Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.2. Methodological Approach
2.2.1. Collection and Correction of Historical Climate Data
2.2.2. Future Climate Projection and Statistical Downscaling of GCMs
2.2.3. Projected Trend and Relative Change
2.3. Water Use Efficiency and Yield Simulation by CSM–CERES–Maize
2.3.1. Crop Model Description
2.3.2. Crop Model Calibration and Evaluation
2.3.3. Sensitivity Analysis to Climate and Soil and Water Conservation Practices
2.4. Model Simulation for Climate Change Scenarios and SWC Adaptation Packages
3. Results
3.1. Historical and Future Climate Patterns in Ruzizi
3.2. Climate Change Impacts on Current and Future Maize Production Systems
3.2.1. Model Calibration and Evaluation
3.2.2. CSM–CERES–Maize Sensitivity to Temperature and Rainfall Variation
3.2.3. Change in Maize Yield, Water Use Efficiency, and Soil Water Balance under the Current Agricultural Production System and Adaptation
3.2.4. Impact of Climate Change on Future Maize Production in Ruzizi Plain
3.2.5. Change over Time in Water Use Efficiency for Different Climate Change Conditions under RCP 4.5 and RCP 8.5
3.2.6. Impact of Climate Change on Future Maize Production in Ruzizi Plain
4. Discussion
4.1. Historical and Future Climate Change
4.2. Model Calibration and Sensitivity Analysis
4.3. Maize Production under Current and Future Climate Scenarios with and without SWC Adaptation Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wu, H.; Li, Z. Assessment of Sectoral Virtual Water Flows and Future Water Requirement in Agriculture Under SSP–RCP Scenarios: Reflections for Water Resources Management in Zhangye City. Front. Ecol. Evol. 2022, 10, 901873. [Google Scholar]
- Goenster, S.; Wiehle, M.; Gebauer, J.; Mohamed Ali, A.; Stern, R.D.; Buerkert, A. Daily rainfall data to identify trends in rainfall amount and rainfall–induced agricultural events in the Nuba Mountains of Sudan. J. Arid. Environ. 2015, 122, 16–26. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar]
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 2019, 9, 12834. [Google Scholar] [CrossRef] [PubMed]
- Kyei–Mensah, C.; Kyerematen, R.; Adu–Acheampong, S. Impact of Rainfall Variability on Crop Production within the Worobong Ecological Area of Fanteakwa District, Ghana. Adv. Agric. 2019, 2019, 7930127. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long–Term trends in rainfall and temperature using high–resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar]
- Gherardi, L.A.; Sala, O.E. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob. Chang. Biol. 2019, 25, 269–276. [Google Scholar]
- Ministry of Foreign Affairs of the Netherlands. Climate Change Profile: East African Great Lakes and Ruzizi Plain. In The Hague; 2018. Available online: https://www.government.nl/binaries/government/documenten/publications/2019/02/05/climate–change–profiles/Great+Lakes.pdf (accessed on 15 July 2021).
- Bagula, E.M.; Majaliwa, J.G.; Mushagalusa, G.N.; Basamba, T.A.; Tumuhairwe, J.B.; Akello, S.; Mondo, J.G.M.; Geofrey, G.; Musinguzi, P.; Mwimangire, B.C.; et al. Water and nutrient balances under selected soil and water conservation practices in semi–arid Ruzizi plain, Eastern Democratic Republic of Congo. Afr. J. Agric. Res. 2021, 17, 1407–1419. [Google Scholar]
- Zougmoré, R.B.; Partey, S.T.; Ouédraogo, M.; Torquebiau, E.; Campbell, B.M. Facing climate variability in sub–Saharan Africa: Analysis of climate–smart agriculture opportunities to manage climate–related risks. Cah. Agric. 2018, 27, 34001. [Google Scholar]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub–Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia. Agric. Water Manag. 2010, 97, 841–847. [Google Scholar] [CrossRef]
- Adimassu, Z.; Langan, S.; Johnston, S.R.; Mekuria, W.; Amede, T. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis. Environ. Manag. 2017, 59, 87–101. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change; Cambridge University Press: Cambridge, MA, USA, 2022; Volume 1454, Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 18 February 2022).
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS Wagening. J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty–first century. Philos. Trans. Royal Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 8, 235–265. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Keating, B.A. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Tovihoudji, P.G.; Akponikpè, P.B.I.; Agbossou, E.K.; Bielders, C.L. Using the DSSAT Model to Support Decision Making Regarding Fertilizer Microdosing for Maize Production in the Sub–humid Region of Benin. Front. Environ. Sci. 2019, 7, 13. [Google Scholar] [CrossRef]
- Lorite, I.J.; Ruiz–Ramos, M.; Gabaldón–Leal, C.; Cruz–Blanco, M.; Porras, R.; Santos, C. Chapter 1—Water Management and Climate Change in Semiarid Environments. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García Tejero, I.F., Durán Zuazo, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 3–40. [Google Scholar]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi–arid environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Li, Y.; Tian, D.; Feng, G.; Yang, W.; Feng, L. Climate change and cover crop effects on water use efficiency of a corn–soybean rotation system. Agric. Water Manag. 2021, 255, 107042. [Google Scholar] [CrossRef]
- López–Cedrón, F.X.; Boote, K.J.; Piñeiro, J.; Sau, F. Improving the CERES–Maize model ability to simulate water deficit impact on maize production and yield components. Agron. J. 2008, 100, 296–307. [Google Scholar] [CrossRef]
- Zizinga, A.; Mwanjalolo, J.G.M.; Tietjen, B.; Bedadi, B.; Pathak, H.; Gabiri, G.; Beesigamukama, D. Climate change and maize productivity in Uganda: Simulating the impacts and alleviation with climate smart agriculture practices. Agric. Syst. 2022, 199, 103407. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Aune, J.B.; Thierfelder, C. DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil Tillage Res. 2014, 143, 85–94. [Google Scholar] [CrossRef]
- Corbeels, M.; Chirat, G.; Messad, G.; Thierfelder, C. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur. J. Agron. 2016, 76, 41–53. [Google Scholar] [CrossRef]
- Adnan, A.A.; Jibrin, J.M.; Kamara, A.Y.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES–Maize Model for Determining the Optimum Planting Dates of Early Maturing Maize Varieties in Northern Nigeria. Front. Plant. Sci. 2017, 8, 1118. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Adiku, S.G.; Freduah, B.S.; Kamara, A.Y.; Narh, S.; Abdulai, A.L. Evaluating maize yield variability and gaps in two agroecologies in northern Ghana using a crop simulation model. South Afr. J. Plant Soil 2018, 35, 137–147. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Boote, K.J.; Hargreaves, J.N.G.; Poulton, P.L.; Jones, J.W. Cropping systems modeling in AgMIP: A new protocol-driven approach for regional integrated assessments. In Handbook of Climate Change and Agroecosystems; Imperial College Press: London, UK, 2015; Volume 3, pp. 79–99. [Google Scholar]
- Rosenzweig, C.; Hillel, D. Introduction: The role of the agricultural model intercomparison and improvement project. In Handbook of Climate Change and Agroecosystems; Imperial College Press: London, UK, 2015; Volume 3, pp. xxiii–xxvii. [Google Scholar]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Winter, J.M. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, J.; Muvundja, F.A. Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model. Land 2020, 9, 125. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Antle, J.M.; Ruane, A.C.; Mutter, C.Z. The agricultural model intercomparison and improvement project: Phase I activities by a global community of science. In Handbook of Climate Change and Agroecosystems; Imperial College Press: London, UK, 2015; Volume 3, pp. 3–24. [Google Scholar]
- Antle, J.M.; Homann–KeeTui, S.; Descheemaeker, K.; Masikati, P.; Valdivia, R.O. Using AgMIP Regional Integrated Assessment Methods to Evaluate Vulnerability, Resilience and Adaptive Capacity for Climate Smart Agricultural Systems BT—Climate Smart Agriculture: Building Resilience to Climate Change; Lipper, N., McCarthy, D., Zilberman, S., Asfaw, G., Branca, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 307–333. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Woollen, J. MERRA: NASA’s Modern–Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Ruane, A.C.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap–filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248. [Google Scholar] [CrossRef]
- Kashani, M.H.; Dinpashoh, Y. Evaluation of efficiency of different estimation methods for missing climatological data Evaluation of efficiency of different estimation methods for missing climatological data. Stoch. Environ. Res. Risk Assess 2012, 26, 59–71. [Google Scholar] [CrossRef]
- Ruane, A.C.; McDermid, S.P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspect. 2017, 4, 1. [Google Scholar] [CrossRef]
- Mote, P.W.; Salathé, E.P. Future climate in the Pacific Northwest. Clim. Change 2010, 102, 29–50. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; GWall, W. Methodologies for simulating impacts of climate change on crop production. F. Crop. Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho–Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by Mann–Kendal Test and Sen’s Slope Estimates–The Excel Template Application MAKESENS, Finnish Meteorological Institute, Publications on Air Quality, 2002, 31p. Available online: https://www.worldcat.org/title/1075517762 (accessed on 13 February 2022).
- Hsiao, W.T.; Maloney, E.D.; Barnes, E.A. Investigating Recent Changes in MJO Precipitation and Circulation in Multiple Reanalyses. Geophys. Res. Lett. 2020, 47, e2020GL090139. [Google Scholar] [CrossRef]
- Kulimushi, P.Z.; Basime, G.C.; Nachigera, G.M.; Thonart, P.; Ongena, M. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: From lab to field assays in south Kivu. Environ. Sci. Pollut. Res. 2018, 25, 29808–29821. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; Jones, J.W. The DSSAT Crop Modeling Ecosystem; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar]
- Bagula, E.M.; Mapatano, S.; Katcho, K.; Mushagalusa, N.G. Efficiency of soil water and fertility management practices on maize yields in semiarid regions: Case of the Ruzizi plain (South Kivu, Democratic Republic of Congo)). VertigO 2013, 17. [Google Scholar] [CrossRef]
- Bagula, M.E.; Pypers, P.; Mushagalusa, N.G.; Muhigwa, J.B. Assessment of Fertilizer Use Efficiency of Maize in the Weathered Soils of Walungu District, DR Congo; Springer: Cham, Switzerland, 2016; pp. 187–199. [Google Scholar]
- Timsina, J.; Humphreys, E. Performance of CERES–Rice and CERES–Wheat models in rice–wheat systems: A review. Agric. Syst. 2006, 90, 5–31. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Roth, C.H. Evaluation of the APSIM model in cropping systems of Asia. Field Crop. Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Zhang, B.; He, C.; Jin, X.; Bai, X. Modeling irrigation management for water conservation by DSSAT–maize model in arid northwestern China. Agric. Water Manag. 2016, 177, 37–45. [Google Scholar] [CrossRef]
- Mwazembe, D.J.; Ankumah, R.; Rwehumbiza, F.; Kajumla, S.M. Sensitivity of CERES–maize simulated yields to biogeochemical components. In Proceedings of the Fifth African Higher Education Week and RUFORUM Biennial Conference 2016, “Linking Agricultural Universities with Civil Society, the Private Sector, Governments and Other Stakeholders in Support of Agricultural Development in Africa”, Cape Town, South Africa, 17–21 October 2016; pp. 431–436. [Google Scholar]
- Egeru, A.; Barasa, B.; Nampijja, J.; Siya, A.; Makooma, M.T.; Majaliwa, M.G. Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub–Humid Region in Uganda. Climate 2019, 7, 35. [Google Scholar] [CrossRef]
- Massawe, W.C.; Xiao, Z. Analysis of rainfall variability over Tanzania in late austral summer. Atmos. Ocean. Sci. Lett. 2021, 14, 100049. [Google Scholar] [CrossRef]
- Endris, H.S.; Omondi, P.; Jain, S.; Lennard, C.; Hewitson, B.; Chang’A, L.; Tazalika, L. Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Artan, G.A. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 2019, 52, 2029–2053. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J. Teleconnection responses in multi–GCM driven CORDEX RCMs over Eastern Africa. Clim. Dyn. 2016, 46, 2821–2846. [Google Scholar] [CrossRef]
- Dike, V.N.; Shimizu, M.H.; Diallo, M.; Lin, Z.; Nwofor, O.K.; Chineke, T.C. Modelling present and future African climate using CMIP5 scenarios in HadGEM2–ES. Int. J. Climatol. 2015, 35, 1784–1799. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.; Parker, D.J.; Marsham, J.H.; Rowell, D.P.; Jackson, L.S.; Finney, D.; Stratton, R. How a typical West African day in the future–climate compares with current–climate conditions in a convection–permitting and parameterised convection climate model. Clim. Change 2020, 163, 267–296. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Williamson, M.S. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef]
- Mubeen, M.; Ahmad, A.; Wajid, A.; Khaliq, T.; Hammad, H.M.; Sultana, S.R.; Nasim, W. Application of CSM–CERES–Maize model in optimizing irrigated conditions. Outlook Agric. 2016, 45, 173–184. [Google Scholar] [CrossRef]
- Adnan, A.A.; Diels, J.; Jibrin, J.M.; Kamara, A.Y.; Craufurd, P.; Shaibu, A.S.; Tonnang, Z.E.H. Options for calibrating CERES–maize genotype specific parameters under data–scarce environments. PLoS ONE 2019, 14, e0200118. [Google Scholar] [CrossRef] [PubMed]
- Anothai, J.; Patanothai, A.; Pannangpetch, K.; Jogloy, S.; Boote, K.J.; Hoogenboom, G. Reduction in data collection for determination of cultivar coefficients for breeding applications. Agric. Syst. 2008, 96, 195–206. [Google Scholar] [CrossRef]
- Dilla, A.; Smethurst, P.J.; Barry, K.; Parsons, D.; Denboba, M. Potential of the APSIM model to simulate impacts of shading on maize productivity. Agrofor. Syst. 2018, 92, 1699–1709. [Google Scholar] [CrossRef]
- Wang, R.; Dungait, J.A.; Buss, H.L.; Yang, S.; Zhang, Y.; Xu, Z.; Jiang, Y. Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi–arid steppe grassland. Sci. Total Environ. 2017, 575, 564–572. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Dong, X.; Chen, J.; Ma, Y.; Wang, J.; Chan–Park, M.B.; Liu, X.; Chen, P. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun. 2012, 48, 10660–10662. [Google Scholar] [CrossRef]
- Dimes, J.; Twomlow, S.; Carberry, P. Application of APSIM in smallholder farming systems in the semi–arid tropics. In Decision Support Tools for Smallholder Agriculture in Sub–Saharan Africa: A Practical Guide; IFDC and CTA: Brisbane, QLD, Australia, 2003; pp. 85–99. [Google Scholar]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Segele, Z.T.; Leslie, L.M.; Lamb, P.J. Evaluation and adaptation of a regional climate model for the Horn of Africa: Rainfall climatology and interannual variability. Int. J. Climatol. 2009, 29, 47–65. [Google Scholar] [CrossRef]
- Yasin, M.; Ahmad, A.; Khaliq, T.; Habib–ur–Rahman, M.; Niaz, S.; Gaiser, T.; Hoogenboom, G. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi–crop and climate models. Environ. Sci. Pollut. Res. 2022, 29, 18967–18988. [Google Scholar] [CrossRef]
- Araya, A.; Kisekka, I.; Gowda, P.H.; Prasad, P.V.V. Evaluation of water–limited cropping systems in a semi–arid climate using DSSAT–CSM. Agric. Syst. 2017, 150, 86–98. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.L.; Boote, K.; Lizaso, J.; Jones, J.W.; Waha, K. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
- Müller, C.; Elliott, J.; Kelly, D.; Arneth, A.; Balkovic, J.; Ciais, P.; Yang, H. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 2019, 6, 50. [Google Scholar]
- Abeysingha, N.S.; Islam, A.; Singh, M. Assessment of climate change impact on flow regimes over the Gomti River basin under IPCC AR5 climate change scenarios. J. Water Clim. Chang. 2018, 11, 303–326. [Google Scholar] [CrossRef]
- Stuch, B.; Alcamo, J.; Schaldach, R. Projected climate change impacts on mean and year–to–year variability of yield of key smallholder crops in Sub–Saharan Africa. Clim. Dev. 2021, 13, 268–282. [Google Scholar] [CrossRef]
- Biazin, B.; Stroosnijder, L. To tie or not to tie ridges for water conservation in Rift Valley drylands of Ethiopia. Soil Tillage Res. 2012, 124, 83–94. [Google Scholar]
- McHugh, O.V.; Steenhuis, T.S.; Abebe, B.; Fernandes, E.C.M. Performance of in situ rainwater conservation tillage techniques on dry spell mitigation and erosion control in the drought–prone North Wello zone of the Ethiopian highlands. Soil Tillage Res. 2007, 97, 19–36. [Google Scholar] [CrossRef]
- Grum, B.; Assefa, D.; Hessel, R.; Woldearegay, K.; Ritsema, C.J. Improving on–site water availability by combining in–situ water harvesting techniques in semi–arid Northern Ethiopia. Agric. Water Manag. 2017, 193, 153–162. [Google Scholar]
- Grum, B.; Assefa, D.; Hessel, R.; Woldearegay, K.; Kessler, A.; Ritsema, C.; Geissen, V. Effect of In Situ Water Harvesting Techniques on Soil and Nutrient Losses in Semi–Arid Northern Ethiopia. Land Degrad. Dev. 2017, 28, 1016–1027. [Google Scholar]
- Grum, B.; Woldearegay, K.; Hessel, R.; Baartman, J.E.; Abdulkadir, M.; Yazew, E.; Geissen, V. Assessing the effect of water harvesting techniques on event–based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM). Catena 2017, 159, 20–34. [Google Scholar] [CrossRef]
- Cofie, O.; Amede, T. Water management for sustainable agricultural intensification and smallholder resilience in sub–Saharan Africa. Water Resour. Rural Dev. 2015, 6, 3–11. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.J. Challenges and potential solutions in statistical downscaling of precipitation. Clim. Change 2021, 165, 63. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wang, J.; Zhao, X.; Triantafilis, J. Clay content mapping and uncertainty estimation using weighted model averaging. Catena 2022, 209, 105791. [Google Scholar] [CrossRef]
- Zare, E.; Wang, J.; Zhao, D.; Arshad, M.; Triantafilis, J. Scope to map available water content using proximal sensed electromagnetic induction and gamma–ray spectrometry data. Agric. Water Manag. 2021, 247, 106705. [Google Scholar]
Period | Near Future (2022–2039) | Mid–Century (2040–2069) | End of Century (2070–2099) | |||
---|---|---|---|---|---|---|
Climate Regime/RCPs | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 |
Cool/Wet | GFDL–ESM2M | IPSL–CM5B–LR | IPSL–CM5B–LR | CESM1–BGC | CESM1–BGC | CESM1–BGC |
Cool/Dry | FGOALS–g2 | FGOALS–g2 | BNU–ESM | MIROC5 | INMCM4 | NorESM1–M |
Hot/Wet | IPSL–CM5A–MR | CanESM2 | GISS–E2–H | CanESM2 | GISS–E2–H | CanESM2 |
Hot/Dry | ACCESS1–0 | ACCESS1–0 | CMCC–CM | ACCESS1–0 | CMCC–CM | ACCESS1–0 |
Middle | BCC–CSM1–1 | IPSL–CM5A–MR | MPI–ESM–LR | BCC–CSM1–1 | MPI–ESM–LR | GISS–E2–H |
Parameter | Tied Ridge | Conventional Tillage |
---|---|---|
Drainage | Somewhat excessive | Somewhat excessive |
Tillage | Cultivator, ridge till | Disk, 1–way |
Tillage depth | 30 | 10 |
Fertility factor | 0.7 | 0.7 |
Runoff potential | Lowest | Moderately high |
Runoff curve number | 61 | 91 |
Drainage rate | 0.75 | 0.75 |
Water availability | 0.8 | 0.5 |
Production System | Adaptation | Yield Change Ratio |
---|---|---|
Climate impacts on current production system | No | CM2/CM1 |
Climate adaptation on current production system | Yes | CM3/CM1 |
Climate impact and SWC as potential adaptation option | Yes | CM4/CM2 |
Temperature | Rainfall | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
RCP | Model Subsetting | Test Z | Sen S | ΔT (°C) | p | Test Z | Sen S | CV | ΔPr (mm) | p |
Baseline | Uncorrected | 5.81 | 0.02 | − | p < 0.01 | 0.85 | 4.67 | 30.9 | − | p > 0.05 |
Baseline | Corrected | 5.81 | 0.02 | − | p < 0.01 | 1.47 | 2.41 | 10.01 | − | p > 0.05 |
RCP 4.5 | Cool/Dry | 6.81 | 0.01 | 1.04 | p < 0.01 | −0.18 | −0.11 | 9.71 | −38.74 | p > 0.05 |
RCP 8.5 | Cool/Dry | 10.07 | 0.04 | 1.84 | p < 0.01 | 0.35 | 0.14 | 9.87 | −24.40 | p > 0.05 |
RCP 4.5 | Cool/Wet | 9.77 | 0.02 | 1.05 | p < 0.01 | −0.32 | −0.18 | 10.28 | 75.50 | p > 0.05 |
RCP 8.5 | Cool/Wet | 10.04 | 0.03 | 2.23 | p < 0.01 | 3.29 | 2.48 | 14.84 | 28.27 | p < 0.01 |
RCP 4.5 | Hot/Dry | 10.21 | 0.03 | 1.97 | p < 0.01 | −0.99 | −0.46 | 9.54 | −61.83 | p > 0.05 |
RCP 8.5 | Hot/Dry | 10.22 | 0.07 | 3.05 | p < 0.01 | 0.28 | 0.12 | 9.84 | −39.89 | p > 0.05 |
RCP 4.5 | Hot/Wet | 10.04 | 0.02 | 1.90 | p < 0.01 | 0.65 | 0.31 | 9.95 | 98.23 | p > 0.05 |
RCP 8.5 | Hot/Wet | 10.22 | 0.06 | 2.98 | p < 0.01 | 3.27 | 1.82 | 11.27 | 115.34 | p < 0.01 |
RCP 4.5 | Middle | 9.85 | 0.02 | 1.5 | p < 0.01 | 1.48 | 0.7 | 9.63 | 17.76 | p > 0.05 |
RCP 8.5 | Middle | 10.16 | 0.05 | 2.41 | p < 0.01 | 2.22 | 1.11 | 10.47 | 20.51 | p < 0.01 |
Baseline | RCP 4.5 | RCP 8.5 | ||||
---|---|---|---|---|---|---|
Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | |
Baseline | 10.0 | 81.0 | ||||
Cool/Dry | 15.3 | 101.3 | 11.7 | 92.8 | ||
Cool/Wet | 8.9 | 80.4 | 15.1 | 95.5 | ||
Hot/Dry | 10.2 | 78.9 | 10.6 | 80.5 | ||
Hot/Wet | 8.7 | 80.3 | 27.4 | 87.7 | ||
Middle | 15.9 | 109.6 | 10.3 | 76.8 |
Coefficient | Description | Initial Value | Calibrated Value |
---|---|---|---|
P1 (◦ days) | Thermal time from seedling emergence to the end of juvenile phase | 165 | 212 |
P2 (◦ days) | Delay in development for each hour that day length is above 12.5 h | 0.1 | 0.75 |
P5 (◦ days) | Thermal time from silking to time of physiological maturity | 476 | 800 |
G2 | Maximum kernel number per plant | 442 | 800 |
G3 (mg day−1) | Kernel growth rate during linear grain filling stage under optimum conditions | 5.35 | 8.5 |
PHINT (°C day tip−1) | Thermal time between successive leaf tip appearance | 40 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagula, E.M.; Majaliwa, J.G.M.; Mushagalusa, G.N.; Basamba, T.A.; Tumuhairwe, J.-B.; Mondo, J.-G.M.; Musinguzi, P.; Mwimangire, C.B.; Chuma, G.B.; Egeru, A.; et al. Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land 2022, 11, 1409. https://doi.org/10.3390/land11091409
Bagula EM, Majaliwa JGM, Mushagalusa GN, Basamba TA, Tumuhairwe J-B, Mondo J-GM, Musinguzi P, Mwimangire CB, Chuma GB, Egeru A, et al. Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land. 2022; 11(9):1409. https://doi.org/10.3390/land11091409
Chicago/Turabian StyleBagula, Espoir M., Jackson Gilbert M. Majaliwa, Gustave N. Mushagalusa, Twaha A. Basamba, John-Baptist Tumuhairwe, Jean-Gomez M. Mondo, Patrick Musinguzi, Cephas B. Mwimangire, Géant B. Chuma, Anthony Egeru, and et al. 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo" Land 11, no. 9: 1409. https://doi.org/10.3390/land11091409
APA StyleBagula, E. M., Majaliwa, J. G. M., Mushagalusa, G. N., Basamba, T. A., Tumuhairwe, J. -B., Mondo, J. -G. M., Musinguzi, P., Mwimangire, C. B., Chuma, G. B., Egeru, A., & Tenywa, M. M. (2022). Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land, 11(9), 1409. https://doi.org/10.3390/land11091409