Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Analysis Inputs
2.2.1. The MODIS Land Cover Product
2.2.2. The ESA-CCI-LC
2.2.3. The CORINE Land Cover
2.2.4. The KASSANDRA DATASET
2.3. Preparation of Datasets and Computed Metrics
3. Results
3.1. Accuracy Metrics
3.1.1. Analysis of Total Land Cover Mapping
3.1.2. Analysis of Forest vs. Non-Forest Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, P.; Loveson, V.J.; Chandra, P.; Kotha, M. Evaluation and Comparison of the Earth Observing Sensors in Land Cover/Land Use Studies Using Machine Learning Algorithms. Ecol. Inform. 2022, 68, 101522. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Tovar-Pescador, J. Influence of Land-Use Misrepresentation on the Accuracy of WRF Wind Estimates: Evaluation of GLCC and CORINE Land-Use Maps in Southern Spain. Atmos. Res. 2015, 157, 17–28. [Google Scholar] [CrossRef]
- Thiam, S.; Salas, E.A.L.; Rholan, N.; Delos, A.; Almoradie, S.; Verleysdonk, S.; Adounkpe, J.G.; Komi, K. Modelling Land Use and Land Cover in the Transboundary Mono River Catchment of Togo and Benin Using Markov Chain and Stakeholder’ s Perspectives. Sustainability 2022, 14, 4160. [Google Scholar] [CrossRef]
- Koubodana, D.H.; Diekkrüger, B.; Näschen, K.; Adounkpe, J.; Atchonouglo, K. Impact of the Accuracy of Land Cover Data Sets on the Accuracy of Land Cover Change Scenarios in the Mono River Basin, Togo, West Africa. Int. J. Adv. Remote Sens. GIS 2019, 8, 3073–3095. [Google Scholar] [CrossRef]
- Mchenry, M.P.; Kulshreshtha, S.N.; Lac, S. Land Use, Land-Use Change and Forestry; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Sulla-Menashe, D.; Friedl, M. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. 2019, Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 29 July 2020).
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30 m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009); European Space Agency (ESA): Paris, France; University Catholic of Louvain (UCL): Ottignies-Louvain-la-Neuve, Belgium; PANGAEA: Bremen, Germany, 2012. [CrossRef]
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Caccetta, P.; De Wit, A.J.W.; Di Bella, C.; Gérard, B.; Giri, C.; Gond, V.; et al. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, 5–9 May 2009; pp. 400–403. [Google Scholar]
- Bartholomé, E.; Belward, A.S. GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European Contribution to the Generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Si, Y.; Zhang, C.; Lu, H.; Yu, C.; Gong, P. Identifying Patterns and Hotspots of Global Land Cover Transitions Using the ESA CCI Land Cover Dataset. Remote Sens. Lett. 2018, 9, 972–981. [Google Scholar] [CrossRef]
- Tavares, P.A.; Ely, N.; Beltr, S.; Silva, U.; Cl, A. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Bel é m, Eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef] [Green Version]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Global Land Cover Trajectories and Transitions. Sci. Rep. 2021, 11, 12814. [Google Scholar] [CrossRef] [PubMed]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 55–74. ISBN 978-94-007-7969-3. [Google Scholar]
- Wickham, J.; Stehman, S.; Gass, L.; Dewitz, J.; Sorenson, D.; Granneman, B.; Ross, R.; Baer, L. Thematic Accuracy Assessment of the 2011 National Land Cover Database (NLCD) James. Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Aune-Lundberg, L.; Strand, G.H. The Content and Accuracy of the CORINE Land Cover Dataset for Norway. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102266. [Google Scholar] [CrossRef]
- Seebach, L.M.; Strobl, P.; San Miguel-Ayanz, J.; Gallego, J.; Bastrup-Birk, A. Comparative Analysis of Harmonized Forest Area Estimates for European Countries. Forestry 2011, 84, 285–299. [Google Scholar] [CrossRef]
- Bach, M.; Breuer, L.; Frede, H.G.; Huisman, J.A.; Otte, A.; Waldhardt, R. Accuracy and Congruency of Three Different Digital Land-Use Maps. Landsc. Urban Plan. 2006, 78, 289–299. [Google Scholar] [CrossRef]
- Neumann, K.; Herold, M.; Hartley, A.; Schmullius, C. Comparative Assessment of CORINE2000 and GLC2000: Spatial Analysis of Land Cover Data for Europe. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 425–437. [Google Scholar] [CrossRef]
- Heiskanen, J. Evaluation of Global Land Cover Data Sets over the Tundra-Taiga Transition Zone in Northern Most Finland. Int. J. Remote Sens. 2008, 29, 3727–3751. [Google Scholar] [CrossRef]
- Saah, D.; Tenneson, K.; Matin, M.; Uddin, K.; Cutter, P.; Poortinga, A.; Nguyen, Q.H.; Patterson, M.; Johnson, G.; Markert, K.; et al. Land Cover Mapping in Data Scarce Environments: Challenges and Opportunities. Front. Environ. Sci. 2019, 7, 150. [Google Scholar] [CrossRef]
- Szantoi, Z.; Geller, G.N.; Tsendbazar, N.E.; See, L.; Griffiths, P.; Fritz, S.; Gong, P.; Herold, M.; Mora, B.; Obregón, A. Addressing the Need for Improved Land Cover Map Products for Policy Support. Environ. Sci. Policy 2020, 112, 28–35. [Google Scholar] [CrossRef]
- Gemitzi, A. Predicting Land Cover Changes Using a CA Markov Model under Different Shared Socioeconomic Pathways in Greece. GISci. Remote Sens. 2021, 58, 425–441. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- George, B.; Jan, F.; Gabriel, J. Corine Land Cover Update 2000; European Environment Agency, European Commission Joint Research Centre: Ispra, Italy, 2002; ISBN 9291675113.
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. GlobCover—Products Description and Validation Report; MEDIAS-France: Toulouse, France, 2008; p. JRC49240. [Google Scholar]
- Bontemps, S.; Herold, M.; Kooistra, L.; van Groenestijn, A.; Hartley, A.; Arino, O.; Moreau, I.; Defourny, P. Revisiting Land Cover Observations to Address the Needs of the Climate Modelling Community. Biogeosciences 2012, 9, 2145–2157. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS Land Cover Product to Derive a Consistent Continental Scale 30 m Landsat Land Cover Classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Sharma, R.C.; Hara, K.; Hirayama, H.; Harada, I.; Hasegawa, D.; Tomita, M.; Geol Park, J.; Asanuma, I.; Short, K.M.; Hara, M.; et al. Production of Multi-Features Driven Nationwide Vegetation Physiognomic Map and Comparison to MODIS Land Cover Type Product. Adv. Remote Sens. 2017, 6, 54–65. [Google Scholar] [CrossRef]
- Vijith, H.; Dodge-Wan, D. Applicability of MODIS Land Cover and Enhanced Vegetation Index (EVI) for the Assessment of Spatial and Temporal Changes in Strength of Vegetation in Tropical Rainforest Region of Borneo. Remote Sens. Appl. Soc. Environ. 2020, 18, 100311. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; de Mendes, W.S.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; de Mello, F.A.O.; et al. Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Ohlen, D.O.; Brown, J.F.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; Sohlberg, R.; Defries, R.S.; Townshend, J.R.G. Global Land Cover Classification at 1 Km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy Assessment of Seven Global Land Cover Datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Samasse, K.; Hanan, N.P.; Tappan, G.; Diallo, Y. Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sens. 2018, 10, 1785. [Google Scholar] [CrossRef]
- Reinhart, V.; Fonte, C.C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA Climate Change Initiative Land Cover to CORINE Land Cover over Eastern Europe and the Baltic States from a Regional Climate Modeling Perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102221. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The Mark of Vegetation Change on Earth’s Surface Energy Balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, M.; Liu, J.; Li, Y.; Dai, Q. Comparative Analysis of Seasonal Landsat 8 Images for Forest Aboveground Biomass Estimation in a Subtropical Forest. Forests 2020, 11, 45. [Google Scholar] [CrossRef]
- EEA CORINE Land Cover—User Manual; Copernicus Land Monitoring Service: Copenhagen, Denmark, 2021.
- European Space Agency. Land Cover CCI Product User Guide Version 2. Techology Report. 2017. Available online: Maps.Elie.Ucl.Ac.Be/CCI/Viewer/Download/ESACCI-LC-Ph2-PUGv2_2.0.Pdf (accessed on 10 March 2022).
- Raptis, D.; Kazaklis, A.; Kazana, V.; Stamatiou, C.; Koutsona, P. Assessment of Woody Mass during the Impelementation of Field Sampling Campaigns. 2016. Available online: https://fmproadmap.files.wordpress.com/2016/09/b3_report.pdf (accessed on 27 June 2022). (In Greek).
- Palaiologou, P.; Kalabokidis, K.; Kyriakidis, P. Forest Mapping by Geoinformatics for Landscape Fire Behaviour Modelling in Coastal Forests, Greece. Int. J. Remote Sens. 2013, 34, 4466–4490. [Google Scholar] [CrossRef]
- Lemmon, P. A Spherical Densiometer for Estimating Forest Overstory Density. For. Sci. 1956, 2, 314–320. [Google Scholar]
- Keller, M.; Brassel, P. Daten Zum Bergwald, 2. Alpenreport, Daten, Fakten, Probleme, Lösungsansätze. International Alpenschutzkommission CIPRA: Bern, Switzerland, 2001; pp. 216–235. [Google Scholar]
- Waser, L.T.; Schwarz, M. Comparison of Large-Area Land Cover Products with National Forest Inventories and CORINE Land Cover in the European Alps. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 196–207. [Google Scholar] [CrossRef]
- Hellenic Cadastre Forest Maps in Regional Unit of Chalkidiki. Available online: https://gis.ktimanet.gr/gis/forestsuspension (accessed on 15 May 2022).
- OPEKEPE Greek Payment Authority of Common Agricultural Policy. Available online: https://www.opekepe.gr (accessed on 15 May 2022).
- Hellenic Republic Law No 4164/2013. Available online: https://www.arpedonaptis.gr/iKTIMATOLOGIO/EGGRAFA/2013_4164.pdf (accessed on 15 May 2022).
- GR Survey Data Base. Greek Forest and Fire Service Digital Data for Wildfires in Kassandra; GR Survey Data Base: Kassandria, Greece, 2021. [Google Scholar]
- Greece Forest Service. Greek Forest Service Forest Road Network Maintenance and Fire Protection Project for the Peninsula of Kassandra Chalkidiki; Greece Forest Service: Kassandria, Greece, 2021. [Google Scholar]
- Hellenic Cadastre Land Registry—Datasets. Available online: https://data.ktimatologio.gr/dataset/d4c9eb3a-73c2-440a-b068-6b532ea459a9 (accessed on 15 May 2022).
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire Models and Methods to Map Fuel Types: The Role of Remote Sensing. For. Ecol. Manag. 2008, 256, 1240–1250. [Google Scholar]
- Caetano, Μ.; Araújo, A. Comparing Land Cover Products CLC2000 and MOD12Q1 for Portugal. In Global Developments in Environmental Earth Observation from Space; IOS Press: Lisbon, Portugal, 2006; pp. 469–477. [Google Scholar]
- Copernicus Climate Change Service Product User Guide and Specification. Available online: https://climate.copernicus.eu (accessed on 15 May 2022).
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Mchugh, M.L. Lessons in Biostatistics Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Gillis, M.; Leckie, D. Forest Inventory Mapping Procedures across Canada; Petawawa National Forestry Institute: Chalk River, ON, Canada, 1993.
- Traub, B.; Kiihl, M.; Paivinen, R.; Kugler, O. Effects of Different Definitions on Forest Area Estimation in National Forest Inventories in Europe; European Commission: Brussels, Belgium, 1998. [Google Scholar]
- Muñoz-Rojas, M.; de la Rosa, D.; Zavala, L.M.; Jordán, A.; Anaya-Romero, M. Changes in Land Cover and Vegetation Carbon Stocks in Andalusia, Southern Spain (1956–2007). Sci. Total Environ. 2011, 409, 2796–2806. [Google Scholar] [CrossRef] [PubMed]
Dataset | Satellite Sensor | Spatial Resolution (m) | Minimum Mapping Unit (ha) | Reference Date | Nomenclature |
---|---|---|---|---|---|
KASSANDRA DATASET | LSO25/2015 | 30 | 0.1 | 2018 | 12 classes. |
CLC | Sentinel 2 and Landsat 8 | 100 | 25 | 2018 | CLC2018, hierarchical, 44 classes at the lowest level. |
MCD12Q1 | Terra MODIS | 500 | 100 | 2018 | IGBP, non-hierarchical, 17 classes. |
ESA-CCI-LC | PROBA-Vegetation (PROBA-V) and Sentinel-3 OLCI (S3 OLCI) | 300 | 9 (nominal), 81 (verified) | 2018 | Level 1, global scale, 22 classes. |
Land Cover Code | Land Cover Classes | Pixel Sum | Percentage % | Km2 | Group | Percentage % |
---|---|---|---|---|---|---|
kd91 | Urban/Suburban developed | 11,325 | 2.91 | 10.19 | Artificial surfaces | 9.61 |
kd102 | WUI | 26,123 | 6.71 | 23.51 | ||
kd101 | Croplands | 107,686 | 27.65 | 96.92 | Agricultural areas | 44.43 |
kd100 | Olive groves | 65,369 | 16.78 | 58.83 | ||
kd142 | Shrublands/moderate load | 2486 | 0.64 | 2.24 | Forest | 43.96 |
kd147 | Sclerophyllous vegetation/maquis | 31,649 | 8.13 | 28.48 | ||
kd161 | Coniferous forest/Treated | 7185 | 1.84 | 6.47 | ||
kd164 | Coniferous forest/Dwarf conifer | 35,444 | 9.10 | 31.90 | ||
kd165 | Coniferous forest | 93,324 | 23.96 | 83.99 | ||
kd182 | Broad-leaved forest | 1116 | 0.29 | 1.00 | ||
kd98 | Open water | 2582 | 0.66 | 2.32 | Wetlands | 0.66 |
kd99 | Bare ground | 5209 | 1.34 | 4.69 | Barren | 1.34 |
Total | 389,498 | 100.00 | 350.55 | 100.00 |
Land Cover Classes Harmonization | |||||
---|---|---|---|---|---|
ID | Land Cover Classes | Land Cover Codes Harmonization | |||
KASSANDRA DATASET2018 | CLC2018 | MODIS2018 | ESA-CCI-LC2018 | ||
1 | Urban/Suburban Development | kd91 | 112 | 13 | 190 |
2 | Open water | kd98 | 411 | 17 | 210 |
3 | Barren (Roads, Mine, Beaches, Rocks) | kd99 | 122, 131, 331, 332 | 16 | 200 |
4 | Croplands | kd101 | 211 | 12 | 10, 11, 12 |
5 | WUI | kd102 | 142 | 13 | 190 |
6 | Shrublands /moderate load | kd142 | 322 | 7 | 150 |
7 | Sclerophyllous vegetation/maquis | kd147 | 323 | 6 | 120 |
8 | Olive groves | kd100 | 223 | 8 | 50 |
9 | Coniferous forest | kd161, kd164, kd165 | 312 | 1, 8 | 70 |
10 | Broad-leaved forest | kd182 | 311 | 4 | 60 |
Dominant Land Cover Differences | |||||||
---|---|---|---|---|---|---|---|
Product | Code | Land Cover Classes | Product | Code | Land Cover Classes | Area (km2) | Area (%) |
KASSANDRA DATASET2018 | 312 | Coniferous forest | CLC2018 | 243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 28.86 | 8.28 |
323 | Sclerophyllous vegetation | 324 | Transitional woodland–scrub | 20.04 | 5.75 | ||
312 | Coniferous forest | 324 | Transitional woodland–scrub | 18.56 | 5.32 | ||
312 | Coniferous forest | 313 | Mixed forest | 17.26 | 4.95 | ||
1 | Evergreen Needleleaf Forests | MODIS2018 | 8 | Woody Savannas | 43.31 | 12.38 | |
1 | Evergreen Needleleaf Forests | 9 | Savannas | 30.74 | 8.78 | ||
8 | Woody Savannas | 9 | Savannas | 23.05 | 6.59 | ||
12 | Croplands | 8 | Woody Savannas | 19.78 | 5.65 | ||
70 | Tree cover, needleleaved, evergreen, closed to open (>15%) | ESA-CCI-LC2018 | 120 | Shrubland | 72.84 | 20.80 | |
10 | Cropland, rainfed | 120 | Shrubland | 27.13 | 7.75 | ||
50 | Tree cover, broadleaved, evergreen, closed to open (>15%) | 120 | Shrubland | 25.99 | 7.42 | ||
50 | Tree cover, broadleaved, evergreen, closed to open (>15%) | 10 | Cropland, rainfed | 10.65 | 3.04 |
Product | Land Cover Classes | Area (km2) | PA (%) | UA (%) | OA (%) | K |
---|---|---|---|---|---|---|
CLC2018 | (112) Discontinuous urban fabric | 10.34 | 62.27 | 63.20 | 37.47 | 0.27 |
(142) Sport and leisure facilities | 23.80 | 23.55 | 56.12 | |||
(211) Non-irrigated arable land | 97.07 | 59.72 | 69.19 | |||
(223) Olive groves | 58.98 | 39.66 | 52.70 | |||
(312) Coniferous forest | 122.85 | 30.78 | 79.12 | |||
(323) Sclerophylous vegetation | 28.44 | 0.60 | 4.53 | |||
MODIS2018 | (1) Evergreen Needleleaf Forests | 115.99 | 20.46 | 61.27 | 21.82 | 0.11 |
(6) Closed Shrublands | 28.52 | 0.00 | nan | |||
(8) Woody Savannas | 65.37 | 33.04 | 20.80 | |||
(12) Croplands | 96.99 | 30.76 | 73.27 | |||
(13) Urban and Built-up Lands | 33.82 | 1.63 | 34.17 | |||
(16) Barren | 4.24 | 0.00 | nan | |||
ESA-CCI-LC2018 | (10) Cropland, rainfed | 96.93 | 28.68 | 51.67 | 21.78 | 0.12 |
(50) Tree cover, broadleaved, evergreen, closed to open (>15%) | 58.85 | 0.00 | nan | |||
(70) Tree cover, needleleaved, evergreen, closed to open (>15%) | 122.35 | 17.89 | 73.06 | |||
(120) Shrubland | 28.46 | 71.45 | 13.13 | |||
(190) Urban areas | 33.77 | 15.23 | 89.24 | |||
(200) Bare areas | 4.51 | 14.01 | 5.41 |
MODIS 2018 | 1 | 2 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 16 | 17 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 26,365 | 0 | 0 | 4566 | 157 | 5253 | 0 | 0 | 0 | 5487 | 962 | 232 | 11 | 43,033 |
2 | 2438 | 0 | 0 | 3274 | 7 | 487 | 0 | 0 | 0 | 366 | 0 | 0 | 0 | 6572 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 48,127 | 0 | 216 | 14,536 | 506 | 23,990 | 0 | 0 | 0 | 21,976 | 5274 | 607 | 99 | 11,5331 |
9 | 34,154 | 0 | 358 | 4571 | 965 | 25,610 | 0 | 0 | 0 | 21,965 | 13,567 | 1031 | 215 | 102,436 |
10 | 5488 | 0 | 160 | 106 | 589 | 7369 | 0 | 0 | 0 | 20,032 | 4805 | 606 | 868 | 40,023 |
11 | 6808 | 0 | 32 | 3917 | 115 | 2407 | 0 | 0 | 0 | 2591 | 4875 | 699 | 387 | 21,831 |
12 | 1651 | 0 | 309 | 121 | 12 | 5547 | 0 | 0 | 0 | 33,150 | 3836 | 429 | 186 | 45,241 |
13 | 147 | 0 | 0 | 0 | 20 | 182 | 0 | 0 | 0 | 754 | 612 | 76 | 0 | 1791 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 3509 | 0 | 41 | 546 | 111 | 1701 | 0 | 0 | 0 | 1363 | 3490 | 993 | 816 | 12,570 |
Total | 128,687 | 0 | 1116 | 31,637 | 2482 | 72,546 | 0 | 0 | 0 | 107,684 | 37,421 | 4673 | 2582 | 388,828 |
Omission Error (OE) [%] | 9.51 | 0 | 0 | 0 | 0 | 66.93 | 0 | 0 | 0 | 69.21 | 98.36 | 0 | 68.40 | |
Commission Error (CE) [%] | 38.73 | 0 | 0 | 0 | 0 | 79.20 | 0 | 0 | 0 | 26.72 | 65.83 | 0 | 93.50 | |
Producer’s Accuracy (PA) [%] | 0 | 0 | 0 | 0 | 0 | 33.07 | 0 | 0 | 0 | 30.78 | 1.63 | 0 | 31.60 | |
User’s Accuracy (UA) [%] | 0 | 0 | 0 | 0 | 0 | 20.80 | 0 | 0 | 0 | 73.27 | 34.17 | 0 | 6.49 |
Land Use Type | User’s Accuracy (%) | Producer’s Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient | |
---|---|---|---|---|---|
CLC2018 | non-forest | 76.49 | 91.84 | 79.60 | 0.57 |
forest | 86.01 | 63.99 | |||
MODIS2018 | non-forest | 76.44 | 100.00 | 82.72 | 0.63 |
forest | 100.00 | 60.70 | |||
ESA-CCI-LC2018 | non-forest | 78.22 | 65.68 | 70.51 | 0.41 |
forest | 63.67 | 76.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachantourian, M.; Chaleplis, K.; Gemitzi, A.; Kalabokidis, K.; Palaiologou, P.; Vasilakos, C. Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape. Land 2022, 11, 1453. https://doi.org/10.3390/land11091453
Bachantourian M, Chaleplis K, Gemitzi A, Kalabokidis K, Palaiologou P, Vasilakos C. Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape. Land. 2022; 11(9):1453. https://doi.org/10.3390/land11091453
Chicago/Turabian StyleBachantourian, Margarita, Kyriakos Chaleplis, Alexandra Gemitzi, Kostas Kalabokidis, Palaiologos Palaiologou, and Christos Vasilakos. 2022. "Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape" Land 11, no. 9: 1453. https://doi.org/10.3390/land11091453
APA StyleBachantourian, M., Chaleplis, K., Gemitzi, A., Kalabokidis, K., Palaiologou, P., & Vasilakos, C. (2022). Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape. Land, 11(9), 1453. https://doi.org/10.3390/land11091453