, England, 2017; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2912101 (accessed on 17 June 2022).
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, selection, and productivity: A quantitative analysis with panel data from china. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Jefferson, G.H.; Huamao, B.; Xiaojing, G.; Xiaoyun, Y. R&D performance in Chinese industry. Econ. Innov. New Technol. 2006, 15, 345–366. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Huang, L.; Wen, H.; Zhao, G.; Zhan, D. Spatial distribution and influential factors of industrial land productivity in China’s rapid urbanization. J. Clean. Prod. 2019, 234, 1287–1295. [Google Scholar] [CrossRef]
- Acemoglu, D.; Moscona, J.; Robinson, J.A. State capacity and American technology: Evidence from the nineteenth century. Am. Econ. Rev. 2016, 106, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A. Principles of Economics: An Introductory Volume, 8th ed.; Palgrave Macmillan: London, UK, 1961; p. 731. [Google Scholar]
- Glaeser, E.L.; Kallal, H.D.; Scheinkman, J.A.; Shleifer, A. Growth in cities. J. Political Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- Lu, M.; Feng, H. Agglomeration and Emission Reduction: An Empirical Study on the Impact of Urban Size Disparity on Industrial Pollution Intensity. World Econ. 2014, 7, 86–114. [Google Scholar]
- Krugman, P. Space: The final frontier. J. Econ. Perspect. 1998, 12, 161–174. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Fang, J.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, X.; Chen, Y.; Li, W. Industrial agglomeration externalities, local governments’ competition and environmental pollution: Evidence from Chinese prefecture-level cities. J. Clean. Prod. 2020, 277, 123455. [Google Scholar] [CrossRef]
- Brakman, S.; Garretsen, H.; Van Marrewijk, C. Locational Competition and Agglomeration: The Role of Government Spending; CESifo Working Paper No. 775; Center for Economic Studies and Ifo Institute: Munich, Germany, 2002; Available online: https://ssrn.com/abstract=346301 (accessed on 17 June 2022).
- Liu, S.; Zhu, Y.; Wang, W.; Pei, Y.; Du, K. The environmental pollution effects of industrial agglomeration: A spatial econometric analysis based on Chinese city data. Int. J. Agric. Environ. Inf. Syst. 2019, 10, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Schwarze, R. The role of common law in environmental policy: Comment. Public Choice 1996, 89, 201–205. [Google Scholar] [CrossRef]
- Esty, D.C.; Dua, A. Sustaining the Asia Pacific Miracle: Environmental Protection and Economic Integration; Peterson Institute for International Economics No. 37; Peterson Institute Press: Washington, DC, USA, 1997; Available online: https://ideas.repec.org/b/iie/ppress/37.html (accessed on 17 June 2022).
- Wilson, J.D. Theories of tax competition. Natl. Tax J. 1999, 52, 269–304. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Shen, K.R. The government intervention, the economic agglomeration and the energy efficiency. Manag. World 2013, 10, 6–18. [Google Scholar] [CrossRef]
- Wu, L.; Sun, L.; Qi, P.; Ren, X.; Sun, X. Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions. Resour. Policy 2021, 74, 102329. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, L.C.; Liao, H.; Wei, Y.M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Lai, F.; Huang, Y. Empirical study on carbon emission measurement and influencing factors of urban traffic based on “Population-Economy-Environment”. IOP Conf. Ser. Earth Environ. Sci. 2020, 601, 012049. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future. 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Fan, W.; Li, D.; Liu, X.; Song, M. Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration. Appl. Energy 2020, 267, 114914. [Google Scholar] [CrossRef]
- Meng, L.; Graus, W.; Worrell, E.; Huang, B. Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan System) nighttime light imagery: Methodological challenges and a case study for China. Energy 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Li, Y.; Liao, J.; Ye, Y.; Zhang, H.; Kuang, Y. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 2014, 35, 231–243. [Google Scholar] [CrossRef]
- Yang, D.; Luan, W.; Qiao, L.; Pratama, M. Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery. Appl. Energy 2020, 268, 114696. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change: The Physical Science Basis; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Li, L.; Huang, P.; Ma, G. Land Resource Misallocation and Productivity Differences of Chinese Industrial Enterprises. Manag. World 2016, 8, 86–96. [Google Scholar] [CrossRef]
- Ke, S.; Feser, E. Count on the growth pole strategy for regional economic growth? Spread–backwash effects in Greater Central China. Reg. Stud. 2010, 44, 1131–1147. [Google Scholar] [CrossRef]
- Han, F.; Ke, S. Spatial Externalities, Comparative Advantages and Manufacturing Agglomeration. Quant. Econ. Technol. Econ. Res. 2013, 1, 22–38. [Google Scholar] [CrossRef]
- Yang, Q.; Zhuo, P.; Yang, J. Industrial Land Transfer and Quality Bottom Line Competition of Investment: An Empirical Study Based on Panel Data of China’s Prefectural Cities from 2007 to 2011. Manag. World 2014, 11, 24–34. [Google Scholar] [CrossRef]
- Xie, D. Misallocation of Land Resources and Urban Innovation Ability: An Empirical Study Based on Chinese Urban Panel Data. Econ. J. 2020, 7, 86–112. [Google Scholar] [CrossRef]
- Hayes, A.F. Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Commun. Monogr. 2018, 85, 4–40. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, Y.; Fu, D.H. Trade Liberalization and China’s Industrial Upgrade: Facts and Mechanisms. World Econ. 2016, 10, 78–102. [Google Scholar]
- Elhorst, J.P. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
P (Carbon emission, 10,000 tons) | 2701.814 | 2387.78 | 172.334 | 23,071.172 |
G (Misallocation degree of land resources) | 0.8902 | 9.9475 | −0.9726 | 1619.0260 |
L (Labor force in industrial sector, 10,000 people) | 15.813 | 27.87 | 0.0000 | 297.59 |
Ru (Ratio of built-up area to construction land area) | 1.096 | 1.831 | 0.1710 | 105.344 |
λ (Proportion of environmental word frequency) | 0.051 | 0.027 | 0.0000 | 0.253 |
Fdi (Foreign direct investment stock, 10,000 yuan) | 2,734,581.3 | 11,483,099 | 0.0000 | 345,300,000 |
Urban (Urbanization rate) | 0.353 | 0.239 | 0.038 | 1 |
Energy (Energy consumption, 10,000 tons of standard coal) | 149.811 | 303.498 | 0.726 | 4034.828 |
Trf (Road traffic density, m2/person) | 11.542 | 10.088 | 0.31 | 348.656 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
OLS | OLS | FE | FE | |
lnG | 0.2207 *** | 0.0062 | 0.0607 *** | 0.0179 *** |
(8.39) | (0.33) | (7.28) | (3.39) | |
lnL | 0.3760 *** | 0.0746 *** | ||
(35.13) | (10.68) | |||
lnEnergy | 0.0686 *** | 0.1634 *** | ||
(8.39) | (26.67) | |||
lnTrf | 0.2982 *** | 0.1671 *** | ||
(18.63) | (21.19) | |||
lnFdi | 0.0182 *** | 0.0398 *** | ||
(5.34) | (16.01) | |||
lnλ | 0.0145 | 0.0351 *** | ||
(0.84) | (6.93) | |||
lnUrban | −0.3464 *** | 0.1049 *** | ||
(−22.14) | (6.72) | |||
lnRu | −0.0096 | 0.0051 | ||
(−0.30) | (0.50) | |||
_cons | 7.6801 *** | 5.2797 *** | 7.6206 *** | 6.1420 *** |
(486.86) | (62.16) | (1628.72) | (131.34) | |
Ctiy FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 3948 | 3948 | 3948 | 3948 |
R2 | 0.0175 | 0.5233 | 0.0142 | 0.5876 |
F | 70.3975 | 510.2356 | 52.9610 | 612.5457 |
Variable | (1) | (2) | (5) |
---|---|---|---|
Rjxycr | 0.0017 *** | ||
(12.56) | |||
lnGk1 | 0.0095 ** | ||
(2.25) | |||
Rjgk | 0.0001 * | ||
(1.65) | |||
lnL | 0.0766 *** | 0.0616 *** | 0.0619 *** |
(11.22) | (10.87) | (10.92) | |
lnEnergy | 0.1561 *** | 0.0681 *** | 0.0678 *** |
(25.88) | (12.44) | (12.39) | |
lnTrf | 0.1576 *** | 0.0833 *** | 0.0831 *** |
(20.29) | (12.48) | (12.44) | |
lnFdi | 0.0382 *** | 0.0252 *** | 0.0253 *** |
(15.64) | (8.81) | (8.87) | |
lnλ | 0.0423 *** | −0.0110 ** | −0.0111 ** |
(8.46) | (−2.18) | (−2.19) | |
lnUrban | 0.1189 *** | 0.0511 *** | 0.0497 *** |
(7.75) | (4.20) | (4.09) | |
lnRu | 0.0071 | 0.0161 * | 0.0170 ** |
(0.72) | (1.92) | (2.03) | |
_cons | 6.2044 *** | 6.8045 *** | 6.7946 *** |
(135.18) | (146.01) | (146.31) | |
Ctiy FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
N | 3948 | 2820 | 2820 |
R2 | 0.5714 | 0.3140 | 0.3134 |
F | 656.9408 | 140.4780 | 140.0547 |
Variable | (1) Truncated on Both Sides 1% | (2) Tail Contraction on Both Sides 1% |
---|---|---|
lnG | 0.0219 *** | 0.0202 *** |
(4.23) | (3.92) | |
lnL | 0.0670 *** | 0.0695 *** |
(9.72) | (10.20) | |
lnEnergy | 0.1629 *** | 0.1631 *** |
(26.74) | (27.30) | |
lnTrf | 0.1660 *** | 0.1657 *** |
(21.23) | (21.54) | |
lnFdi | 0.0376 *** | 0.0385 *** |
(15.21) | (15.86) | |
lnλ | 0.0339 *** | 0.0346 *** |
(6.76) | (6.99) | |
lnUrban | 0.1111 *** | 0.1075 *** |
(7.23) | (7.06) | |
lnRu | 0.0114 | 0.0099 |
(1.13) | (1.00) | |
_cons | 6.1972 *** | 6.1753 *** |
(133.90) | (135.40) | |
Ctiy FE | Yes | Yes |
Year FE | Yes | Yes |
N | 3728 | 3948 |
R2 | 0.5890 | 0.5933 |
F | 603.6165 | 627.2193 |
Variable | First Stage Regression | Second Stage Regression |
---|---|---|
lnG | lnP | |
lnG | 1.0525 *** | |
(4.77) | ||
lnYgcpd | 31.0513 *** | |
(3.88) | ||
lnGk2 | 0.0401 *** | |
(3.48) | ||
lnL | 0.0333 | 0.0105 |
(1.44) | (0.39) | |
lnEnergy | 0.0237 | −0.0007 |
(0.95) | (−0.02) | |
lnTrf | −0.0440 | 0.0850 *** |
(−1.51) | (2.95) | |
lnFdi | 0.0053 | 0.0038 |
(0.43) | (0.29) | |
lnλ | −0.0313 | 0.0181 |
(−1.52) | (0.80) | |
lnUrban | −0.0601 | 0.0436 |
(−1.14) | (0.83) | |
lnRu | 0.0255 | −0.0194 |
(0.75) | (−0.53) | |
_cons | −473.7348 *** | |
(−3.89) | ||
Sargen-test | 0.331 [0.5652] | |
Wald F statistic | 11.767 | |
Ctiy FE | Yes | Yes |
Year FE | Yes | Yes |
N | 2820 | 2820 |
R2 | 0.0220 | −11.8303 |
Mediation Variable | Servitization of Industrial Structure (Tir) | Industrial Structure Advancement (Gdh) | Industrial Agglomeration (Agg) | ||||
---|---|---|---|---|---|---|---|
Type of the Equation | Equation (9) | Equation (10) | Equation (11_ | Equation (10 | Equation (11) | Equation (10) | Equation (11) |
lnG | 0.0179 *** | −0.0034 | 0.0178 *** | −0.0437 ** | 0.0329 ** | −0.0496 *** | 0.0130 ** |
(3.39) | (−0.62) | (3.36) | (−2.51) | (2.12) | (−3.08) | (2.52) | |
lnTir | −0.0393 ** | ||||||
(−2.41) | |||||||
lnGdh | −0.0249 *** | ||||||
(−6.57) | |||||||
lnAgg | −0.1199 *** | ||||||
(−21.98) | |||||||
lnL | 0.0746 *** | −0.0368 *** | 0.0731 *** | −0.0258 ** | 0.0724 *** | 0.4241 *** | 0.1258 *** |
(10.68) | (−5.05) | (10.44) | (−2.13) | (9.02) | (20.69) | (18.09) | |
lnEnergy | 0.1634 *** | 0.0640 *** | 0.1659 *** | 0.0835 *** | 0.1286 *** | −0.3550 *** | 0.1207 *** |
(26.67) | (10.03) | (26.71) | (5.59) | (11.32) | (−19.78) | (19.91) | |
lnTrf | 0.1671 *** | 0.0385 *** | 0.1686 *** | 0.0597 *** | 0.0657 *** | −0.3538 *** | 0.1247 *** |
(21.19) | (4.69) | (21.33) | (4.79) | (4.10) | (−15.32) | (16.33) | |
lnFdi | 0.0398 *** | 0.0363 *** | 0.0413 *** | 0.0352 * | 0.0545 ** | −0.0777 *** | 0.0305 *** |
(16.01) | (14.01) | (16.14) | (1.74) | (2.35) | (−10.67) | (12.87) | |
lnλ | 0.0351 *** | 0.0047 | 0.0353 *** | 0.0289 ** | 0.0193 * | −0.0570 *** | 0.0283 *** |
(6.93) | (0.89) | (6.97) | (2.34) | (1.72) | (−3.84) | (5.95) | |
lnUrban | 0.1049 *** | 0.0639 *** | 0.1075 *** | 0.0241 *** | 0.0490 | −0.7104 ** | 0.0196 |
(6.72) | (3.93) | (6.87) | (6.07) | (1.02) | (−15.53) | (1.29) | |
lnRu | 0.0051 | 0.0072 | 0.0054 | 0.0160 * | 0.0113 * | −0.0136 | 0.0033 |
(0.50) | (0.68) | (0.53) | (1.76) | (1.83) | (−0.46) | (0.34) | |
_cons | 6.1420 *** | −1.5072 *** | 6.0827 *** | −1.0802 *** | 5.7047 *** | 2.4867 *** | 6.4408 *** |
(31.34) | (−30.93) | (51.13) | (−33.04) | (26.66) | (18.16) | (40.46) | |
Sobel test | −0.0083 * (−1.80) | 0.0259 *** (4.96) | 0.0079 * (1.749) | ||||
Ctiy FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3948 | 3948 | 3948 | 2538 | 2538 | 3948 | 3948 |
R2 | 0.5876 | 0.1675 | 0.5883 | 0.2961 | 0.4479 | 0.3780 | 0.6383 |
Variable | The Number of Green Patent Applications (Lsfmzl) | The Number of Green Utility Model Applications (Lssyzl) | ||
---|---|---|---|---|
Type of the Equation | Equation (10) | Equation (11) | Equation (10) | Equation (11) |
lnG | 0.0414 | 0.0147 *** | 0.0922 *** | 0.0093 ** |
(1.46) | (3.06) | (3.65) | (1.97) | |
lnLsfmzl | 0.0768 *** | |||
(26.54) | ||||
lnLssyzl | 0.0929 *** | |||
(29.08) | ||||
lnL | 0.3878 *** | 0.0448 *** | 0.2763 *** | 0.0489 *** |
(10.34) | (6.93) | (8.27) | (7.74) | |
lnEnergy | 0.8975 *** | 0.0945 *** | 0.8865 *** | 0.0810 *** |
(27.28) | (15.34) | (30.25) | (13.12) | |
lnTrf | 0.9047 *** | 0.0976 *** | 0.8482 *** | 0.0883 *** |
(21.36) | (12.77) | (22.48) | (11.67) | |
lnFdi | 0.1645 *** | 0.0272 *** | 0.1940 *** | 0.0218 *** |
(12.31) | (11.74) | (16.30) | (9.42) | |
lnλ | 0.1332 *** | 0.0249 *** | 0.1588 *** | 0.0204 *** |
(4.90) | (5.37) | (6.55) | (4.46) | |
lnUrban | 1.3477 *** | 0.0014 | 1.3364 *** | −0.0192 |
(16.07) | (0.10) | (17.88) | (−1.31) | |
lnRu | 0.0891 | −0.0017 | 0.0470 | 0.0008 |
(1.63) | (−0.19) | (0.97) | (0.08) | |
_cons | −3.0347 *** | 6.3751 *** | −2.6853 *** | 6.3915 *** |
(−12.09) | (146.54) | (−12.01) | (149.44) | |
Sobel test | 0.0274 *** (4.461) | 0.0368 *** (5.679) | ||
Ctiy FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 3948 | 3948 | 3948 | 3948 |
R2 | 0.5985 | 0.6578 | 0.6445 | 0.6690 |
Variable | Direct Effects | Indirect Effects | Total Effects | |||
---|---|---|---|---|---|---|
Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | |
lnG | 0.0395 *** | 2.87 | 0.0957 ** | 2.38 | 0.1352 *** | 2.69 |
lnL | 0.1542 ** | 2.41 | −0.0534 *** | −2.64 | 0.1008 ** | 2.49 |
lnEnergy | 0.0954 *** | 3.72 | 0.0707 * | 1.85 | 0.1661 ** | 2.55 |
lnTrf | 0.0211 * | 1.91 | 0.0075 | 1.08 | 0.0286 | 0.96 |
lnFdi | 0.0225 ** | 2.13 | 0.0371 * | 1.68 | 0.0596 * | 1.83 |
lnλ | −0.0136 * | −1.86 | 0.0089 | 0.68 | 0.0047 | 1.09 |
lnUrban | −0.0681 *** | −4.92 | −0.1253 *** | −3.85 | −0.1934 *** | −4.11 |
lnRu | 0.0539 | 1.58 | 0.0385 * | 1.79 | 0.0924 | 1.19 |
Variable | (1) Type-I Large and above Cities | (2) Type-II Large Cities | (3) Medium-Sized Cities | (4) Small Cities |
---|---|---|---|---|
lnG | 0.0647 *** | 0.0221 ** | 0.0146 * | 0.0045 |
(3.31) | (2.45) | (1.80) | (0.33) | |
lnL | 0.0380 * | 0.0423 *** | 0.0957 *** | 0.0798 *** |
(1.76) | (4.06) | (7.38) | (4.44) | |
lnEnergy | 0.1158 *** | 0.2135 *** | 0.1288 *** | 0.1559 *** |
(5.71) | (19.80) | (13.01) | (10.52) | |
lnTrf | 0.1592 *** | 0.1092 *** | 0.1597 *** | 0.2033 *** |
(4.98) | (7.87) | (13.30) | (9.32) | |
lnFdi | 0.1484 *** | 0.0680 *** | 0.0555 *** | 0.0290 *** |
(7.48) | (10.25) | (10.23) | (7.77) | |
lnλ | 0.0229 | 0.0354 *** | 0.0333 *** | 0.0154 |
(1.59) | (4.65) | (4.06) | (1.01) | |
lnUrban | −0.0208 | 0.0537 ** | 0.0956 *** | 0.1765 *** |
(−0.38) | (2.12) | (4.14) | (2.96) | |
lnRu | 0.0032 | 0.0230 | −0.0115 | 0.0321 |
(0.13) | (1.38) | (−0.69) | (1.17) | |
_cons | 5.2914 *** | 5.7177 *** | 5.9460 *** | 6.1655 *** |
(17.16) | (58.70) | (76.33) | (43.92) | |
Ctiy FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 294 | 1596 | 1470 | 588 |
R2 | 0.6737 | 0.6232 | 0.5789 | 0.5803 |
F | 65.3040 | 287.3865 | 220.6190 | 84.3424 |
Variable | The Eastern Region | The Central Region | The Western Region |
---|---|---|---|
lnG | 0.0379 *** | 0.0226 ** | 0.0087 |
(4.58) | (2.37) | (1.23) | |
lnL | 0.0355 * | 0.0692 *** | 0.0815 ** |
(1.90) | (2.98) | (2.52) | |
lnEnergy | 0.1308 *** | 0.1743 *** | 0.0857 *** |
(5.59) | (15.17) | (4.33) | |
lnTrf | 0.0704 *** | 0.0553 *** | 0.0703 *** |
(7.93) | (5.55) | (8.65) | |
lnFdi | 0.1524 *** | 0.0680 *** | 0.0570 *** |
(8.98) | (6.16) | (3.17) | |
lnλ | 0.0342 | 0.0459 *** | 0.0427 * |
(1.41) | (5.85) | (1.76) | |
lnUrban | −0.0607 * | −0.0243 | 0.0631 ** |
(−1.68) | (0.91) | (2.07) | |
lnRu | 0.0203 | 0.0182 | 0.0166 |
(1.04) | (1.61) | (1.44) | |
_cons | 2.3017 *** | 2.4759 *** | 4.7006 *** |
(13.69) | (9.74) | (7.55) | |
Ctiy FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
N | 1400 | 1400 | 1148 |
R2 | 0.7086 | 0.6295 | 0.5916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Huang, M. Land Misallocation and Carbon Emissions: Evidence from China. Land 2022, 11, 1189. https://doi.org/10.3390/land11081189
Han F, Huang M. Land Misallocation and Carbon Emissions: Evidence from China. Land. 2022; 11(8):1189. https://doi.org/10.3390/land11081189
Chicago/Turabian StyleHan, Feng, and Min Huang. 2022. "Land Misallocation and Carbon Emissions: Evidence from China" Land 11, no. 8: 1189. https://doi.org/10.3390/land11081189
APA StyleHan, F., & Huang, M. (2022). Land Misallocation and Carbon Emissions: Evidence from China. Land, 11(8), 1189. https://doi.org/10.3390/land11081189