Soil Carbon and Phosphorus after 40 Years of Contrasting Tillage and Straw Management in Dryland Wheat Production under Semi-Arid Temperate Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Bethlehem Long-Term Trial and Design
2.2. Soil Sampling and Analyses
2.3. Soil Carbon Fractions
2.4. Soil pH and Phosphorus Fractions
2.5. Data Analyses
3. Results
3.1. Soil Organic Carbon Fractions and Stocks
3.2. Soil pH and Phosphorus Fractions
3.3. Correlation of Labile Carbon and Phosphorus Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tifafi, M.; Guenet, B.; Hatté, C. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France. Glob. Biogeochem. Cycles 2018, 32, 42–56. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, R.K.; Singh, R.G.; Jat, M.L.; Stirling, C.M.; Jat, M.K.; Bijarniya, D.; Kumar, M.; Saharawat, Y.S.; Gupta, R.K. Soil organic carbon changes after seven years of conservation agriculture in a rice–wheat system of the eastern Indo-Gangetic Plains. Soil Use Manag. 2017, 33, 81–89. [Google Scholar] [CrossRef]
- de Moraes Sa, J.C.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar]
- Snapp, S.S.; Grandy, A.S. Advanced Soil Organic Matter Management. Mich. State Univ. Ext. Bull. 2011, 3137, 1–6. [Google Scholar]
- Petrokofsky, G.; Kanamaru, H.; Achard, F.; Goetz, S.J.; Joosten, H.; Holmgren, P.; Lehtonen, A.; Menton, M.C.; Pullin, A.S.; Wattenbach, M. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 2012, 1, 6. [Google Scholar] [CrossRef]
- Smith, P.; Davies, C.A.; Ogle, S.; Zanchi, G.; Bellarby, J.; Bird, N.; Boddey, R.M.; McNamara, N.P.; Powlson, D.; Cowie, A.; et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: Current capability and future vision. Glob. Chang. Biol. 2012, 18, 2089–2101. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Gregorich, E.G.; McLaughlin, N.B.; Zhang, X.; Guo, Y.; Gao, Y.; Liang, A. Evaluating storage and pool size of soil organic carbon in degraded soils: Tillage effects when crop residue is returned. Soil Tillage Res. 2019, 192, 215–221. [Google Scholar] [CrossRef]
- Singh, S.; Nouri, A.; Singh, S.; Anapalli, S.; Lee, J.; Arelli, P.; Jagadamma, S. Soil organic carbon and aggregation in response to thirty-nine years of tillage management in the southeastern US. Soil Tillage Res. 2020, 197, 104523. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Wiggs, G.; Holmes, P. Dynamic controls on wind erosion and dust generation on west-central Free State agricultural land, South Africa. Earth Surf. Process. 2011, 36, 827–838. [Google Scholar] [CrossRef]
- Mahasa, P.S. Wind Erosion and Soil Susceptibility in the Free State Province, South Africa. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2015. [Google Scholar]
- Dube, E.; Sosibo, N.Z.; Du Plessis, D. CA offers a practical solution to wind erosion. SA Graan/Grain 2022, 55, 48. [Google Scholar]
- Dube, E.; Mare-Patose, R.; Kilian, W.; Barnard, A.; Tsilo, T.J. Identifying high-yielding dryland wheat cultivars for the summer rainfall area of South Africa. S. Afr. J. Plant Soil 2016, 33, 77–81. [Google Scholar] [CrossRef]
- DAFF. Abstract of Agricultural Statistics; DAFF: Pretoria, South Africa, 2012. [Google Scholar]
- SAGL (South African Grain Laboratories). Wheat Production Reports in South Africa. Available online: https://sagl.co.za/wheat/reports/ (accessed on 12 November 2020).
- Fey, M.V. Soils of South Africa; Cambridge University Press: Cape Town, South Africa, 2010. [Google Scholar]
- Tittonell, P.; Scopel, E.; Andrieu, N.; Posthumus, H.; Mapfumo, P.; Corbeels, M.; Van Halsema, G.E.; Lahmar, R.; Lugandu, S.; Rakotoarisoa, J.; et al. Agroecology-based aggradation-conservation agriculture (ABACO): Targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crops Res. 2012, 132, 168–174. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crops Res. 2012, 132, 7–17. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; McDonald, A. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Tillage Res. 2019, 190, 128–138. [Google Scholar] [CrossRef]
- Liang, B.C.; VandenBygaart, A.J.; MacDonald, J.D.; Cerkowniak, D.; McConkey, B.G.; Desjardins, R.L.; Angers, D.A. Revisiting no-till’s impact on soil organic carbon storage in Canada. Soil Tillage Res. 2020, 198, 104529. [Google Scholar] [CrossRef]
- Nziguheba, G.; Palm, C.A.; Buresh, R.J.; Smithson, P.C. Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant Soil 1998, 198, 159–168. [Google Scholar] [CrossRef]
- Iyamuremye, F.; Dick, R.P.; Baham, J. Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Sci. 1996, 161, 426–435. [Google Scholar] [CrossRef]
- Reddy, D.D.; Subba Rao, A.; Singh, M. Crop residue addition effects on myriad forms and sorption of phosphorus in a Vertisol. Bioresour. Technol. 2001, 80, 93–99. [Google Scholar] [CrossRef]
- Du Preez, C.C.; Kotzé, E.; Loke, P.F. Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol. Soil Tillage Res. 2001, 63, 25–33. [Google Scholar] [CrossRef]
- Kotzé, E. Influence of Long-Term Wheat Residue Management on Some Fertility Indicators of an Avalon Soil at Bethlehem. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2004. [Google Scholar]
- Loke, P.F.; Kotzé, E.; du Preez, C.C. Changes in soil organic matter indices following 32 years of different wheat production management practices in semi-arid South Africa. Nutr. Cycl. Agroecosyst. 2012, 94, 97–109. [Google Scholar] [CrossRef]
- Seepamore, M.K.; du Preez, C.C.; Ceronio, G.M. Impact of long-term production management practices on wheat grain yield and quality components under a semi-arid climate. S. Afr. J. Plant Soil 2020, 37, 194–201. [Google Scholar] [CrossRef]
- Motema, T.; Kotzé, E.; Loke, P.F.; du Preez, C.C. Response of soil organic matter indices and fractions after 37 years of wheat production management practices in semi-arid South Africa. S. Afr. J. Plant Soil 2020, 37, 136–143. [Google Scholar] [CrossRef]
- Ncoyi, K.; du Preez, C.C.; Kotzé, E. Comparison of soil phosphorus fractions after 37 years of wheat production under different management practices in a semi-arid climate. S. Afr. J. Plant Soil. 2020, 37, 184–193. [Google Scholar] [CrossRef]
- Wiltshire, G.H.; du Preez, C.C. Long-term effects of conservation practices on the nitrogen fertility of a soil cropped annually to wheat. S. Afr. J. Plant Soil 1993, 10, 70–76. [Google Scholar] [CrossRef]
- Loke, P.F.; Kotzé, E.; Du Preez, C.C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 2013, 51, 415–426. [Google Scholar] [CrossRef]
- ARC-ISCW. Agro-Climatology Database. Agricultural Research Council-Institute for Climate Soil and Water; ARC-ISCW: Pretoria, South Africa, 2013. [Google Scholar]
- Soil Classification Working Group. Soil Classification: A Taxonomic System for South Africa; Department of Agricultural Development: Pretoria, South Africa, 1991. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2015, 106, 192. [Google Scholar]
- Combs, S.M.; Nathan, M.V. Soil Organic Matter. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1998; pp. 53–58. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed]
- Cambardella, C.A.; Elliot, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Kurth, V.J.; MacKenzie, M.D.; DeLuca, T.H. Estimating charcoal content in forest mineral soils. Geoderma 2006, 137, 135–139. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Chen, C.R.; Condron, L.M.; Davis, M.R.; Sherlock, R.R. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 2000, 220, 51–163. [Google Scholar] [CrossRef]
- Agbenin, J.O.; Anumonye, M. Distribution and sorption of phosphate in a savanna soil under improved pastures in northern Nigeria. Commun. Soil Sci. Plant Anal. 2006, 37, 493–511. [Google Scholar] [CrossRef]
- Lobe, I.; Sandhage-Hofmann, A.; Brodowski, S.; Du Preez, C.C.; Amelung, W. Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld. Geoderma 2011, 162, 251–259. [Google Scholar] [CrossRef]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; Food & Agriculture Org.: Rome, Italy, 2005. [Google Scholar]
- Dos Reis Ferreira, C.; da Silva Neto, E.C.; Pereira, M.G.; do Nascimento Guedes, J.; Rosset, J.S.; dos Anjos, L.H.C. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 2020, 198, 104533. [Google Scholar] [CrossRef]
- Rumpel, C. Does burning of harvesting residues increase soil carbon storage. J. Soil Sci. Plant Nutr. 2008, 8, 44–51. [Google Scholar] [CrossRef]
- Rumpel, C.; Alexis, M.; Chabbi, A.; Chaplot, V.; Rasse, D.P.; Valentin, C.; Mariotti, A. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 2006, 130, 35–46. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. For. Res. 2017, 28, 95–104. [Google Scholar] [CrossRef]
- Romanya, J.; Khanna, P.K.; Raison, R.J. Effects of slash burning on soil phosphorus fractions and sorption and desorption of phosphorus. For. Ecol. Manag. 1994, 65, 89–103. [Google Scholar] [CrossRef]
- ARC-Small Grain. Guidelines: For the Production of Small Grains in the Summer Rainfall Region; ARC-Small Grain Institute: Bethlehem, South Africa, 2018. [Google Scholar]
Factor | Soil Organic C (g kg−1) | |||||
---|---|---|---|---|---|---|
0–50 | 50–200 | 200–400 | 400–600 | 600–800 | 800–1000 | |
Tillage practice | ||||||
No-tillage | 9.10 | 10.2 | 7.14 | 4.79 | 3.21 b | 2.90 |
Stubble mulch | 11.5 | 10.9 | 8.88 | 6.55 | 8.01 a | 8.00 |
Conventional tillage | 9.10 | 7.50 | 7.13 | 7.72 | 2.22 b | 4.70 |
LSD | 7.30 | 5.98 | 3.62 | 4.90 | 2.60 | 5.90 |
Straw management | ||||||
Burned | 11.3 | 10.9 | 9.67 a | 6.11 | 3.64 | 4.10 |
Not burned | 8.40 | 8.30 | 5.76 b | 6.60 | 5.32 | 6.30 |
LSD | 5.96 | 4.88 | 2.96 | 4.01 | 2.12 | 4.82 |
p-value | ||||||
Tillage | 0.700 | 0.442 | 0.486 | 0.438 | 0.001 | 0.205 |
Burning | 0.307 | 0.260 | 0.015 | 0.788 | 0.107 | 0.322 |
Tillage × Burning | 0.700 | 0.050 | 0.901 | 0.170 | 0.053 | 0.196 |
Factor | Macro-POC | Mineral-Associate C | Charcoal C | |||
---|---|---|---|---|---|---|
0–50 | 50–200 | 0–50 | 50–200 | 0–50 | 50–200 | |
Tillage practice | ||||||
No-tillage | 0.67 a | 0.10 b | 7.70 | 9.50 | 1.20 | 0.90 |
Stubble mulch | 0.63 a | 0.30 a | 10.2 | 10.0 | 1.10 | 1.20 |
Conventional tillage | 0.30 b | 0.30 a | 8.40 | 6.90 | 1.50 | 1.00 |
LSD | 0.11 | 0.13 | 7.28 | 5.86 | 0.41 | 0.67 |
Straw management | ||||||
Burned | 0.50 | 0.30 | 10.2 | 10.1 | 1.40 | 1.00 |
Not burned | 0.50 | 0.20 | 7.30 | 7.60 | 1.10 | 1.10 |
LSD | 0.09 | 0.11 | 5.94 | 4.79 | 0.34 | 0.54 |
p-value | ||||||
Tillage | <0.001 | 0.026 | 0.745 | 0.461 | 0.193 | 0.733 |
Burning | 0.985 | 0.294 | 0.296 | 0.274 | 0.120 | 0.650 |
Tillage × Burning | 0.978 | 0.606 | 0.679 | 0.050 | 0.695 | 0.578 |
Factor | Soil Carbon Stocks (t ha−1) | |||||
---|---|---|---|---|---|---|
0–50 | 50–200 | 200–400 | 400–600 | 600–800 | 800–1000 | |
Tillage practice | ||||||
No-tillage | 7.13 | 26.8 | 18.7 | 13.1 | 9.67 b | 9.61 |
Stubble mulch | 8.89 | 25.0 | 24.8 | 18.5 | 26.4 a | 27.1 |
Conventional tillage | 7.07 | 17.0 | 19.3 | 24.4 | 8.07 b | 18.3 |
LSD | 5.67 | 13.5 | 10.8 | 15.8 | 10.2 | 21.1 |
Straw management | ||||||
Burned | 8.88 | 27.2 | 26.1 a | 17.4 | 11.4 | 12.6 |
Not burned | 6.51 | 18.6 | 15.8 b | 20.0 | 18.0 | 24.0 |
LSD | 4.63 | 11.1 | 8.79 | 12.9 | 8.30 | 17.3 |
p-value | ||||||
Tillage | 0.73 | 0.28 | 0.41 | 0.32 | 0.004 | 0.23 |
Burning | 0.28 | 0.12 | 0.03 | 0.66 | 0.103 | 0.17 |
Tillage × Burning | 0.67 | 0.02 | 0.74 | 0.15 | 0.07 | 0.16 |
Factor | Soil pH | Available Phosphorus | ||
---|---|---|---|---|
0–50 | 50–200 | 0–50 | 50–200 | |
Tillage practice | ||||
No-tillage | 4.94 | 4.95 | 40.3 a | 31.5 |
Stubble mulch | 4.84 | 4.95 | 29.9 b | 25.4 |
Conventional tillage | 5.10 | 5.01 | 23.1 b | 21.6 |
LSD | 0.289 | 0.214 | 8.13 | 8.38 |
Straw management | ||||
Burned | 5.09 a | 5.08 a | 35.4 a | 27.9 |
Not burned | 4.83 b | 4.86 b | 26.8 b | 24.5 |
LSD | 0.236 | 0.175 | 6.64 | 6.84 |
p-value | ||||
Tillage | 0.165 | 0.743 | 0.003 | 0.069 |
Burning | 0.032 | 0.023 | 0.017 | 0.301 |
Tillage × Burning | 0.273 | 0.174 | 0.746 | 0.612 |
Factor | NaHCO3 Pi | NaOH I Pi | ||
---|---|---|---|---|
50–200 | 200–400 | 50–200 | 200–400 | |
Tillage practice | ||||
No-tillage | 9.2 b | 6.0 b | 29.1 | 30.7 |
Stubble mulch | 14.0 b | 8.10 a,b | 27.8 | 26.9 |
Conventional tillage | 25.7 a | 15.5 a | 28.0 | 36.5 |
LSD | 5.86 | 6.76 | 14.86 | 15.73 |
Straw management | ||||
Burned | 19.7 a | 12.0 | 24.0 | 28.7 |
Not burned | 12.9 b | 7.8 | 32.6 | 34.0 |
LSD | 4.79 | 5.52 | 12.13 | 12.84 |
p-value | ||||
Tillage | <0.001 | 0.025 | 0.977 | 0.425 |
Burning | 0.010 | 0.124 | 0.145 | 0.377 |
Tillage × Burning | 0.120 | 0.391 | 0.429 | 0.933 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 Organic C | - | ||||||
2 Macro POC | 0.053 ns | - | |||||
3 Micro POC | −0.412 ns | 0.703 ** | - | ||||
4 Mineral-associated C | 0.994 *** | −0.051 ns | −0.503 * | - | |||
5 Bray 1 extractable P | 0.159 ns | 0.727 *** | 0.434 ns | 0.085 ns | - | ||
6 NaHCO3 Pi | 0.366 ns | −0.661 ** | −0.696 ** | 0.437 ns | −0.218 ns | - | |
7 NaOH I Pi | −0.170 ns | −0.471 ns | −0.194 ns | −0.126 ns | −0.360 ns | 0.0368 ns | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosibo, N.Z.; Muchaonyerwa, P.; Dube, E.; Tsilo, T.J. Soil Carbon and Phosphorus after 40 Years of Contrasting Tillage and Straw Management in Dryland Wheat Production under Semi-Arid Temperate Climate. Land 2022, 11, 1305. https://doi.org/10.3390/land11081305
Sosibo NZ, Muchaonyerwa P, Dube E, Tsilo TJ. Soil Carbon and Phosphorus after 40 Years of Contrasting Tillage and Straw Management in Dryland Wheat Production under Semi-Arid Temperate Climate. Land. 2022; 11(8):1305. https://doi.org/10.3390/land11081305
Chicago/Turabian StyleSosibo, Nondumiso Zanele, Pardon Muchaonyerwa, Ernest Dube, and Toi John Tsilo. 2022. "Soil Carbon and Phosphorus after 40 Years of Contrasting Tillage and Straw Management in Dryland Wheat Production under Semi-Arid Temperate Climate" Land 11, no. 8: 1305. https://doi.org/10.3390/land11081305
APA StyleSosibo, N. Z., Muchaonyerwa, P., Dube, E., & Tsilo, T. J. (2022). Soil Carbon and Phosphorus after 40 Years of Contrasting Tillage and Straw Management in Dryland Wheat Production under Semi-Arid Temperate Climate. Land, 11(8), 1305. https://doi.org/10.3390/land11081305