Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Potential Green Roof Spaces
2.3. Research Outline and Data Analysis
2.3.1. Assessment of Ecosystem Service Changes
2.3.2. Evaluation of Green Roof Contributions to Tree Canopy Connectivity
3. Results
3.1. Assessment of Land Cover and Ecosystem Service Changes by i-Tree Canopy
3.1.1. Urban Land Cover Changes
3.1.2. Urban Tree Service Changes and Green Roof Effects
3.2. Assessment of Green Roof Contributions to Tree Canopy Connectivity
3.3. Priority Area Selection of Green Roofs
4. Discussion
4.1. Time-Series Land Cover Changes and Green Roof Ecosystem Services
4.2. Selection of Priority Areas for Greening Roofs Based on the Connectivity
4.3. Overall Evaluation of the Methodology
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Desa, U. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2016. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). Total and Urban Population. Available online: https://stats.unctad.org/handbook/Population/Total.html (accessed on 25 October 2021).
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Butt, E.; Turnock, S.; Rigby, R.; Reddington, C.; Yoshioka, M.; Johnson, J.; Regayre, L.; Pringle, K.; Mann, G.; Spracklen, D. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 2017, 12, 104017. [Google Scholar] [CrossRef]
- Goines, L.; Hagler, L. Noise pollution: A modem plague. South Med. J. 2007, 100, 287–294. [Google Scholar] [CrossRef]
- Chapin Iii, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Petersen, L.K.; Normander, B.; Bezák, P. Nature as a nuisance? Ecosystem services and disservices to urban lifestyle. Environ. Sci. 2008, 5, 161–172. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Speak, A.; Rothwell, J.; Lindley, S.; Smith, C. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Yang, H.S.; Kang, J.; Choi, M.S. Acoustic effects of green roof systems on a low-profiled structure at street level. Build. Environ. 2012, 50, 44–55. [Google Scholar] [CrossRef]
- Palmiere, S.E.; Riascos, C.E.; Riascos, L.A. Integration of energy and fire prevention systems in greenbuildings. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 723–728. [Google Scholar]
- Blank, L.; Vasl, A.; Levy, S.; Grant, G.; Kadas, G.; Dafni, A.; Blaustein, L. Directions in green roof research: A bibliometric study. Build. Environ. 2013, 66, 23–28. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Muttil, N.; Tariq, M.A.U.R.; Ng, A.W.M. Quantifying the benefits and ecosystem services provided by green roofs—A review. Water 2022, 14, 68. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Makeschin, F. A contribution towards a transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecol. Indic. 2012, 21, 30–38. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Ziter, C. The biodiversity–ecosystem service relationship in urban areas: A quantitative review. Oikos 2016, 125, 761–768. [Google Scholar] [CrossRef]
- Díaz, S.; Fargione, J.; Chapin III, F.S.; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Bailey, S. Increasing connectivity in fragmented landscapes: An investigation of evidence for biodiversity gain in woodlands. For. Ecol. Manag. 2007, 238, 7–23. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geogr. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Fahrig, L. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 1997, 61, 603–610. [Google Scholar] [CrossRef]
- Laita, A.; Kotiaho, J.; Mönkkönen, M. Graph-theoretic connectivity measures: What do they tell us about connectivity? Landsc. Ecol. 2011, 26, 951–967. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Pelorosso, R.; Gobattoni, F.; Geri, F.; Monaco, R.; Leone, A. Evaluation of ecosystem services related to bio-energy landscape connectivity (BELC) for land use decision making across different planning scales. Ecol. Indic. 2016, 61, 114–129. [Google Scholar] [CrossRef]
- Williams, S.H.; Scriven, S.A.; Burslem, D.F.; Hill, J.K.; Reynolds, G.; Agama, A.L.; Kugan, F.; Maycock, C.R.; Khoo, E.; Hastie, A.Y. Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services. Conserv. Biol. 2020, 34, 934–942. [Google Scholar] [CrossRef]
- Herrera, L.P.; Sabatino, M.C.; Jaimes, F.R.; Saura, S. Landscape connectivity and the role of small habitat patches as stepping stones: An assessment of the grassland biome in South America. Biodivers. Conserv. 2017, 26, 3465–3479. [Google Scholar] [CrossRef]
- Rösch, V.; Tscharntke, T.; Scherber, C.; Batáry, P. Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 2015, 179, 209–222. [Google Scholar] [CrossRef]
- Braaker, S.; Obrist, M.K.; Ghazoul, J.; Moretti, M. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J. Anim. Ecol. 2017, 86, 521–531. [Google Scholar] [CrossRef]
- Suwon. Statistics Suwon. Available online: https://www.suwon.go.kr/stat/index.do (accessed on 30 July 2022).
- ESRI. World Imagery Basemap. 2021. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 29 December 2021).
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. 2021. Available online: https://zenodo.org/record/5571936#.YvMgWBxByUk (accessed on 12 July 2022).
- Ministry of Land, Infrastructure and Transport (MOLIT). Integrated building information data. 2021. Available online: http://data.nsdi.go.kr/dataset/12623 (accessed on 29 December 2021).
- i-Tree Canopy. i-Tree Software Suite v6.x. (n.d.). Available online: http://www.itreetools.org (accessed on 2 May 2022).
- ESRI. ArcGIS Pro (Version 2.7). Esri Inc. 2021. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 29 December 2021).
- Andersson, B.; Carroll, W.; Martin, M. Aggregation of U.S. population centers using climate parameters related to building energy use. J. Clim. Appl. Meteorol. 1986, 25, 596–614. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Rayfield, B.; Fortin, M.-J.; Fall, A. Connectivity for conservation: A framework to classify network measures. Ecology 2011, 92, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Galpern, P.; Manseau, M.; Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 2011, 144, 44–55. [Google Scholar] [CrossRef]
- Urban, D.L.; Minor, E.S.; Treml, E.A.; Schick, R.S. Graph models of habitat mosaics. Ecol. Lett. 2009, 12, 260–273. [Google Scholar] [CrossRef]
- Fuller, T.; Munguía, M.; Mayfield, M.; Sánchez-Cordero, V.; Sarkar, S. Incorporating connectivity into conservation planning: A multi-criteria case study from central Mexico. Biol. Conserv. 2006, 133, 131–142. [Google Scholar] [CrossRef]
- Foltête, J.-C.; Clauzel, C.; Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Model. Softw. 2012, 38, 316–327. [Google Scholar] [CrossRef]
- Rudd, H.; Vala, J.; Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restor. Ecol. 2002, 10, 368–375. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Volpe, N.L.; Hadley, A.S.; Robinson, W.D.; Betts, M.G. Functional connectivity experiments reflect routine movement behavior of a tropical hummingbird species. Ecol. Appl. 2014, 24, 2122–2131. [Google Scholar] [CrossRef]
- Zurbuchen, A.; Landert, L.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 2010, 143, 669–676. [Google Scholar] [CrossRef]
- Klaassen, R.H.; Strandberg, R.; Hake, M.; Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 2008, 62, 1427–1432. [Google Scholar] [CrossRef]
- Byrne, M.; Elliott, C.; Yates, C.; Coates, D. Extensive pollen dispersal in a bird-pollinated shrub, Calothamnus quadrifidus, in a fragmented landscape. Mol. Ecol. 2007, 16, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Gnecco, I.; Palla, A.; Lanza, L.G.; La Barbera, P. The role of green roofs as a source/sink of pollutants in storm water outflows. Water Resour. Manag. 2013, 27, 4715–4730. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef]
- Hoeben, A.D.; Posch, A. Green roof ecosystem services in various urban development types: A case study in Graz, Austria. Urban For. Urban Green 2021, 62, 127167. [Google Scholar] [CrossRef]
- Suwon. Climate Change Countermeasures. 2021. Available online: https://www.suwon.go.kr/sw-www/deptHome/dep_env/env_02/env_01_06/env_01_06-03.jsp (accessed on 29 December 2021).
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Jongman, R. Ecological networks are an issue for all of us. J. Landsc. Ecol. 2008, 1, 7–13. [Google Scholar] [CrossRef]
- Thorne, J.H.; Choe, H.; Boynton, R.M.; Lee, D.K. Open space networks can guide urban renewal in a megacity. Environ. Res. Lett. 2020, 15, 094080. [Google Scholar] [CrossRef]
- i-Tree Eco. i-Tree Software Suite v6.x. (n.d.). Available online: http://www.itreetools.org (accessed on 2 May 2022).
- Seddon, N.; Daniels, E.; Davis, R.; Chausson, A.; Harris, R.; Hou-Jones, X.; Huq, S.; Kapos, V.; Mace, G.M.; Rizvi, A.R.; et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain. 2020, 3, e15. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
Land Cover Type | 2003 | 2012 | 2021 | Green Roof Scenario * | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | % of the Total Study Area | Area (km2) | % of the Total Study Area | Area (km2) | % of the Total Study Area | Area (km2) | % of the Total Study Area | |
Tree | 37.12 | 30.60 | 34.77 | 28.67 | 36.47 | 30.07 | 37.34 | 30.77 |
Road | 21.27 | 17.54 | 25.39 | 20.93 | 27.66 | 22.80 | 27.66 | 22.80 |
Building | 25.96 | 21.40 | 28.06 | 23.13 | 30.73 | 25.33 | 29.86 | 24.63 |
Grass and cropland | 26.36 | 21.73 | 15.85 | 13.07 | 15.12 | 12.47 | 15.12 | 12.47 |
Bare ground | 8.49 | 7.00 | 15.20 | 12.53 | 9.30 | 7.67 | 9.30 | 7.67 |
Water | 2.10 | 1.73 | 2.02 | 1.67 | 2.02 | 1.67 | 2.02 | 1.67 |
Pervious area | 63.48 | 52.33 | 50.62 | 41.74 | 51.59 | 42.54 | 52.46 | 43.24 |
Impervious area | 47.23 | 38.93 | 53.45 | 44.06 | 58.39 | 48.13 | 57.52 | 47.43 |
Time Period | To 2021 | ||||||
---|---|---|---|---|---|---|---|
Tree | Road | Building | Grass and Cropland | Bare Ground | Water | ||
From 2003 | Tree | 31.13 | 1.46 | 2.10 | 2.02 | 0.40 | - |
Road | 0.89 | 17.79 | 1.70 | 0.32 | 0.57 | - | |
Building | 0.57 | 1.86 | 21.91 | - | 1.62 | - | |
Grass and cropland | 3.07 | 5.09 | 3.80 | 11.97 | 2.35 | - | |
Bare ground | 0.65 | 1.46 | 1.21 | 0.81 | 4.37 | - | |
Water | 0.16 | - | - | - | - | 1.94 |
Category | 2003 | 2012 | 2021 | Green Roof Scenario * |
---|---|---|---|---|
Sequestered annually in trees (CO2) (kt/yr) | 32.66 | 30.60 | 32.09 | 32.84 |
Stored in trees (CO2) (kt) | 1045.84 | 979.77 | 1027.62 | 1051.54 |
CO (t/yr) | 3.93 | 3.68 | 3.86 | 3.95 |
NO2 (t/yr) | 24.16 | 22.64 | 23.74 | 24.29 |
O3 (t/yr) | 186.66 | 174.86 | 183.40 | 187.67 |
PM10 (t/yr) | 44.00 | 41.22 | 43.23 | 44.24 |
PM2.5 (t/yr) | 9.11 | 8.53 | 8.95 | 9.16 |
SO2 (t/yr) | 13.44 | 12.59 | 13.20 | 13.51 |
Avoided Runoff (ML/yr) | 7.91 | 7.41 | 7.78 | 7.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kang, W. Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area. Land 2022, 11, 1281. https://doi.org/10.3390/land11081281
Kim J, Kang W. Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area. Land. 2022; 11(8):1281. https://doi.org/10.3390/land11081281
Chicago/Turabian StyleKim, Jongyun, and Wanmo Kang. 2022. "Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area" Land 11, no. 8: 1281. https://doi.org/10.3390/land11081281
APA StyleKim, J., & Kang, W. (2022). Assessing Green Roof Contributions to Tree Canopy Ecosystem Services and Connectivity in a Highly Urbanized Area. Land, 11(8), 1281. https://doi.org/10.3390/land11081281