Fiscal Ecological Cost of Land in China: Estimation and Regional Differences
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis
3.1. Formation Mechanism of Land Finance Ecological Cost
3.2. Loss of Ecosystem Service Value after Agricultural Land Conversion
3.3. Ecological Loss during Land Development in Urban Built-Up Areas
3.4. Cost of Increasing the Ecological Service Function of Land Finance
4. Data Source and Calculation Method
4.1. Data Source
4.2. Calculation Methods
4.2.1. Loss of Ecosystem Service Value after Land Conversion
4.2.2. Ecological Loss during Land Development in Urban Built-Up Area
4.2.3. The Cost of Increasing the Ecological Service Function of Land Finance
5. Results
5.1. Land Fiscal Ecological Cost at Each Stage
5.1.1. Loss of Ecosystem Service Value after Agricultural Land Conversion
5.1.2. Ecological Loss during Land Development in Urban Built-Up Areas
5.1.3. Cost of Increasing the Ecological Service Function of Land Finance
5.1.4. Fiscal Ecological Cost of land in 31 Provinces
5.2. Total Fiscal Ecological Cost of Land in China
5.3. Cluster Partition and Robustness Tests of the Fiscal Ecological Cost of Land
5.3.1. Cluster Partition of Land Fiscal Ecological Cost
5.3.2. ANOVA of Cluster Partition of Fiscal Ecological Land Cost
5.4. Regional Difference and Reasons for Fiscal Ecological Cost of Land
6. Discussion
6.1. Innovations and Recommendations
6.2. Policy Implications
6.3. Limitations and Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Wei, Y.; Lai, Y.; Li, Y.; Zhong, S.; Dai, C. Empirical Analysis of the Driving Factors of China’s “Land Finance” Mechanism Using Soft Budget Constraint Theory and the PLS-SEM Model. Sustainability 2019, 11, 742. [Google Scholar] [CrossRef]
- Mo, J. Land Financing and Economic Growth: Evidence from Chinese Counties. China Econ. Rev. 2018, 50, 218–239. [Google Scholar] [CrossRef]
- Kan, Z. The Analysis of Domestic Land Finance Research Situation from the Perspective of Knowledge Map. China Land Sci. 2018, 32, 86–92. [Google Scholar] [CrossRef]
- Wu, F. Land Financialisation and the Financing of Urban Development in China. Land Use Policy 2022, 112, 104412. [Google Scholar] [CrossRef]
- Wang, W.; Ye, F. The Political Economy of Land Finance in China. Public Budg. Financ. 2016, 36, 91–110. [Google Scholar] [CrossRef]
- Gu, N.; Wang, X.; Chen, X. Causes of Regional Differences of Land Finance: An Emporical Analysis Based on Provincial Panel Data. Ind. Econ. Rev. 2011, 2, 103–112. [Google Scholar]
- Zou, X.-Q. An Analysis on the Correlation between Land Finance and Economic Development: Based on Land Kuznets Curve Hypothesis and Panel Data Evidence. China Land Sci. 2013, 27, 14–19. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H. The Influence of Land Finance and Public Service Supply on Peri-Urbanization: Evidence from the Counties in China. Habitat Int. 2019, 92, 102039. [Google Scholar] [CrossRef]
- Wei, Y.-F. Land Financial Dependence, Urban Public Service Supply and Population Urbanization—A Panel Date Analysis Based on 35 Large and Medium-Sized Cities. Econ. Rev. J. 2021, 7, 118–128. [Google Scholar]
- Guo, J. Research on the Interactive Relationships between Land Finance and Land Urbanization: An Empirical Analysis Based on VAR Model. J. China Agric. Univ. 2018, 23, 206–214. [Google Scholar]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land Eco-Efficiency for New-Type Urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Chang. 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Yan, B.; Wu, L.; Wang, X.H.; Wu, J. How Can Environmental Intervention Work during Rapid Urbanization? Examining the Moderating Effect of Environmental Performance-Based Accountability in China. Environ. Impact Assess. Rev. 2021, 86, 106476. [Google Scholar] [CrossRef]
- Yin, K.; Wang, R.; An, Q.; Yao, L.; Liang, J. Using Eco-Efficiency as an Indicator for Sustainable Urban Development: A Case Study of Chinese Provincial Capital Cities. Ecol. Indic. 2014, 36, 665–671. [Google Scholar] [CrossRef]
- Shao, Z.; Bakker, M.; Spit, T.; Janssen-Jansen, L.; Qun, W. Containing Urban Expansion in China: The Case of Nanjing. J. Environ. Plan. Manag. 2020, 63, 189–209. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, S.; Feng, K. Coupling Analysis of Urbanization and Energy-Environment Efficiency: Evidence from Guangdong Province. Appl. Energy 2019, 254, 113650. [Google Scholar] [CrossRef]
- Hou, D.; Meng, F.; Prishchepov, A.V. How Is Urbanization Shaping Agricultural Land-Use? Unraveling the Nexus between Farmland Abandonment and Urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Avashia, V.; Garg, A. Implications of Land Use Transitions and Climate Change on Local Flooding in Urban Areas: An Assessment of 42 Indian Cities. Land Use Policy 2020, 95, 104571. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Yang, G.; Ou, W.; Pueppke, S.; Sun, X.; Chen, G.; Tao, Q. Impact of Land Use Change on Multiple Ecosystem Services in the Rapidly Urbanizing Kunshan City of China: Past Trajectories and Future Projections. Land Use Policy 2019, 85, 419–427. [Google Scholar] [CrossRef]
- Dumortier, J.; Elobeid, A. Effects of a Carbon Tax in the United States on Agricultural Markets and Carbon Emissions from Land-Use Change. Land Use Policy 2021, 103, 105320. [Google Scholar] [CrossRef]
- Deslatte, A. Managerial Friction and Land-Use Policy Punctuations in the Fragmented Metropolis. Policy Stud. J. 2018, 48, 700–726. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The Implications of Current and Future Urbanization for Global Protected Areas and Biodiversity Conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Salerno, F.; Viviano, G.; Tartari, G. Urbanization and Climate Change Impacts on Surface Water Quality: Enhancing the Resilience by Reducing Impervious Surfaces. Water Res. 2018, 144, 491–502. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, M.; He, C.; Li, J.; Wu, J. The Impairment of Environmental Sustainability Due to Rapid Urbanization in the Dryland Region of Northern China. Landsc. Urban Plan. 2019, 187, 165–180. [Google Scholar] [CrossRef]
- Kashem, S.B.; Irawan, A.; Wilson, B. Evaluating the Dynamic Impacts of Urban Form on Transportation and Environmental Outcomes in US Cities. Int. J. Environ. Sci. Technol. 2014, 11, 2233–2244. [Google Scholar] [CrossRef]
- Wang, Z. Evolving Landscape-Urbanization Relationships in Contemporary China. Landsc. Urban Plan. 2018, 171, 30–41. [Google Scholar] [CrossRef]
- Ye, Y.; Bryan, B.A.; Zhang, J.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in Land-Use and Ecosystem Services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for Sustainability under Rapid Urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Song, X.; Chang, K.T.; Yang, L.; Scheffran, J. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000–2010. Int. J. Environ. Res. Public Health 2016, 13, 535. [Google Scholar] [CrossRef]
- Fang, W.; An, H.; Li, H.; Gao, X.; Sun, X.; Zhong, W. Accessing on the Sustainability of Urban Ecological-Economic Systems by Means of a Coupled Emergy and System Dynamics Model: A Case Study of Beijing. Energy Policy 2017, 100, 326–337. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How Urban Sprawl Influences Eco-Environmental Quality: Empirical Research in China by Using the Spatial Durbin Model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the Relationship between Urbanization and Urban Eco-Efficiency: Evidence from Prefecture-Level Cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Han, J.; Miao, J.; Shi, Y.; Miao, Z. Can the Semi-Urbanization of Population Promote or Inhibit the Improvement of Energy Efficiency in China? Sustain. Prod. Consum. 2021, 26, 921–932. [Google Scholar] [CrossRef]
- Bao, C.; Xu, M. Cause and Effect of Renewable Energy Consumption on Urbanization and Economic Growth in China’s Provinces and Regions. J. Clean. Prod. 2019, 231, 483–493. [Google Scholar] [CrossRef]
- Chengshun, S. Compensation Standard for Cultivated Land Protection from the Perspective of Cultivated Land Comprehensive Value in Wuhan Metropolitan Area. Res. Soil Water Conserv. 2017, 24, 330–335. [Google Scholar] [CrossRef]
- Tang, P.; Feng, Y.; Li, M.; Zhang, Y. Can the Performance Evaluation Change from Central Government Suppress Illegal Land Use in Local Governments? A New Interpretation of Chinese Decentralisation. Land Use Policy 2021, 108, 105578. [Google Scholar] [CrossRef]
- Duo, C. Analysis on the Change Pattern and Causes of “Turning Counties (Cities) into District” in China since the Reform and Opening-Up. Urban Dev. Stud. 2018, 25, 33–40. [Google Scholar]
- Colding, J. ‘Ecological Land-Use Complementation’ for Building Resilience in Urban Ecosystems. Landsc. Urban Plan. 2007, 81, 46–55. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Neill, R.V.O.; Paruelo, J.; Raskin, R.G.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Carlos, C.; Simon, H.; Mc Michael, A. Millennium Ecosystem Assessment (MA), Ecosystems and Human Well-Being; World Resources Institute/Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.U.; Li, S.C. Ecological Assets Valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X. Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land 2022, 11, 696. [Google Scholar] [CrossRef]
- Lafuite, A.S.; Denise, G.; Loreau, M. Sustainable Land-Use Management Under Biodiversity Lag Effects. Ecol. Econ. 2018, 154, 272–281. [Google Scholar] [CrossRef]
- Kalkuhl, M.; Edenhofer, O. Ramsey Meets Thünen: The Impact of Land Taxes on Economic Development and Land Conservation. Int. Tax Public Financ. 2016, 24, 350–380. [Google Scholar] [CrossRef]
- Nicolaus, A.; Barretto, A.; Sparovek, G.; William, G.; Ferreira, L.; Mar, C.F.; Souza, D.; Appy, B.; Mario, C.; De Guedes, G.; et al. Taxation Aiming Environmental Protection: The Case of Brazilian Rural Land Tax. Land Use Policy 2022, 119, 106164. [Google Scholar] [CrossRef]
- Musagaliev, A. The role of resource taxes in shaping revenues of the republic of Karakalpakstan. Int. J. Res. Soc. Sci. 2018, 8, 794–801. [Google Scholar]
- Kałazny, A. Taxation of Assets Used to Generate Energy—In the Context of the Transformation of the Polish Energy Sector from Coal Energy to Low-Emission Energy. Energies 2021, 14, 4587. [Google Scholar] [CrossRef]
- Yeganeh, A.; Mccoy, A.P.; Reichard, G.; Schenk, T.; Yeganeh, A. Green Building and Policy Innovation in the US Low-Income Housing Tax Credit Programme Green Building and Policy Innovation in the US Low-Income Housing Tax Credit Programme. Build. Res. Inf. 2020, 49, 543–560. [Google Scholar] [CrossRef]
- Xu, N. What Gave Rise to China’ s Land Finance? Land Use Policy 2019, 87, 104015. [Google Scholar] [CrossRef]
- Guo, S.; Shi, Y. Infrastructure Investment in China: A Model of Local Government Choice under Land Financing. J. Asian Econ. 2018, 56, 24–35. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.; Zhu, D.; Jiang, X.; Zhang, H.; Zhang, Y. Land Marketization and Urban Innovation Capability: Evidence from China. Habitat Int. 2022, 122, 102540. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Yan, S. The Incentives of China’s Urban Land Finance. Land Use Policy 2015, 42, 432–442. [Google Scholar] [CrossRef]
- Huang, D.; Chan, R.C.K. On ‘Land Finance’ in Urban China: Theory and Practice. Habitat Int. 2018, 75, 96–104. [Google Scholar] [CrossRef]
- He, C. Land Use Change and Economic Growth in Urban China: A Structural Equation Analysis. Urban Stud. 2014, 51, 2880–2989. [Google Scholar] [CrossRef]
- Ong, L.H. “Land Grabbing” in an Autocracy and a Multi-Party Democracy: China and India Compared. J. Contemp. Asia 2019, 10, 1569253. [Google Scholar] [CrossRef]
- Guo, S.; Liu, L.; Zhao, Y. The Business Cycle Implications of Land Fi Nancing in China. Econ. Model. 2015, 46, 225–237. [Google Scholar] [CrossRef]
- Murakami, J. The Government Land Sales Programme and Developers’ Willingness to Pay for Accessibility in Singapore, 1990–2015. Land Use Policy 2018, 75, 292–302. [Google Scholar] [CrossRef]
- Liu, Y. Financing China’s Suburbanization: Capital Accumulation through Suburban Land Development in Hangzhou. Int. J. Urban Reg. Res. 2017, 40, 1112–1133. [Google Scholar] [CrossRef]
- Lin, G.C.S. China’s Landed Urbanization: Neoliberalizing Politics, Land Commodification, and Municipal Finance in the Growth of Metropolises. Environ. Plan. A Econ. Space 2014, 46, 1814–1835. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The Ecological Economics of Land Degradation: Impacts on Ecosystem Service Values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of Land Use Changes on Ecosystem Services at Different Elevations in an Ecological Function Area, Northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Wang, Y. The Formation Mechanism and Scale Estimation of the Ecological Cost of the Land Finance Mode: Take Liaoning Province as an Example. J. Nanjing Agric. Univ. 2021, 21, 138–151. [Google Scholar]
- Bren, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Gatzweiler, F.W. Biodiversity and Cultural Ecosystem Services. Encycl. Biodivers. 2013, 1, 332–340. [Google Scholar] [CrossRef]
- Assandri, G.; Bogliani, G.; Pedrini, P.; Brambilla, M. Beautiful Agricultural Landscapes Promote Cultural Ecosystem Services and Biodiversity Conservation. Agric. Ecosyst. Environ. 2018, 256, 200–210. [Google Scholar] [CrossRef]
- Choy, L.H.T.; Lai, Y.; Lok, W. Economic Performance of Industrial Development on Collective Land in the Urbanization Process in China: Empirical Evidence from Shenzhen. Habitat Int. 2013, 40, 184–193. [Google Scholar] [CrossRef]
- Karsznia, I.; Julita, Ł. Land Use Institutions and Social-Ecological Systems: A Spatial Analysis of Local Landscape Changes in Poland. Land Use Policy 2022, 114, 105937. [Google Scholar] [CrossRef]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global Trends in Mangrove Forest Fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of Urban Green Patterns on Surface Urban Cool Islands and Its Seasonal Variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Xie, G. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Masoudi, M.; Yok, P.; Chin, S. Multi-City Comparison of the Relationships between Spatial Pattern and Cooling Effect of Urban Green Spaces in Four Major Asian Cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Pomerantz, M.; Pon, B.; Akbari, H.; Chang, S.C. The Effect of Pavements’ Temperatures on Air Temperatures in Large Cities; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2000. [Google Scholar]
- Pomerant, Z.M.; Akbari, H.; Chen, A. Paving Materials for Heat Island Mitigation; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1997. [Google Scholar]
- Chen, Y.; Yang, J.; Yang, R.; Xiao, X.; Cecilia, J. Contribution of Urban Functional Zones to the Spatial Distribution of Urban Thermal Environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, S.; Bai, X.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in Ecosystem Service Values in Karst Areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Fan, X.; Qiu, S.; Sun, Y. Land Finance Dependence and Urban Land Marketization in China: The Perspective of Strategic Choice of Local Governments on Land Transfer. Land Use Policy 2020, 99, 105023. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Fan, M. Do the Rich Have Stronger Willingness to Pay for Environmental Protection? New Evidence from a Survey in China. World Dev. 2018, 105, 83–94. [Google Scholar] [CrossRef]
- Taylor, P.; Wei, Y.; Lam, P.T.I.; Chiang, Y.H.; Leung, B.Y.P. The Effects of Monetary Policy on Real Estate Investment in China: A Regional Perspective. Int. J. Strateg. Prop. Manag. 2014, 18, 368–379. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, F.; Wang, H. The Response of Ecosystem Service Value to Land Use Change in the Middle and Lower Yellow River: A Case Study of the Henan Section. Ecol. Indic. 2022, 140, 109019. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-Scenario Simulation of Ecosystem Service Value for Optimization of Land Use in the Sichuan-Yunnan Ecological Barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Long, X.; Ji, X.; Ulgiati, S. Is Urbanization Eco-Friendly? An Energy and Land Use Cross-Country Analysis. Energy Policy 2017, 100, 387–396. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H. Effects of Land Urbanization and Land Finance on Carbon Emissions: A Panel Data Analysis for Chinese Provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Pang, R.; Zheng, D.; Shi, M.; Zhang, X. Pollute First, Control Later? Exploring the Economic Threshold of Effective Environmental Regulation in China’s Context. J. Environ. Manag. 2019, 248, 109275. [Google Scholar] [CrossRef]
- Niu, X.; Wang, X.; Gao, J.; Wang, X. Has Third-Party Monitoring Improved Environmental Data Quality? An Analysis of Air Pollution Data in China. J. Environ. Manag. 2020, 253, 109698. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of Urban Morphological Characteristics on Thermal Environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Broto, V.C. Energy Landscapes and Urban Trajectories towards Sustainability. Energy Policy 2017, 108, 755–764. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, J.; Qiu, S. Technological Forecasting & Social Change Digital Agriculture and Urbanization: Mechanism and Empirical Research. Technol. Forecast. Soc. Chang. 2022, 180, 121724. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, W. Fiscal Incentives and Sustainable Urbanization: Evidence from China. Sustainability 2020, 12, 103. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z. Environmental Co-Benefits of Urban Greening for Mitigating Heat and Carbon Emissions. J. Environ. Manag. 2021, 293, 112963. [Google Scholar] [CrossRef]
Provinces | Net Profit Per Unit Area (yuan/kg) | D (yuan/hm2) | LTA (hm2) | Earlier Costs | |||
---|---|---|---|---|---|---|---|
Wheat | Corn | Rice | Amount (Billion Yuan) | Proportion (%) | |||
Beijing | 1411.1 | 1376.2 | 3394.2 | 1388.2 | 33,277.3 | 9.3 | 0.50 |
Tianjin | 1411.7 | 1213.5 | 3824.1 | 1410.0 | 63,483.1 | 17.9 | 1.76 |
Hebei | 1521.1 | 1182.1 | 3376.4 | 1354.5 | 183,573.1 | 49.8 | 3.64 |
Shanxi | 976.4 | 1212.0 | 2657.5 | 1143.5 | 62,727.8 | 14.4 | 3.37 |
Inner Mongolia | 864.2 | 1419.0 | 3852.8 | 1395.8 | 131,006.2 | 36.7 | 6.18 |
Liaoning | 1261.2 | 1405.0 | 3898.6 | 1901.1 | 191,500.9 | 72.7 | 4.09 |
Jilin | 867.7 | 1659.0 | 4141.1 | 2095.5 | 65,718.1 | 27.5 | 5.86 |
Heilongjiang | 949.7 | 1232.0 | 3497.9 | 2083.1 | 69,338.2 | 28.8 | 6.30 |
Shanghai | 1097.3 | 1509.8 | 4230.6 | 3385.3 | 47,124.3 | 31.3 | 1.81 |
Jiangsu | 1380.2 | 1209.3 | 4116.8 | 2639.0 | 401,155.3 | 208.5 | 3.95 |
Zhejiang | 1021.3 | 1011.5 | 3498.2 | 3122.3 | 227,126.8 | 139.0 | 3.64 |
Anhui | 1424.9 | 1065.8 | 3174.8 | 2078.0 | 183,121.3 | 75.1 | 4.26 |
Fujian | 857.3 | 877.0 | 3005.3 | 2865.8 | 111,594.2 | 62.5 | 4.33 |
Jiangxi | 549.4 | 964.3 | 2936.8 | 2910.2 | 123,226.9 | 70.1 | 6.79 |
Shandong | 1641.3 | 1481.9 | 4226.5 | 1608.0 | 390,632.1 | 125.9 | 4.00 |
Henan | 1652.4 | 1268.9 | 3798.0 | 1666.5 | 162,479.2 | 54.1 | 3.78 |
Hubei | 973.4 | 1098.8 | 3900.0 | 2593.5 | 159,322.9 | 81.6 | 5.80 |
Hunan | 755.3 | 1243.0 | 3229.3 | 3062.7 | 112,821.0 | 67.7 | 6.48 |
Guangdong | 849.2 | 1030.9 | 2805.6 | 2649.7 | 180,447.0 | 94.0 | 2.80 |
Guangxi | 423.8 | 974.4 | 2759.8 | 2331.5 | 86,236.1 | 39.8 | 5.64 |
Hainan | 0.0 | 692.1 | 2172.3 | 2172.3 | 19,595.8 | 8.4 | 3.00 |
Chongqing | 860.9 | 1227.1 | 3642.3 | 2571.4 | 83,650.1 | 42.6 | 3.38 |
Sichuan | 983.1 | 1166.4 | 3768.4 | 2278.5 | 154,404.3 | 69.7 | 4.05 |
Guizhou | 548.3 | 1021.3 | 3055.3 | 1780.3 | 62,901.4 | 22.3 | 3.93 |
Yunnan | 545.7 | 1015.2 | 3064.0 | 1702.8 | 78,094.4 | 26.5 | 4.13 |
Tibet | 1810.6 | 1232.7 | 2877.6 | 1771.4 | 4540.2 | 1.6 | 11.10 |
Shaanxi | 1011.4 | 1043.0 | 3433.0 | 1153.0 | 66,102.8 | 15.2 | 2.82 |
Gansu | 836.0 | 1183.8 | 3298.5 | 788.8 | 58,488.1 | 9.2 | 4.35 |
Qinghai | 1087.7 | 1697.3 | 441.2 | 1231.3 | 15,724.4 | 3.9 | 6.80 |
Ningxia | 873.3 | 1697.2 | 4275.5 | 1876.9 | 41,816.0 | 15.7 | 13.35 |
Xinjiang | 1541.7 | 1643.1 | 4414.9 | 1669.9 | 105,144.7 | 35.2 | 13.00 |
Provinces | Energy Consumption of Infrastructure Construction | Heat Island Effect | Ecological Landscape Fragmentation | Proportion (%) | |||||
---|---|---|---|---|---|---|---|---|---|
TDC (10,000 L) | DA (Billion Yuan) | TEE (t) | RE (10,000 m3) | AT ai (℃) | DFL (plot/km2) | AAL (hm2/plot) | DAL (%) | ||
Beijing | 26,978 | 2.1 | 5495.4 | 36,768.6 | 1.04 | 34.9 | 2.9 | 120.8 | 0.11 |
Tianjin | 31,879 | 2.5 | 6493.7 | 41,897.1 | 1.02 | 27.3 | 3.7 | 99.8 | 0.24 |
Hebei | 44,852 | 3.5 | 9136.3 | 52,665.1 | 1.44 | 43.6 | 2.3 | 57.0 | 0.25 |
Shanxi | 24,071 | 1.9 | 4903.2 | 27,747.8 | 1.86 | 46.2 | 2.2 | 81.4 | 0.44 |
Inner Mongolia | 27,905 | 2.1 | 5684.2 | 30,465.3 | 1.86 | 46.9 | 2.1 | 46.1 | 0.36 |
Liaoning | 48,409 | 3.7 | 9861.0 | 61,943.5 | 1.17 | 32.1 | 3.1 | 51.4 | 0.21 |
Jilin | 25,721 | 2.0 | 5239.3 | 31,584.8 | 0.89 | 77.3 | 1.3 | 97.7 | 0.42 |
Heilongjiang | 22,174 | 1.7 | 4516.9 | 26,704.6 | 1.18 | 53.9 | 1.9 | 75.0 | 0.37 |
Shanghai | 20,946 | 1.6 | 4266.7 | 32,224.8 | 0.00 | 27.1 | 3.7 | 95.3 | 0.09 |
Jiangsu | 122,369 | 9.4 | 24,926.5 | 146,715.4 | 1.28 | 40.3 | 2.5 | 62.0 | 0.18 |
Zhejiang | 73,241 | 5.6 | 14,919.1 | 91,293.3 | 1.09 | 64.7 | 1.5 | 70.0 | 0.15 |
Anhui | 47,974 | 3.7 | 9772.3 | 55,568.4 | 1.47 | 43.8 | 2.3 | 58.1 | 0.21 |
Fujian | 28,938 | 2.2 | 5894.7 | 31,813.2 | 0.94 | 40.8 | 2.4 | 90.9 | 0.15 |
Jiangxi | 29,316 | 2.3 | 5971.6 | 33,027.0 | 0.82 | 41.6 | 2.4 | 77.3 | 0.22 |
Shandong | 125,268 | 9.7 | 25,517.2 | 146,897.8 | 1.15 | 37.4 | 2.7 | 78.3 | 0.31 |
Henan | 42,917 | 3.3 | 8742.2 | 48,669.9 | 0.90 | 40.7 | 2.5 | 88.4 | 0.23 |
Hubei | 39,265 | 3.0 | 7998.2 | 48,670.7 | 0.97 | 91.2 | 1.1 | 57.9 | 0.22 |
Hunan | 33,240 | 2.6 | 6770.9 | 37,960.6 | 1.30 | 149.0 | 0.7 | 72.0 | 0.25 |
Guangdong | 97,586 | 7.5 | 19,878.3 | 117,307.5 | 0.77 | 75.8 | 1.3 | 205.8 | 0.22 |
Guangxi | 23,316 | 1.8 | 4749.4 | 25,301.4 | 1.17 | 141.6 | 0.7 | 89.6 | 0.26 |
Hainan | 6713 | 0.5 | 1367.5 | 7801.4 | 1.19 | 27.6 | 3.6 | 90.4 | 0.19 |
Chongqing | 29,022 | 2.3 | 5911.7 | 33,584.7 | 1.00 | 38.3 | 2.6 | 117.8 | 0.18 |
Sichuan | 54,940 | 4.3 | 11,191.3 | 67,556.8 | 0.85 | 162.9 | 0.6 | 105.6 | 0.25 |
Guizhou | 14,793 | 1.2 | 3013.4 | 17,507.4 | 0.60 | 73.0 | 1.4 | 105.9 | 0.20 |
Yunnan | 17,882 | 1.4 | 3642.6 | 20,742.6 | 0.67 | 168.0 | 0.6 | 100.9 | 0.22 |
Xizang | 2629 | 0.2 | 535.6 | 3537.4 | 0.58 | 91.5 | 1.1 | 166.6 | 1.50 |
Shaanxi | 24,175 | 1.8 | 4924.5 | 27,042.6 | 1.18 | 45.0 | 2.2 | 122.5 | 0.34 |
Gansu | 9677 | 0.7 | 1971.2 | 10,062.8 | 1.55 | 46.4 | 2.2 | 67.3 | 0.35 |
Qinghai | 4643 | 0.4 | 945.7 | 5603.0 | 1.83 | 51.8 | 1.9 | 64.2 | 0.62 |
Ningxia | 10,146 | 0.8 | 2066.7 | 11,751.7 | 1.46 | 30.7 | 3.3 | 69.4 | 0.66 |
Xinjiang | 21,922 | 1.7 | 4465.6 | 25,859.6 | 0.34 | 72.3 | 1.4 | 68.7 | 0.62 |
Provinces | FLR (Billion Yuan) | UGE (Billion Yuan) | CCE (Billion Yuan) | Late Cost (Billion Yuan) | Proportion (%) |
---|---|---|---|---|---|
Beijing | 7.7 | 13.2 | 0.6 | 21.5 | 1.15 |
Tianjin | 5.9 | 8.7 | 0.8 | 15.4 | 1.51 |
Hebei | 16.3 | 17.7 | 1.9 | 35.9 | 2.62 |
Shanxi | 10.7 | 10.2 | 0.9 | 21.8 | 5.10 |
Inner Mongolia | 14.8 | 10.9 | 2.4 | 28.2 | 4.76 |
Liaoning | 15.7 | 16.5 | 1.8 | 33.9 | 1.91 |
Jilin | 8.9 | 8.5 | 0.9 | 18.4 | 3.91 |
Heilongjiang | 2.0 | 9.1 | 1.9 | 12.9 | 2.83 |
Shanghai | 19.4 | 6.3 | 1.5 | 27.2 | 1.57 |
Jiangsu | 33.0 | 37.1 | 4.2 | 74.3 | 1.41 |
Zhejiang | 49.0 | 22.6 | 4.2 | 75.9 | 1.99 |
Anhui | 11.2 | 18.6 | 2.2 | 32.0 | 1.81 |
Fujian | 22.2 | 14.7 | 1.5 | 38.3 | 2.65 |
Jiangxi | 19.3 | 15.9 | 2.3 | 37.5 | 3.63 |
Shandong | 27.4 | 43.4 | 4.4 | 75.1 | 2.39 |
Henan | 23.0 | 20.8 | 2.1 | 45.9 | 3.20 |
Hubei | 23.5 | 12.6 | 2.1 | 38.2 | 2.72 |
Hunan | 23.2 | 13.0 | 3.0 | 39.2 | 3.75 |
Guangdong | 18.4 | 53.5 | 13.7 | 85.6 | 2.55 |
Guangxi | 17.9 | 10.2 | 2.6 | 30.7 | 4.35 |
Hainan | 2.8 | 2.4 | 1.6 | 6.8 | 2.43 |
Chongqing | 14.0 | 15.1 | 2.0 | 31.1 | 2.47 |
Sichuan | 23.5 | 25.0 | 3.4 | 51.8 | 3.01 |
Guizhou | 12.4 | 8.7 | 1.4 | 22.5 | 3.97 |
Yunnan | 26.3 | 9.9 | 2.0 | 38.1 | 5.95 |
Tibet | 1.2 | 1.6 | 0.1 | 2.9 | 20.02 |
Shaanxi | 12.2 | 11.8 | 1.4 | 25.3 | 4.69 |
Gansu | 5.3 | 6.6 | 0.7 | 12.6 | 5.94 |
Qinghai | 0.5 | 1.4 | 0.3 | 2.3 | 3.98 |
Ningxia | 1.6 | 4.7 | 1.1 | 7.4 | 6.33 |
Xinjiang | 0.7 | 10.3 | 1.3 | 12.3 | 4.53 |
Provinces | Early Cost (Billion Yuan) | Middle Cost (Billion Yuan) | Late Cost (Billion Yuan) | Land Fiscal Ecological Cost (Billion Yuan) | Proportion (%) |
---|---|---|---|---|---|
Jiangsu | 208.5 | 9.4 | 74.3 | 292.2 | 5.54 |
Zhejiang | 139.0 | 5.6 | 75.9 | 220.5 | 5.77 |
Shandong | 125.9 | 9.7 | 75.1 | 210.7 | 6.70 |
Guangdong | 94.0 | 7.5 | 85.6 | 187.2 | 5.58 |
Sichuan | 69.7 | 4.3 | 51.8 | 125.8 | 7.30 |
Hubei | 81.6 | 3.0 | 38.2 | 122.8 | 8.73 |
Anhui | 75.1 | 3.7 | 32.0 | 110.8 | 6.28 |
Liaoning | 72.7 | 3.7 | 33.9 | 110.3 | 6.20 |
Jiangxi | 70.1 | 2.3 | 37.5 | 109.9 | 10.65 |
Hunan | 67.7 | 2.6 | 39.2 | 109.4 | 10.48 |
Henan | 54.1 | 3.3 | 45.9 | 103.3 | 7.21 |
Fujian | 62.5 | 2.2 | 38.3 | 103.1 | 7.14 |
Hebei | 49.8 | 3.5 | 35.9 | 89.1 | 6.51 |
Chongqing | 42.6 | 2.3 | 31.1 | 75.9 | 6.03 |
Guangxi | 39.8 | 1.8 | 30.7 | 72.3 | 10.24 |
Inner Mongolia | 36.7 | 2.1 | 28.2 | 67.0 | 11.30 |
Yunnan | 26.5 | 1.4 | 38.1 | 66.0 | 10.30 |
Shanghai | 31.3 | 1.6 | 27.2 | 60.1 | 3.47 |
Xinjiang | 35.2 | 1.7 | 12.3 | 49.1 | 18.15 |
Jilin | 27.5 | 2.0 | 18.4 | 47.8 | 10.20 |
Guizhou | 22.3 | 1.2 | 22.5 | 46.0 | 8.10 |
Heilongjiang | 28.8 | 1.7 | 12.9 | 43.4 | 9.50 |
Shaanxi | 15.2 | 1.8 | 25.3 | 42.4 | 7.85 |
Shanxi | 14.4 | 1.9 | 21.8 | 38.0 | 8.91 |
Tianjin | 17.9 | 2.5 | 15.4 | 35.8 | 3.52 |
Beijing | 9.3 | 2.1 | 21.5 | 32.8 | 1.76 |
Ningxia | 15.7 | 0.8 | 7.4 | 23.9 | 20.34 |
Gansu | 9.2 | 0.7 | 12.6 | 22.6 | 10.64 |
Hainan | 8.4 | 0.5 | 6.8 | 15.7 | 5.62 |
Qinghai | 3.9 | 0.4 | 2.3 | 6.5 | 11.40 |
Tibet | 1.6 | 0.2 | 2.9 | 4.7 | 32.61 |
Project | Amount | Cost/Billion Yuan Land Fiscal Fund | |
---|---|---|---|
Land finance | Land transferred area | 3,676,374.0 hm2 | 92.3 hm2/billion yuan |
Land fiscal fund | 39,815.6 billion yuan | —— | |
Early cost | Loss of cultivated land ecosystem service value | 1556.9 billion yuan | 39.1 million yuan/ billion yuan |
Middle cost | Energy costs | 87.3 billion yuan | 2.2 million yuan/ billion yuan |
Exhaust dust emission | 230,772.7 t | 5.8 t/billion yuan | |
Residual soil and stone | 13.6 billion m3 | 340,000 m3/billion yuan | |
Heat island effect | —— | —— | |
Number of land transfers | 2,256,407 plots | 56.7 plots/billion yuan | |
Fragmentation degree of transferred land | 61.4 plots/km2 | —— | |
New urban built-up area | 30,253.4 km2 | 76.0 hm2/billion yuan | |
Average area of transferred land | 1.6 hm2/plot | —— | |
Degree of urban agglomeration of transferred land | 82.3% | —— | |
Late cost | Fees of land reclamation | 469.8 billion yuan | 11.8 million yuan/ billion yuan |
New urban green space construction expenses | 460.8 billion yuan | 11.6 million yuan/ billion yuan | |
City cleaning expenses | 70.3 billion yuan | 1.8 million yuan/ billion yuan | |
The total cost | Quantifiable cost | 2645.1 billion yuan | 66.4 million yuan/ billion yuan |
Provinces | Class IV | Provinces | Class V | Provinces | Class VI |
---|---|---|---|---|---|
Jiangsu | I | Jiangsu | I | Jiangsu | I |
Zhejiang | II | Zhejiang | II | Zhejiang | II |
Shandong | II | Shandong | II | Shandong | II |
Guangdong | II | Guangdong | II | Guangdong | II |
Sichuan | III | Sichuan | III | Sichuan | III |
Hubei | III | Hubei | III | Hubei | III |
Anhui | III | Anhui | III | Anhui | III |
Liaoning | III | Liaoning | III | Liaoning | III |
Jiangxi | III | Jiangxi | III | Jiangxi | III |
Hunan | III | Hunan | III | Hunan | III |
Henan | III | Henan | III | Henan | III |
Fujian | III | Fujian | III | Fujian | III |
Hebei | III | Hebei | IV | Hebei | IV |
Chongqing | III | Chongqing | IV | Chongqing | IV |
Guangxi | III | Guangxi | IV | Guangxi | IV |
Inner Mongolia | III | Inner Mongolia | IV | Inner Mongolia | IV |
Yunnan | III | Yunnan | IV | Yunnan | IV |
Shanghai | III | Shanghai | IV | Shanghai | IV |
Xinjiang | IV | Xinjiang | V | Xinjiang | V |
Jilin | IV | Jilin | V | Jilin | V |
Guizhou | IV | Guizhou | V | Guizhou | V |
Heilongjiang | IV | Heilongjiang | V | Heilongjiang | V |
Shaanxi | IV | Shaanxi | V | Shaanxi | V |
Shanxi | IV | Shanxi | V | Shanxi | V |
Tianjin | IV | Tianjin | V | Tianjin | V |
Beijing | IV | Beijing | V | Beijing | V |
Ningxia | IV | Ningxia | V | Ningxia | VI |
Gansu | IV | Gansu | V | Gansu | VI |
Hainan | IV | Hainan | V | Hainan | VI |
Qinghai | IV | Qinghai | V | Qinghai | VI |
Tibet | IV | Tibet | V | Tibet | VI |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Fiscal ecological cost of land (billion yuan) | Between Groups | 123,552.198 | 4 | 30,888.050 | 67.312 | 0.000 |
Within Groups | 11,930.913 | 26 | 458.881 | |||
Total | 135,483.111 | 30 | ||||
Proportion (%) | Between Groups | 624.781 | 4 | 156.195 | 10.869 | 0.000 |
Within Groups | 373.638 | 26 | 14.371 | |||
Total | 998.419 | 30 |
Project | Area I | Area Ⅱ | Area Ⅲ | Area Ⅳ | Area Ⅴ | |
---|---|---|---|---|---|---|
Land finance | Land transferred area (hm2) | 14,388.5 | 119,936.1 | 138,204.4 | 72,537.1 | 22,571.3 |
Land fiscal fund (billion yuan) | 4609.9 | 15,601.2 | 12,992.6 | 5939.9 | 672.0 | |
Early cost | Loss of cultivated land ecosystem service value (billion yuan) | 58.5 | 567.5 | 603.3 | 262.1 | 65.6 |
Middle cost | Energy costs (billion yuan) | 6.2 | 32.2 | 28.6 | 16.6 | 3.8 |
Exhaust dust emission (t) | 16,255.9 | 85,241 | 75,338.3 | 43,952.7 | 9984.9 | |
Residual soil and stone (10,000 m3) | 110,890.5 | 502,214.1 | 437,875.1 | 248,482.6 | 56,814.3 | |
Heat island effect | —— | —— | —— | —— | —— | |
Number of land transfers (plot) | 41,733 | 591,558 | 949,870 | 544,979 | 128,267 | |
Fragmentation degree of transferred land (plot/km2) | 29.0 | 49.3 | 68.7 | 75.1 | 56.8 | |
New urban built-up area (km2) | 1484.8 | 10,847.8 | 9861.8 | 6475.8 | 1583.2 | |
Average area of transferred land (hm2/plot) | 3.5 | 2.0 | 1.5 | 1.3 | 1.8 | |
Degree of urban agglomeration of transferred land (%) | 103.2 | 90.5 | 71.4 | 89.3 | 70.2 | |
Late cost | Land reclamation fees (billion yuan) | 32.9 | 127.8 | 177.7 | 122.0 | 9.4 |
New urban green space construction expenses (billion yuan) | 28.2 | 156.6 | 154.7 | 96.7 | 24.6 | |
City cleaning expenses (billion yuan) | 2.8 | 26.5 | 20.3 | 17.2 | 3.5 | |
The total amount | Quantifiable cost (billion yuan) | 128.7 | 910.6 | 984.5 | 514.6 | 106.8 |
Project | Area I | Area Ⅱ | Area Ⅲ | Area Ⅳ | Area Ⅴ | |
---|---|---|---|---|---|---|
Land finance | Land transferred area (hm2/billion yuan) | 31.2 | 76.9 | 106.4 | 122.1 | 335.9 |
Land fiscal fund (million yuan/billion yuan) | —— | —— | —— | —— | —— | |
Early cost | Loss of cultivated land ecosystem service value (million yuan/billion yuan) | 12.7 | 36.4 | 46.4 | 44.1 | 97.6 |
Middle cost | Energy costs (million yuan/billion yuan) | 1.3 | 2.1 | 2.2 | 2.8 | 5.6 |
Exhaust dust emission (t/billion yuan) | 3.5 | 5.5 | 5.8 | 7.4 | 14.9 | |
Residual soil and stone (10,000 m3/billion yuan) | 24.1 | 32.2 | 33.7 | 41.8 | 84.5 | |
Heat island effect | —— | —— | —— | —— | —— | |
Number of land transfers (plot/billion yuan) | 9.1 | 37.9 | 73.1 | 91.7 | 190.9 | |
Fragmentation degree of transferred land (plot/km2) | —— | —— | —— | —— | —— | |
New urban built-up area (hm2/billion yuan) | 32.2 | 69.5 | 75.9 | 109.0 | 235.6 | |
Average area of transferred land (hm2/plot) | —— | —— | —— | —— | —— | |
Degree of urban agglomeration of transferred land (%) | —— | —— | —— | —— | —— | |
Late cost | Land reclamation fees (million yuan/billion yuan) | 7.1 | 8.2 | 13.7 | 20.5 | 14.0 |
New urban green space construction expenses (million yuan/billion yuan) | 6.1 | 10.0 | 11.9 | 16.3 | 36.6 | |
City cleaning expenses (million yuan/billion yuan) | 0.6 | 1.7 | 1.6 | 2.9 | 5.2 | |
The total amount | Quantifiable cost (million yuan/billion yuan) | 27.9 | 58.4 | 75.8 | 86.6 | 159.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, X. Fiscal Ecological Cost of Land in China: Estimation and Regional Differences. Land 2022, 11, 1221. https://doi.org/10.3390/land11081221
Wang Y, Yang X. Fiscal Ecological Cost of Land in China: Estimation and Regional Differences. Land. 2022; 11(8):1221. https://doi.org/10.3390/land11081221
Chicago/Turabian StyleWang, Yubo, and Xizhu Yang. 2022. "Fiscal Ecological Cost of Land in China: Estimation and Regional Differences" Land 11, no. 8: 1221. https://doi.org/10.3390/land11081221
APA StyleWang, Y., & Yang, X. (2022). Fiscal Ecological Cost of Land in China: Estimation and Regional Differences. Land, 11(8), 1221. https://doi.org/10.3390/land11081221