Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides
Abstract
:1. Introduction
2. Study Area Dollendorfer Hardt
3. Materials and Methods
3.1. Theoretical Background of Constrained Electrical Inversion
3.2. Synthetic Hydraulic and Electrical Modeling
3.3. Data Acquisition and Processing for the Field Case
4. Results
4.1. Modeling Results
4.2. Measurement Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, N.; Şener Kaya, B.; Wayllace, A.; Godt, J.W. Analysis of rainfall-induced slope instability using a field of local factor of safety. Water Resour. Res. 2012, 48, W09524. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Palmer, J. Creeping earth could hold secret to deadly landslides. Nature 2017, 548, 384–386. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; Technical Report for U.S. Geological Survey: Reston, VA, USA, 2008.
- Jakob, M.; Lambert, S. Climate change effects on landslides along the southwest coast of British Columbia. Geomorphology 2009, 107, 275–284. [Google Scholar] [CrossRef]
- Petley, D.N. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 487–496. [Google Scholar] [CrossRef]
- Saez, J.L.; Corona, C.; Stoffel, M.; Berger, F. Climate change increases frequency of shallow spring landslides in the French Alps. Geology 2013, 41, 619–622. [Google Scholar] [CrossRef]
- Baron, I.; Supper, R. Application and reliability of techniques for landslide site investigation, monitoring and early warning—Outcomes from a questionnaire study. Nat. Hazards Earth Syst. Sci. 2013, 13, 3157–3168. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction Stress Characteristic Curve for Unsaturated Soil. J. Geotech. Geoenviron. Eng. 2006, 132, 131–142. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W.; Wu, D.T. A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 2010, 46, 1–14. [Google Scholar] [CrossRef]
- Clark, A.; Moore, R.; Palmer, J. Slope monitoring and early warning systems: Application to coastal landslide on the south and east coast of England, UK. In Landslides; Senneset, Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 1531–1538. [Google Scholar]
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147–148, 124–136. [Google Scholar] [CrossRef]
- Mauritsch, H.J.; Seiberl, W.; Arndt, R.; Römer, A.; Schneiderbauer, K.; Sendlhofer, G.P. Geophysical investigations of large landslides in the Carnic Region of southern Austria. Eng. Geol. 2000, 56, 373–388. [Google Scholar] [CrossRef]
- Lapenna, V.; Lorenzo, P.; Perrone, A.; Piscitelli, S.; Sdao, F.; Rizzo, E. High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull. Eng. Geol. Environ. 2003, 62, 259–268. [Google Scholar] [CrossRef]
- Göktürkler, G.; Balkaya, C.; Erhan, Z. Geophysical investigation of a landslide: The Altindag landslide site, Izmir (Western Turkey). J. Appl. Geophys. 2008, 65, 84–96. [Google Scholar] [CrossRef]
- Sass, O.; Bell, R.; Glade, T. Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 2008, 93, 89–103. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef]
- Chambers, J.; Wilkinson, P.; Kuras, O.; Ford, J.; Gunn, D.; Meldrum, P.; Pennington, C.; Weller, A.; Hobbs, P.; Ogilvy, R. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef]
- Piegari, E.; Cataudella, V.; Di Maio, R.; Milano, L.; Nicodemi, M.; Soldovieri, M. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. J. Appl. Geophys. 2009, 68, 151–158. [Google Scholar] [CrossRef]
- Lehmann, P.; Gambazzi, F.; Suski, B.; Baron, L.; Askarinejad, A.; Springman, S.; Holliger, K.; Or, D. Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resour. Res. 2013, 49, 7992–8004. [Google Scholar] [CrossRef]
- Hübner, R.; Heller, K.; Günther, T.; Kleber, A. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol. Earth Syst. Sci. 2015, 19, 225–240. [Google Scholar] [CrossRef]
- Gance, J.; Malet, J.P.; Supper, R.; Sailhac, P.; Ottowitz, D.; Jochum, B. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides. J. Appl. Geophys. 2016, 126, 98–115. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P- and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef]
- Ling, C.; Xu, Q.; Zhang, Q.; Ran, J.; Lv, H. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). J. Appl. Geophys. 2016, 131, 154–162. [Google Scholar] [CrossRef]
- Wicki, A.; Hauck, C. Monitoring critically saturated conditions for shallow landslide occurrence using electrical resistivity tomography. Vadose Zone J. 2022, 21, e20204. [Google Scholar] [CrossRef]
- Archie, G. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Waxman, M.; Smits, L. Electrical Conductivities in Oil-Bearing Shaly Sands. Soc. Pet. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Constable, S.; Parker, R.; Constable, C. Occam’s inversion; a practical algorithm for generating smooth models from electomagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- Doetsch, J.; Linde, N.; Pessognelli, M.; Green, A.G.; Günther, T. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization. J. Appl. Geophys. 2012, 78, 68–76. [Google Scholar] [CrossRef]
- Bergmann, P.; Ivandic, M.; Norden, B.; Rücker, C.; Kiessling, D.; Lüth, S.; Schmidt-Hattenberger, C.; Juhlin, C. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. Geophysics 2014, 79, B37–B50. [Google Scholar] [CrossRef]
- Wagner, F.M.; Bergmann, P.; Rücker, C.; Wiese, B.; Labitzke, T.; Schmidt-Hattenberger, C.; Maurer, H. Impact and mitigation of borehole related effects in permanent crosshole resistivity imaging: An example from the Ketzin CO2 storage site. J. Appl. Geophys. 2015, 123, 102–111. [Google Scholar] [CrossRef]
- Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T. 4D imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf. 2016, 122, 398–418. [Google Scholar] [CrossRef]
- Al Hagrey, S.A. CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes. Lead Edge 2011, 30, 24–33. [Google Scholar] [CrossRef]
- Wagner, F.M.; Uhlemann, S. An overview of multimethod imaging approaches in environmental geophysics. In Advances in Geophysics; Schmelzbach, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 62, pp. 1–72. [Google Scholar] [CrossRef]
- Ellis, R.G.; Oldenburg, D.W. Applied geophysical inversion. Geophys. J. Int. 1994, 116, 5–11. [Google Scholar] [CrossRef]
- Rizzo, E.; Colella, A.; Lapenna, V.; Piscitelli, S. High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys. Chem. Earth Parts A/B/C 2004, 29, 321–327. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C. A General Approach for Introducing Information into Inversion and Examples from DC Resistivity Inversion. In Proceedings of the Near Surface 2006—12th EAGE European Meeting of Environmental and Engineering Geophysics, Helsinki, Finland, 4–6 September 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Merz, K.; Maurer, H.; Rabenstein, L.; Buchli, T.; Springman, S.M.; Zweifel, M. Multidisciplinary geophysical investigations over an alpine rock glacier. Geophysics 2016, 81, WA147–WA157. [Google Scholar] [CrossRef]
- Jiang, C.; Igel, J.; Dlugosch, R.; Müller-Petke, M.; Günther, T.; Helms, J.; Lang, J.; Winsemann, J. Magnetic resonance tomography constrained by ground-penetrating radar for improved hydrogeophysical characterization. Geophysics 2020, 85, JM13–JM26. [Google Scholar] [CrossRef]
- Fuchs, K.; von Gehlen, K.; Mälzer, H.; Murawski, H.; Semmel, A. (Eds.) Plateau Uplift; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar] [CrossRef]
- Hardenbicker, U. Hangrutschungen im Bonner Raum; Dümmler: Bonn, Germany, 1996. [Google Scholar]
- Schmidt, J.; Dikau, R. Preparatory and triggering factors for slope failure: Analyses of two landslides in Bonn, Germany. Z. Geomorphol. 2005, 49, 121–138. [Google Scholar]
- García, A.; Hördt, A.; Fabian, M. Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology 2010, 120, 16–25. [Google Scholar] [CrossRef]
- Schmidt, J. The role of mass movements for slope evolution—Conceptual approaches and model applications in the Bonn area. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2001. [Google Scholar]
- Moradi, S.; Heinze, T.; Budler, J.; Gunatilake, T.; Kemna, A.; Huisman, J.A. Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability. Land 2021, 10, 423. [Google Scholar] [CrossRef]
- Nienhaus, U. Geologische und hydrogeologische Verhältnisse im südlichen Siebengebirgsgraben und deren Bedeutung für die Grundwassernutzung und den Grundwasserschutz. Ph.D. Thesis, Technische Hochschule Aachen, Aachen, Germany, 1990. [Google Scholar]
- Kemna, A. Tomographic Inversion of Complex Resistivity: Theory and Application; Der Andere Verlag: Uelvesbüll, Germany, 2000; p. 169. [Google Scholar]
- LaBrecque, D.J.; Miletto, M.; Daily, W.; Ramirez, A.; Owen, E. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 1996, 61, 538–548. [Google Scholar] [CrossRef]
- Slater, L.; Binley, A.; Daily, W.; Johnson, R. Cross-hole electrical imaging of a controlled saline tracer injection. J. Appl. Geophys. 2000, 44, 85–102. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary Conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil. Sci. Soc. Am. J. 1980, 44, 892. [Google Scholar] [CrossRef]
- Müller, L. Spezielle Geologische und Geotechnische Untersuchungen bei der Sanierung von Rutschungen im Nördlichen Siebengebirge; RWTH Aachen: Aachen, Germany, 1987; p. 234. [Google Scholar]
- Rhoades, J.D.; Manteghi, N.a.; Shouse, P.J.; Alves, W.J. Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations. Soil Sci. Soc. Am. J. 1989, 53, 433. [Google Scholar] [CrossRef]
- Xu, D.; Hu, X.Y.; Shan, C.L.; Li, R.H. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography. Appl. Geophys. 2016, 13, 1–12. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C. A New Joint Inversion Approach Applied to the Combined Tomography of DC Resistivity and Seismic Refraction Data. In Proceedings of the 12th EAGE European Meeting of Environmental and Engineering Geophysics (Near Surface 2006), Helsinki, Finland, 4–6 September 2006; p. 039. [Google Scholar] [CrossRef]
- Doetsch, J.; Linde, N.; Coscia, I.; Greenhalgh, S.A.; Green, A.G. Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data. Geophysics 2010, 75, G53–G64. [Google Scholar] [CrossRef]
- Haaken, K.; Furman, A.; Weisbrod, N.; Kemna, A. Time-Lapse Electrical Imaging of Water Infiltration in the Context of Soil Aquifer Treatment. Vadose Zone J. 2016, 15, 1–12. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
Saturated volumetric water content (layer 1) | ||
Residual volumetric water content (layer 1) | ||
Van Genuchten coefficient (layer 1) | 0.027 1/cm | |
Van Genuchten exponent (layer 1) | ||
Saturated hydraulic conductivity (layer 1) | 30 cm/day | |
Saturated volumetric water content (layer 2) | ||
Residual volumetric water content (layer 2) | ||
Van Genuchten coefficient (layer 2) | 0.030 1/cm | |
Van Genuchten exponent (layer 2) | ||
Saturated hydraulic conductivity (layer 2) | 50 cm/day |
Symbol | Quantity | Value |
---|---|---|
Formation factor (layer 1) | ||
Formation factor (layer 2) | ||
Saturation exponent (layer 1) | ||
Saturation exponent (layer 2) | 2 | |
Pore water conductivity | S/m | |
Surface conductivity (layer 1) | S/m | |
Surface conductivity (layer 2) | S/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grifka, J.; Weigand, M.; Kemna, A.; Heinze, T. Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides. Land 2022, 11, 1207. https://doi.org/10.3390/land11081207
Grifka J, Weigand M, Kemna A, Heinze T. Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides. Land. 2022; 11(8):1207. https://doi.org/10.3390/land11081207
Chicago/Turabian StyleGrifka, Jasmin, Maximilian Weigand, Andreas Kemna, and Thomas Heinze. 2022. "Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides" Land 11, no. 8: 1207. https://doi.org/10.3390/land11081207
APA StyleGrifka, J., Weigand, M., Kemna, A., & Heinze, T. (2022). Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides. Land, 11(8), 1207. https://doi.org/10.3390/land11081207