Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
- (1)
- Land Urbanization Evaluation Index
- (2)
- Spatial Autocorrelation Analysis
- (3)
- Kernel density estimation
- (4)
- Index selection and model construction of influencing factors
3. Spatial and Temporal Evolution Pattern of Land Urbanization in Yangtze River Delta Urban Agglomeration
3.1. Land Urbanization Pattern of Yangtze River Delta Urban Agglomeration in 2010
3.2. Land Urbanization Pattern of Yangtze River Delta Urban Agglomeration in 2020
3.3. Evolution of Land Urbanization Pattern in Yangtze River Delta Urban Agglomeration
3.3.1. Time Evolution Characteristics
3.3.2. Spatial Evolution Characteristics
4. Influencing Factors of Land Urbanization in the Yangtze River Delta Urban Agglomeration
4.1. Identification of Influencing Factors and the Comparative Analysis of Models
4.2. Scale Analysis of Influencing Factors Based on the MGWR Model
4.3. Regression Coefficient Analysis of Influencing Factors Based on the MGWR Model
5. Discussion
5.1. Research Significance
5.2. Policy Implications
6. Conclusions
- (1)
- From 2010 to 2020, the overall land urbanization rate of the Yangtze River Delta urban agglomeration increased from 50.49% to 55.41%, with an average annual growth rate of 0.50%. As the region with the most active economic development and the most concentrated cities in the country, its land urbanization gradually increased to create a saturated state. Among the counties, the average annual growth rate of nearly 64.28% lagged behind the overall growth rate, mainly distributed in Jiangsu Province and Zhejiang Province. Overall, the level of land urbanization in each county showed dynamic convergence characteristics;
- (2)
- The differentiation pattern of land urbanization in the Yangtze River Delta urban agglomeration from southeast to northwest was more obvious. The hot spots of land urbanization were consistently mainly distributed in the Shanghai metropolitan area, Hangzhou, Jinhua, Wenzhou and nearby counties and showed a trend of diffusion. The cold spots were concentrated in Hefei, Chuzhou, Wuhu, Tongling, Chizhou and other cities, where there was a shrinking trend;
- (3)
- Compared with the GWR model and the OLS model, the MGWR model has a better fitting effect and is better suited to the study of the influencing factors of land urbanization. On the impact scale, the proportion of secondary and tertiary industries in GDP, density of roads, topographic relief and annual precipitation have larger bandwidths, which are close to global variables, while fiscal revenue and population density have the smallest bandwidths and the strongest spatial heterogeneity. In terms of impact intensity, economic factors have the greatest impact, while natural environment factors have the least impact.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hersperger, A.M.; Franscini, M.-P.G.; Kübler, D. Actors, decisions and policy changes in local urbanization. Eur. Plan. Stud. 2014, 22, 1301–1319. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Pridmore, P.; Thomas, L.; Havemann, K.; Sapag, J.; Wood, L. Social capital and healthy urbanization in a globalized world. J. Urban Health 2007, 84, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Yang, Z.; Lei, J.; Li, J.-G. Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory. Sustainability 2019, 11, 1204. [Google Scholar] [CrossRef]
- Chaolin, G.; Liya, W.; Cook, I. Progress in research on Chinese urbanization. Front. Archit. Res. 2012, 1, 101–149. [Google Scholar] [CrossRef]
- Yang, X.J. China’s rapid urbanization. Science 2013, 342, 310. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Yu, K. Ecological Restoration: A Movement to Improve Chinese Cities and Realize the Beautiful China Dream. Landsc. Archit. Front. 2017, 5, 6–9. [Google Scholar] [CrossRef]
- Taylor, J.R. The China dream is an urban dream: Assessing the CPC’s national new-type urbanization plan. J. Chin. Political Sci. 2015, 20, 107–120. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Qu, L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Policy 2019, 87, 104072. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F. Land urbanization in Central Italy: 50 years of evolution. J. Land Use Sci. 2014, 9, 143–164. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, D.; Fu, J.; Zhao, Y. A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework. Land 2022, 11, 345. [Google Scholar] [CrossRef]
- Krueger, E.H.; Constantino, S.M.; Centeno, M.A.; Elmqvist, T.; Weber, E.U.; Levin, S.A. Governing sustainable transformations of urban social-ecological-technological systems. npj Urban Sustain. 2022, 2, 10. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Zhou, G.; He, Y. Characteristics and influencing factors of urban land expansion in Changsha. Acta Geogr Sin.-Chin. Ed.- 2006, 61, 1180. [Google Scholar]
- Ye, L.; Wu, A.M. Urbanization, land development, and land financing: Evidence from Chinese cities. J. Urban Aff. 2014, 36 (Suppl. 1), 354–368. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Li, Y. Spatio-temporal coupling of demographic-landscape urbanization and its driving forces in China. Acta Geogr. Sin 2018, 73, 1865–1879. [Google Scholar]
- Tan, R.; Liu, P.; Zhou, K.; He, Q. Evaluating the effectiveness of development-limiting boundary control policy: Spatial difference-in-difference analysis. Land Use Policy 2022, 120, 106229. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Zhen, F.; Qin, X.; Ye, X.; Sun, H.; Luosang, Z. Analyzing urban development patterns based on the flow analysis method. Cities 2019, 86, 178–197. [Google Scholar] [CrossRef]
- Yang, J.; Jin, G.; Huang, X.; Chen, K.; Meng, H. How to measure urban land use intensity? A perspective of multi-objective decision in Wuhan urban agglomeration, China. Sustainability 2018, 10, 3874. [Google Scholar] [CrossRef]
- Bosch, M.; Jaligot, R.; Chenal, J. Spatiotemporal patterns of urbanization in three Swiss urban agglomerations: Insights from landscape metrics, growth modes and fractal analysis. Landsc. Ecol. 2020, 35, 879–891. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Dutta, I.; Das, A. Exploring the dynamics of urban sprawl using geo-spatial indices: A study of English Bazar Urban Agglomeration, West Bengal. Appl. Geomat. 2019, 11, 259–276. [Google Scholar] [CrossRef]
- Li, X.; Fang, B.; Yin, M.; Jin, T.; Xu, X. Multi-Dimensional Urbanization Coordinated Evolution Process and Ecological Risk Response in the Yangtze River Delta. Land 2022, 11, 723. [Google Scholar] [CrossRef]
- Niu, B.; Ge, D.; Yan, R.; Ma, Y.; Sun, D.; Lu, M.; Lu, Y. The evolution of the interactive relationship between urbanization and land-use transition: A case study of the Yangtze River Delta. Land 2021, 10, 804. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, L.; Liu, Y. Measuring sprawl in large Chinese cities along the Yangtze River via combined single and multidimensional metrics. Habitat Int. 2016, 57, 43–52. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up land efficiency in urban China: Insights from the general land use plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Sorice, M.G.; Kreuter, U.P.; Wilcox, B.P.; Fox, W.E., III. Classifying land-ownership motivations in central, Texas, USA: A first step in understanding drivers of large-scale land cover change. J. Arid Environ. 2012, 80, 56–64. [Google Scholar] [CrossRef]
- LI, X.; Wen, J.; Lin, J. Review of research on land urbanization and related studies. Prog. Geogr. 2012, 30, 1042–1049. [Google Scholar]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Wang, S.; Wang, D. Spatial differences and driving forces of land urbanization in China. J. Geogr. Sci. 2015, 25, 545–558. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.Y. Spatial-temporal characteristics and determinants of land urbanization quality in China: Evidence from 285 prefecture-level cities. Sustain. Cities Soc. 2018, 38, 70–79. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.; Wu, Q.; Chen, W. A study on coordinate development between population urbanization and land urbanization in China. Hum. Geogr. 2010, 25, 53–58. [Google Scholar]
- Han, H.; Li, H. Coupling coordination evaluation between population and land urbanization in Ha-Chang urban agglomeration. Sustainability 2020, 12, 357. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Liu, D.; Yu, H.; Zhu, L.; Zhang, J. The interaction of population, industry and land in process of urbanization in China: A case study in Jilin Province. Chin. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef]
- Wang, X. Relationship between population urbanization and urban sprawl across different city sizes in China. Environ. Urban. ASIA 2021, 12, 202–219. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Wang, H.; Luo, F. The impact of population urbanization lag on eco-efficiency: A panel quantile approach. J. Clean. Prod. 2020, 244, 118664. [Google Scholar] [CrossRef]
- He, C.; Zhou, Y.; Huang, Z. Fiscal decentralization, political centralization, and land urbanization in China. Urban Geogr. 2016, 37, 436–457. [Google Scholar] [CrossRef]
- Li, Z.; Zou, F.; Tan, Y.; Zhu, J. Does financial excess support land urbanization—An empirical study of cities in China. Land 2021, 10, 635. [Google Scholar] [CrossRef]
- Jing, S.; Yan, Y.; Niu, F.; Song, W. Urban Expansion in China: Spatiotemporal Dynamics and Determinants. Land 2022, 11, 356. [Google Scholar] [CrossRef]
- Zhou, T.; Jiang, G.; Zhang, R.; Zheng, Q.; Ma, W.; Zhao, Q.; Li, Y. Addressing the rural in situ urbanization (RISU) in the Beijing–Tianjin–Hebei region: Spatio-temporal pattern and driving mechanism. Cities 2018, 75, 59–71. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.D.; Chen, W.; Yenneti, K. Urban land expansion and structural change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. Sample size guideline for correlation analysis. World 2016, 3, 37–46. [Google Scholar] [CrossRef]
- Muller, A. Education, income inequality, and mortality: A multiple regression analysis. BMJ 2002, 324, 23. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Ma, L.; Chen, M.; Fang, F.; Che, X. Research on the spatiotemporal variation of rural-urban transformation and its driving mechanisms in underdeveloped regions: Gansu Province in western China as an example. Sustain. Cities Soc. 2019, 50, 101675. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H. The evolving process of the land urbanization bubble: Evidence from Hangzhou, China. Cities 2020, 102, 102724. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Li, J. Measure of urban-rural transformation in Beijing-Tianjin-Hebei region in the new millennium: Population-land-industry perspective. Land Use Policy 2018, 79, 595–608. [Google Scholar] [CrossRef]
- Wu, R.; Li, Z.; Wang, S. The varying driving forces of urban land expansion in China: Insights from a spatial-temporal analysis. Sci. Total Environ. 2021, 766, 142591. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J. Demystifying the Inequality in Urbanization in China Through the Lens of Land Use. In Spatial Synthesis: Computational Social Science and Humanities; Ye, X., Lin, H., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 257–283. [Google Scholar]
- Zhang, C.; Li, Y.; Xiong, S.; Lu, X.; Zhu, X. Regional environmental risk assessment and management guide for rapid urbanization process of a city cluster in China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 283–301. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. China’s Urban Agglomerations; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tang, D.; Mao, M.; Shi, J.; Hua, W. The Spatio-Temporal Analysis of Urban-Rural Coordinated Development and Its Driving Forces in Yangtze River Delta. Land 2021, 10, 495. [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Ma, Z. Exploring the interactive development between population urbanization and land urbanization: Evidence from Chongqing, China (1998–2016). Sustainability 2018, 10, 1741. [Google Scholar] [CrossRef]
- Getis, A. A history of the concept of spatial autocorrelation: A geographer’s perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J. The Analysis of Spatial Association by Use of Distance Statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Shi, X. Selection of bandwidth type and adjustment side in kernel density estimation over inhomogeneous backgrounds. Int. J. Geogr. Inf. Sci. 2010, 24, 643–660. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic growth and the expansion of urban land in China. Urban Stud. 2010, 47, 813–843. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H. The influence of land finance and public service supply on peri-urbanization: Evidence from the counties in China. Habitat Int. 2019, 92, 102039. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Chen, W. Urban land expansion and the transitional mechanisms in Nanjing, China. Habitat Int. 2016, 53, 274–283. [Google Scholar] [CrossRef]
- Wu, K.-y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Liao, F.H.; Wei, Y. Modeling determinants of urban growth in Dongguan, China: A spatial logistic approach. Stoch. Environ. Res. Risk Assess. 2014, 28, 801–816. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Yuan, F.; Wei, Y.D. Spatial determinants of urban land expansion in globalizing Nanjing, China. Sustainability 2016, 8, 868. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, Y.; Yang, Y. The relief degree of land surface in China and its correlation with population distribution. Acta Geogr Sin.-Chin. Ed.- 2007, 62, 1073. [Google Scholar]
- Geng, T.; Chen, H.; Zhang, H.; Shi, Q.; Liu, D. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi province based on GWR. J. Nat. Resour. 2020, 35, 1714–1727. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in multiscale geographically weighted regression. Geogr. Anal. 2020, 52, 87–106. [Google Scholar] [CrossRef]
- Sun, D.; Zhou, L.; Li, Y.; Liu, H.; Shen, X.; Wang, Z.; Wang, X. New-type urbanization in China: Predicted trends and investment demand for 2015–2030. J. Geogr. Sci. 2017, 27, 943–966. [Google Scholar] [CrossRef]
- Lin, W.; Wu, M.; Zhang, Y.; Zeng, R.; Zheng, X.; Shao, L.; Zhao, L.; Li, S.; Tang, Y. Regional differences of urbanization in China and its driving factors. Sci. China Earth Sci. 2018, 61, 778–791. [Google Scholar] [CrossRef]
- Shin, H.B. Urbanization in China. Int. Encycl. Soc. Behav. Sci. 2015, 2015, 973–979. [Google Scholar]
- Oshan, T.M.; Smith, J.P.; Fotheringham, A.S. Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. Int. J. Health Geogr. 2020, 19, 11. [Google Scholar] [CrossRef]
- Tian, L.; Ma, W. Government intervention in city development of China: A tool of land supply. Land Use Policy 2009, 26, 599–609. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Q.; Cao, S. Real estate supports rapid development of China’s urbanization. Land Use Policy 2020, 95, 104582. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; He, K. Analysis on the urban land resources carrying capacity during urbanization—A case study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
Type | Symbol | Variable | Definition |
---|---|---|---|
Economy | X1 | Per capita GDP | Gross domestic production (GDP)/permanent population |
X2 | Proportion of secondary and tertiary industry in GDP | The proportional relationship to indicate the industrial structure of a region | |
X3 | Fiscal revenue | Budget revenue/GDP | |
Social basic conditions | X4 | Number of healthcare beds | An indicator to indicate the medical level of a region |
X5 | Density of roads | Total road mileage/area of district or county | |
Population | X6 | Population density | Permanent population/area of district or county |
Natural environment | X7 | Topographic relief | Stemming from Feng et al. [76] |
X8 | Annual precipitation | In this study, it was believed that the higher the annual average precipitation, the better the natural environment |
Variable | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
VIF | 4.776 | 1.892 | 2.552 | 1.704 | 4.210 | 4.817 | 1.110 | 1.189 |
Tolerance | 0.209 | 0.529 | 0.392 | 0.587 | 0.238 | 0.208 | 0.901 | 0.841 |
Model | OLS | GWR | MGWR |
---|---|---|---|
AICc | 256.327 | 226.605 | 199.571 |
Adjusted R2 | 0.598 | 0.757 | 0.801 |
Residual sum of squares | 47.410 | 0.880 | 19.508 |
Moran’s I for residual | 0.208 (p < 0.01) | 0.138 (p < 0.05) | 0.088 (p > 0.1) |
Variables | Bandwidth of GWR Model | Bandwidth of MGWR Model |
---|---|---|
Intercept | 78 | 43 |
X1 | 78 | 95 |
X2 | 78 | 122 |
X3 | 78 | 43 |
X4 | 78 | 82 |
X5 | 78 | 125 |
X6 | 78 | 43 |
X7 | 78 | 125 |
X8 | 78 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Ou, X.; Yang, Z.; Yang, Y.; Ren, H.; Tang, L. Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1365. https://doi.org/10.3390/land11081365
Zhu H, Ou X, Yang Z, Yang Y, Ren H, Tang L. Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration. Land. 2022; 11(8):1365. https://doi.org/10.3390/land11081365
Chicago/Turabian StyleZhu, Huxiao, Xiangjun Ou, Zhen Yang, Yiwen Yang, Hongxin Ren, and Le Tang. 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration" Land 11, no. 8: 1365. https://doi.org/10.3390/land11081365
APA StyleZhu, H., Ou, X., Yang, Z., Yang, Y., Ren, H., & Tang, L. (2022). Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration. Land, 11(8), 1365. https://doi.org/10.3390/land11081365