Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model
Abstract
:1. Introduction
2. Methods and Data
2.1. Spatial Correlation Analysis
2.2. Standard Deviation Ellipse
2.3. Center of Gravity Analysis
2.4. Spatial Econometric Model
2.5. Index Selection and Data Source
3. Result
3.1. Spatial Characteristics of Renewable Energy Consumption and Carbon Emissions
3.1.1. Univariate Spatial Autocorrelation Analysis
3.1.2. Bivariate Spatial Correlation Analysis
3.1.3. Standard Deviation Ellipse and Center of Gravity Evolution
3.2. Result of Spatial Econometric Estimation
4. Discussion
4.1. Results Based SDM without REC
4.2. Robustness Test
4.3. Policy Recommendations
4.4. Research Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1. | Chinese Government Network. Xi Jinping delivers an important speech at the general debate of the 75th UN General Assembly. (2020-09-22) [2020-11-20]. |
2. | Grasp the key period and window period of carbon peak in the 14th five-year plan. China Electric Power News, 2021-03-23(1). |
References
- Yang, S.M.; Shen, C.L.; Wang, F. Exploring Breakthrough in Carbon Peak and Carbon Neutrality and Promoting High-Quality Development of China’s Petrochemical Industry. Strategy Investig. 2022, Z3, 20–22. [Google Scholar]
- Polloni-Silva, E.; Silveira, N.; Ferraz, D.; de Mello, D.S.; Moralles, H.F. The drivers of energy-related CO2 emissions in Brazil: A regional application of the STIRPAT model. Environmental science and pollution. Res. Int. 2021, 28, 51745–51762. [Google Scholar]
- Cheng, Y.; Wang, Z.; Zhang, S.; Ye, X.; Jiang, H. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. J. Geogr. Sci. 2013, 68, 1418–1431. [Google Scholar]
- Lin, X.Q.; Bian, Y.; Wang, D. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei region. Econ. Geogr. 2021, 41, 187–195. [Google Scholar]
- Su, K.; Chen, Y.H.; Fan, S.S.; Zhang, M.M. Influencing factors and reduction mechanism of carbon emissions at city-range: An empirical study on Fujian province. China Environ. Sci. 2019, 39, 859–867. [Google Scholar]
- Yan, Y.M.; Wang, Z.; Wu, L.Y.; Liu, C.X. Analysis of the determinants of carbon emission intensity on regional differences. Acta Sci. Circumstantiae 2016, 36, 3436–3444. [Google Scholar]
- Peng, L.L.; Li, N.; Zheng, Z.Y.; Li, F.; Wang, Z. Spatial-temporal heterogeneity of carbon emissions and influencing factors on household consumption of China. China Environ. Sci. 2021, 41, 463–472. [Google Scholar]
- Zhao, J.C.; Liu, Q.Q. Examining the driving factors of urban residential carbon intensity using the LMDI method: Evidence from China’s county-level cities. Int. J. Environ. Res. Public Health 2021, 18, 3929. [Google Scholar] [CrossRef]
- Han, Y.Y.; Pi, H.J.; Shi, Z.N. Study on measurement and influencing factors of industrial CO2 emission in Beijing-Tianjin-Hebei Region. World Reg. Stud. 2020, 29, 140–147. [Google Scholar]
- Fang, Y.B.; Wang, L.M.; Mou, C.F. Determinants of spatial disparities of petroleum terminal utilization carbon emissions in China. Resour. Sci. 2017, 39, 2233–2246. [Google Scholar]
- Deng, J.X.; Liu, X.; Wang, Z. Characteristics analysis and factor decomposition based on the regional difference changes in China’s CO2 emission. J. Nat. Resour. 2014, 29, 189–200. [Google Scholar]
- Wang, Y.; He, Y.F. Spatiotemporal dynamics and influencing factors of provincial carbon emissions in China. World Reg. Stud. 2020, 29, 512–522. [Google Scholar]
- Mo, H.B.; Wang, S.J. Spatio-temporal evolution and spatial effect mechanism of carbon emission at county level in the Yellow River Basin. Sci. Geogr. Sin. 2021, 41, 1324–1335. [Google Scholar]
- Huang, L.L.; Wang, Y.; Zhang, C.; Huang, Y.M. A spatial-temporal decomposition analysis of CO2 emissions in Fujian Southeast triangle region. China Environ. Sci. 2020, 40, 2312–2320. [Google Scholar]
- Ma, X.J.; Chen, R.M.; Dong, B.Y.; Niu, X.Q. Factor decomposition and decoupling effect of China’s industrial carbon emissions. China Environ. Sci. 2019, 39, 3549–3557. [Google Scholar]
- Lu, N.; Wang, W.; Wang, M.; Zhang, C.; Lu, H. Breakthrough low-carbon technology innovation and carbon emissions: Direct and spatial spillover effect. China Popul. Resour. Environ. 2019, 29, 30–39. [Google Scholar]
- Xu, L.; Du, H.R.; Zhang, X.L. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Wang, S.J.; Xie, Z.H.; Wang, Z.H. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China. Acta Geogr. Sin. 2021, 76, 3103–3118. [Google Scholar]
- Zhang, H.M.; Yuan, P.F.; Zhu, Z.S. City population size, industrial agglomeration and CO2 emission in Chinese prefectures. China Environ. Sci. 2021, 41, 2459–2470. [Google Scholar]
- Jia, J.; Lei, J.; Chen, C.; Song, X.; Zhong, Y. Contribution of renewable energy consumption to CO2 Emission mitigation: A comparative analysis from a global geographic perspective. Sustainability 2021, 13, 3853. [Google Scholar] [CrossRef]
- Naz, S.; Sultan, R.; Zaman, K.; Aldakhil, A.M.; Nassani, A.A.; Abro, M.M.Q. Moderating and mediating role of renewable energy consumption, FDI inflows, and economic growth on carbon dioxide emissions: Evidence from robust least square estimator. Environ. Sci. Pollut. Res. Int. 2019, 26, 2806–2819. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Wang, Z.; Zhong, Z.Q. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Liu, L.; Zhou, D. Impact of renewable energy investment on carbon emissions in China—An empirical study using a nonparametric additive regression model. Sci. Total Environ. 2021, 785, 147109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Zhong, Z. Renewable energy consumption, foreign trade, carbon emissions in China. Soft Sci. 2017, 31, 49–52. [Google Scholar]
- Qiu, Q.Q.; Li, S.; Xia, Q. Renewable energy consumption-energy-related CO2 emission nexus for China. Ecol. Econ. 2017, 33, 19–23. [Google Scholar]
- Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Donkor, M. The link between carbon emissions, renewable energy consumption, and economic growth: A heterogeneous panel evidence from West Africa. Environ. Sci. Pollut. Res. 2020, 27, 28867–28889. [Google Scholar] [CrossRef]
- Radmehr, R.; Henneberry, S.R.; Shayanmehr, S. Renewable energy consumption, CO2 emissions, and economic growth nexus: A simultaneity spatial modeling analysis of EU countries. Struct. Chang. Econ. Dyn. 2021, 57, 13–27. [Google Scholar] [CrossRef]
- Oppong, A.; Jie, M.; Acheampong, K.N.; Sakyi, M.A. Variations in the environment, energy and macroeconomic interdependencies and related renewable energy transition policies based on sensitive categorization of countries in Africa. J. Clean. Prod. 2020, 255, 119777. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, T. Dynamic relationship among consumption of renewable energy, economic growth and carbon emission in China. Technol. Econ. 2013, 32, 99–104. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar]
- Zhao, M.; Lv, L.; Wu, J.; Wang, S.; Zhang, N.; Bai, Z.; Luo, H. Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model. Energy 2022, 251, 123917. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In Proceedings of the CSISS Workshop on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 10–11 May 2002. [Google Scholar]
- Zhang, C.; Gao, J.; Ding, P.Y. Impact of haze on the intention to visit China of overseas tourists: Based on destination image and risk perception theories. Tour. Trib. 2017, 32, 58–67. [Google Scholar]
- Feng, Z.Y.; Shi, R.H. Spatio-temporal features and the association of ground-level PM2.5 concentration and its emission in China. J. Geo-Inf. Sci. 2021, 23, 1221–1230. [Google Scholar]
- Song, Y.; Zhang, M. Research on the gravity movement and mitigation potential of Asia’s carbon dioxide emissions. Energy 2019, 170, 31–39. [Google Scholar] [CrossRef]
- Lee, L.F.; Yu, J. Identification of spatial Durbin panel models. J. Appl. Econom. 2015, 31, 133–162. [Google Scholar] [CrossRef]
- Lesage, J.P.; Pace, R.K. Spatial econometric modeling of origin-destination flow. Journal of Regional Science 2010, 48, 941–967. [Google Scholar] [CrossRef]
- Chica-Olmo, J.; Sari-Hassoun, S.; Moya-Fernández, P. Spatial relationship between economic growth and renewable energy consumption in 26 European countries. Energy Econ. 2020, 92, 104962. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Li, K.; Xiao, H.; Cai, Y. The spatial effects of city-level water-energy nexus: A case study of Hebei Province, China. J. Clean. Prod. 2021, 310, 127497. [Google Scholar] [CrossRef]
- Wang, Z.B.; Liang, L.W.; Wang, X.J. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations. Acta Geogr. Sin. 2019, 74, 2614–2630. [Google Scholar]
- Ye, Z.; Zhang LN, X. The spatial spillover effect of pollution and emission reduction in industrial structure adjustment: Estimation based on spatial Durbin model. Ecol. Econ. 2021, 37, 178–184. [Google Scholar]
- Yang, J.L.; Chen, Z.Z. Environmental regulation, new-type urbanization and regional economic growth: An empirical study based on the spatial Durbin model of 30 provinces in China. Ecol. Econ. 2021, 37, 165–171. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. The lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Elhorst, J.P. Linear spatial dependence models for cross-section data. In Spatial econometrics; Springer: Berlin, Heidelberg, 2014. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Kopczewska, K.; Kudła, J.; Walczyk, K. Strategy of spatial panel estimation: Spatial spillovers between taxation and economic growth. Appl. Spat. Anal. Policy 2017, 10, 77–102. [Google Scholar] [CrossRef]
- Ding, Z.L. Report of the law enforcement inspection team of the Standing Committee of the National People’s Congress on inspecting the implementation of the renewable energy law of the people’s Republic of China. In Proceedings of the 15th meeting of the Standing Committee of the 13th National People’s Congress, Beijing, China, 14 December 2019. [Google Scholar]
- Wang, L.; Zhao, T. The dynamic relationship between China’s renewable energy consumption, economic growth and carbon emissions. Technoeconomics 2013, 11, 99–104. [Google Scholar]
- Wang, L.P. Research on the dynamic relationship between China’s renewable energy consumption and carbon emissions based on ARDL model. Resour. Policy 2022, 77, 102764. [Google Scholar] [CrossRef]
- Lin, B.Q.; Moubarak, M. Renewable energy consumption—Economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Fan, Q.F.; Xing, X.F. Research on the impact of renewable energy policies on carbon emissions. East China Econ. Manag. 2022, 36, 1–11. [Google Scholar]
- Dong, C.; Qi, Y.; Dong, W.; Lu, X.; Liu, T.; Qian, S. Decomposing driving factors for wind curtailment under economic new normal in China. Appl. Energy 2018, 217, 178–188. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Ma, X. The path and impact of renewable energy power on carbon emissions: Mediating effect test based on interprovincial data. East China Econ. Manag. 2022, 36, 65–72. [Google Scholar]
- Wang, S.J.; Huang, Y.Y. Spatial spillover effect and driving forces of carbon emission intensity at the city level in China. Acta Geogr. Sin. 2019, 74, 1131–1148. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Ma, W.; Liu, X.; Cai, B.; Liu, J.; Jia, X.; Zhang, M.; Chen, Y.; Xu, L.; et al. Driving forces of carbon dioxide emission for China’s cities: Empirical analysis based on extended STIRPAT Model. China Popul. Resour. Environ. 2018, 28, 45–54. [Google Scholar]
- Wang, X.G. The Analysis of Spatiotemporal Dynamics of Carbon Dioxide Emissions from Energy Consumption at Different Scales in China. Ph.D. Thesis, The Northwest A&F University, Yangling, China, 2019. [Google Scholar]
- Zhou, J.P. Panel data analysis on relation between per capital GDP, energy intensity and carbon emissions. Environ. Sci. Manag. 2013, 38, 165–167. [Google Scholar]
- Li, J.Y.; Li, S.S. Energy investment, economic growth and carbon emissions in China-empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- Ummalla, M.; Samal, A. The impact of natural gas and renewable energy consumption on CO2 emissions and economic growth in two major emerging market economies. Environ. Sci. Pollut. Res. 2019, 26, 20893–20907. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.Q.; Khattak, S.I.; Rahman, Z.U. Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment. Energy 2021, 229, 120616. [Google Scholar] [CrossRef]
- Destek, M.A.; Manga, M. Technological innovation, financialization, and ecological footprint: Evidence from BEM economies. Environ. Sci. Pollut. Res. 2021, 28, 21991–22001. [Google Scholar] [CrossRef]
- UNEP. Global Trends in Renewable Energy Investment. Available online: https://www.fs-unep-centre.org/global-trends-in-renewable-energy-investment-2020/ (accessed on 10 June 2020).
- Guo, R.; Yuan, Y.J. Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data. Energy Policy 2020, 145, 111747. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Feng, C.; Zhou, H.; Wang, K. Total factor energy efficiency in Chinese manufacturing industry under industry and regional heterogeneities. Resour. Conserv. Recycl. 2020, 168, 105255. [Google Scholar] [CrossRef]
- Gu, C.; Tan, Z.; Liu, W.; Yu, T.; Han, Q.; Liu, H.; Dai, Y.; Liu, Z.; Zheng, S. A study on climate change, carbon emissions and low-carbon city planning. Urban Plan. Forum 2009, 3, 38–45. [Google Scholar]
- Xu, B.; Lin, B. Does the high–tech industry consistently reduce CO2 emissions? results from nonparametric additive regression model. Environ. Impact Assess. Rev. 2017, 63, 44–58. [Google Scholar] [CrossRef]
Variables | Abbreviation | Unit | Mean | Min | Max |
---|---|---|---|---|---|
carbon emissions | ton | 6.281 | 0.130 | 42.540 | |
economic growth | yuan | 20,006.771 | 2107.815 | 93,123.248 | |
energy intensity | 104 tons of standard coal/104 yuan | 1.382 | 0.253 | 5.147 | |
renewable energy consumption | tons of standard coal | 2.267 | 0.002 | 3.548 | |
technological progress | pieces | 8305.171 | 5 | 199,293 |
Year | REC | C | Year | REC | C |
---|---|---|---|---|---|
1997 | 0.260 *** | 0.361 *** | 2008 | 0.094 * | 0.398 *** |
1998 | 0.229 *** | 0.326 *** | 2009 | 0.045 | 0.355 *** |
1999 | 0.214 *** | 0.412 *** | 2010 | 0.054 | 0.393 *** |
2000 | 0.196 *** | 0.345 *** | 2011 | 0.169 *** | 0.377 *** |
2001 | 0.332 *** | 0.364 *** | 2012 | 0.132 ** | 0.388 *** |
2002 | 0.300 *** | 0.348 *** | 2013 | 0.086 ** | 0.327 *** |
2003 | 0.280 *** | 0.333 *** | 2014 | 0.150 *** | 0.316 *** |
2004 | 0.085 | 0.389 *** | 2015 | 0.103 * | 0.324 *** |
2005 | 0.050 | 0.450 *** | 2016 | 0.072 | 0.327 *** |
2006 | 0.098 * | 0.396 *** | 2017 | 0.081 | 0.308 *** |
2007 | 0.090 * | 0.405 *** |
Year | Value | Year | Value | Year | Value |
---|---|---|---|---|---|
1997 | −0.128 * | 2004 | −0.220 *** | 2011 | −0.124 * |
1998 | −0.107 | 2005 | −0.206 *** | 2012 | −0.121 * |
1999 | −0.102 | 2006 | −0.217 *** | 2013 | −0.076 |
2000 | −0.098 | 2007 | −0.177 ** | 2014 | −0.089 |
2001 | −0.155 * | 2008 | −0.259 *** | 2015 | −0.128 * |
2002 | −0.191 ** | 2009 | −0.183 ** | 2016 | −0.134 * |
2003 | −0.239 *** | 2010 | −0.136 ** | 2017 | −0.161 ** |
Variable | Spatial Fixed Effect | Temporal Fixed Effect | Spatial-Temporal-Fixed Effect |
---|---|---|---|
Ln | 5.621 *** | 2.438 *** | 5.450 *** |
Ln | −0.191 *** | −0.088 *** | −0.183 *** |
Ln | 0.479 *** | 0.897 *** | 0.508 *** |
Ln | −0.050 *** | −0.075 *** | −0.051 *** |
Ln | −0.170 *** | 0.025 | −0.154 *** |
W * Ln | −4.766 *** | 1.419 | −2.862 *** |
W * Ln | 0.214 *** | −0.056 | 0.136 *** |
W * Ln | 0.487 *** | 0.449 *** | 0.980 *** |
W * Ln | −0.030 | −0.018 | −0.074 |
W * Ln | 0.163 ** | −0.046 | 0.147 ** |
LR test-spatial lag | 52.43 *** | 33.59 *** | 40.05 *** |
LR test-spatial error | 38.34 *** | 41.40 *** | 41.50 *** |
AIC | 307.948 | 537.501 | 227.350 |
BIC | 361.296 | 590.850 | 280.698 |
Variable | LLC | IPS | Breitung | |
---|---|---|---|---|
level | −7.351 *** | −5.866 *** | −4.098 *** | |
First difference level | −6.410 *** | −12.686 *** | −13.061 *** | |
level | −1.991 ** | 4.267 | 7.025 | |
First difference level | −3.462 *** | −6.156 *** | −3.389 *** | |
level | −1.718 ** | 5.351 | 7.634 | |
First difference level | −3.446 *** | −5.961 *** | −3.080 *** | |
level | −2.408 *** | −1.197 | 1.203 | |
First difference level | −7.321 *** | −11.843 *** | −10.933 *** | |
level | −2.857 *** | −4.518 *** | −1.411 * | |
First difference level | −8.345 *** | −13.302 *** | −11.720 *** | |
level | 0.128 | −0.451 | 3.599 | |
First difference level | −5.398 *** | −11.506 *** | −7.992 *** |
Test | Statistic | |
---|---|---|
Pedroni | Modified Phillips-Perron t | 5.485 * |
Phillips-Perron t | −8.404 * | |
Augmented Dickey-Fuller t | −9.157 * | |
Kao | Modified Dickey-Fuller t | −5.977 * |
Dickey-Fuller t | −5.269 * | |
Augmented Dickey-Fuller t | −5.897 * | |
Unadjusted modified Dickey-Fuller t | −8.121 * | |
Unadjusted Dickey-Fuller t | −5.993 * |
Variable | Excluding REC Variables (M1) | Including REC Variables (M2) | ||||
---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |
5.669 *** | −3.115 *** | 2.554 *** | 5.516 *** | −3.051 *** | 2.465 *** | |
−0.197 *** | 0.132 *** | −0.065 ** | −0.186 *** | 0.141 *** | −0.045 | |
0.497 *** | 1.030 *** | 1.527 *** | 0.507 *** | 0.901 *** | 1.408 *** | |
−0.166 *** | 0.131 * | −0.035 | −0.154 *** | 0.151 ** | −0.004 | |
-- | -- | -- | −0.050 *** | −0.064 | −0.114 ** |
Variable | M1 | M2 | ||||
---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |
3.502 *** | 1.223 | 4.725 *** | 3.582 *** | 0.755 | 4.338 *** | |
−0.091 *** | −0.088 * | −0.179 *** | −0.092 *** | −0.066 | −0.158 *** | |
0.437 *** | 0.725 *** | 1.162 *** | 0.476 *** | 0.627 ** | 1.103 *** | |
−0.163 *** | 0.091 | −0.073 | −0.150 *** | 0.102 | −0.048 | |
-- | -- | -- | −0.057 *** | −0.019 | −0.076 |
Variable | M1 | M2 | ||||
---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |
3.470 *** | −0.272 | 3.197 *** | 3.693 *** | −0.531 | 3.162 *** | |
−0.092 *** | 0.027 | −0.065 * | −0.101 *** | 0.034 | −0.067 * | |
0.580 *** | 0.830 *** | 1.411 *** | 0.600 *** | 0.721 *** | 1.322 *** | |
−0.202 *** | 0.068 | −0.134 ** | −0.196 *** | 0.095 | −0.101 | |
-- | -- | -- | −0.053 *** | −0.010 | −0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Du, M.; Wu, L.; Li, C.; Chen, Y. Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model. Land 2022, 11, 1316. https://doi.org/10.3390/land11081316
Sun Y, Du M, Wu L, Li C, Chen Y. Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model. Land. 2022; 11(8):1316. https://doi.org/10.3390/land11081316
Chicago/Turabian StyleSun, Yang, Mengna Du, Leying Wu, Changzhe Li, and Yulong Chen. 2022. "Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model" Land 11, no. 8: 1316. https://doi.org/10.3390/land11081316
APA StyleSun, Y., Du, M., Wu, L., Li, C., & Chen, Y. (2022). Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model. Land, 11(8), 1316. https://doi.org/10.3390/land11081316