Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Construction of Index System
2.3. Method
2.3.1. Entropy Weight Method
2.3.2. Theil Index and Its Decomposition
2.3.3. Variance Decomposition
2.3.4. Geographic Detector
2.4. Data
3. Results
3.1. Spatiotemporal Differentiation Characteristics of Urban Resilience
3.1.1. Measurement Results of Urban Resilience Levels
3.1.2. Spatial Differences in Urban Resilience
3.1.3. Sources of Spatial Differences in Urban Resilience
3.2. Structural Sources of Differences in Urban Resilience
3.2.1. Dynamic Evolution Trend
3.2.2. Regional Heterogeneity
3.3. Drivers of Spatial Differences in Urban Resilience
3.3.1. Single Factor Analysis
3.3.2. Analysis of Interaction Factors
4. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
BTH | Beijing-Tianjin-Hebei |
YRD | the Yangtze River Delta |
PRD | the Pearl River Delta |
MYR | the middle reaches of the Yangtze River |
CC | Chengdu Chongqing |
CP | the Central Plains |
GP | Guanzhong Plain |
HC | Harbin Changchun |
References
- Tang, J.; Heinimann, H.; Han, K.; Luo, H.; Zhong, B. Evaluating resilience in urban transportation systems for sustainability: A systems-based Bayesian network model. Transp. Res. Part C Emerg. Technol. 2020, 121, 102840. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Peng, Q.; Yin, Y. Resilience assessment of an urban rail transit network: A case study of Chengdu subway. Phys. A Stat. Mech. Appl. 2022, 586, 126517. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Bautista-Puig, N.; Benayas, J.; Mañana-Rodríguez, J.; Suárez, M.; Sanz-Casado, E. The role of urban resilience in research and its contribution to sustainability. Cities 2022, 126, 103715. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Tang, J.; Heinimann, H.; Khoja, L. Quantitative evaluation of consecutive resilience cycles in stock market performance: A systems-oriented approach. Phys. A Stat. Mech. Appl. 2019, 532, 121794. [Google Scholar] [CrossRef]
- Shamsuddin, S. Resilience resistance: The challenges and implications of urban resilience implementation. Cities 2020, 103, 102763. [Google Scholar] [CrossRef]
- Chelleri, L.; Baravikova, A. Understandings of urban resilience meanings and principles across Europe. Cities 2021, 108, 102985. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Campanella, T.J. Urban resilience and the recovery of New Orleans. J. Am. Plan. Assoc. 2006, 72, 141–146. [Google Scholar] [CrossRef]
- Fan, M.F. Disaster governance and community resilience: Reflections on Typhoon Morakot in Taiwan. J. Environ. Plan. Manag. 2015, 58, 24–38. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Drobniak, A. Exploring the urban economic resilience concept. Reg. Mag. 2012, 286, 8–10. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Gonçalves, L.A.P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Bozza, A.; Asprone, D.; Manfredi, G. Developing an integrated framework to quantify resilience of urban systems against disasters. Nat. Hazards 2015, 78, 1729–1748. [Google Scholar] [CrossRef]
- Cui, P.; Li, D. A SNA-based methodology for measuring the community resilience from the perspective of social capitals: Take Nanjing, China as an example. Sustain. Cities Soc. 2020, 53, 101880. [Google Scholar] [CrossRef]
- Feng, X.; Xiu, C.; Li, J.; Zhong, Y. Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China. Land 2021, 10, 1305. [Google Scholar] [CrossRef]
- Orencio, P.M.; Fujii, M. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disaster Risk Reduct. 2013, 3, 62–75. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Qasim, S.; Qasim, M.; Shrestha, R.P.; Khan, A.N.; Tun, K.; Ashraf, M. Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 100–106. [Google Scholar] [CrossRef]
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D. Towards an urban resilience Index: A case study in 50 Spanish cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef]
- Chen, Y.; Su, X.; Zhou, Q. Study on the spatiotemporal evolution and influencing factors of urban resilience in the yellow river basin. Int. J. Environ. Res. Public Health 2021, 18, 10231. [Google Scholar] [CrossRef] [PubMed]
- Xun, X.; Yuan, Y. Research on the urban resilience evaluation with hybrid multiple attribute TOPSIS method: An example in China. Nat. Hazards 2020, 103, 557–577. [Google Scholar] [CrossRef]
- Wei, R. Research on Urban Resilience Evaluation Model and Its Application in China. Open J. Soc. Sci. 2020, 8, 407–416. [Google Scholar] [CrossRef]
- Qin, W.; Lin, A.; Fang, J.; Wang, L.; Li, M. Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China. Nat. Hazards 2017, 89, 331–349. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Z.; Sun, Q.; Yuen, K.F.; Zhang, Y.; Xue, H.; Zhao, S. Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration. Sustainability 2020, 12, 2593. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Y.; Pei, J.; Wang, H.; Li, J.; Li, Y. Temporal and spatial differentiation in urban resilience and its influencing factors in Henan Province. Sustainability 2021, 13, 12460. [Google Scholar] [CrossRef]
- Saja, A.M.A.; Teo, M.; Goonetilleke, A.; Ziyath, A.M. An inclusive and adaptive framework for measuring social resilience to disasters. Int. J. Disaster Risk Reduct. 2018, 28, 862–873. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Zhou, Q.; Qiao, Y. Research on Spatiotemporal Differentiation and Influence Mechanism of Urban Resilience in China Based on MGWR Model. Int. J. Environ. Res. Public Health 2021, 18, 1056. [Google Scholar] [CrossRef]
- James, S.; Ron, M. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar]
- Christian, R.; Thomas, S. Towards social resilience: A quantitative and qualitative survey on citizens’ perception of social media in emergencies in Europe. Technol. Forecast. Soc. Chang. 2017, 121, 168–180. [Google Scholar]
- Xiao, W.; Lv, X.; Zhao, Y.; Sun, H.; Li, J. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 2020, 109, 105843. [Google Scholar] [CrossRef]
- Ranasinghe, U.; Jefferies, M.; Davis, P.; Pillay, M. Resilience Engineering Indicators and Safety Management: A Systematic Review. Saf. Health Work 2020, 11, 127–135. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Srdjevic, B.; Medeiros, Y.D.P.; Faria, A.S. An objective multi-criteria evaluation of water management scenarios. Water Resour. Manag. 2004, 18, 35–54. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, P.S. Spatial Difference and Dynamic Evolution of the Development Level of New Urbanization in Henan Province. J. Xinyang Norm. Univ. 2022, 42. [Google Scholar]
- Clarke-Sather, A.; Qu, J.; Wang, Q.; Zeng, J.; Li, Y. Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997–2007. Energy Policy 2011, 39, 5420–5428. [Google Scholar] [CrossRef]
- Wu, M.Q.; Huang, J. The spatial inequality and convergence of innovation ability in China. J. Xinyang Norm. Univ. 2022, 35, 72–78. [Google Scholar]
- Bourguignon, F. Decomposable income inequality measures. Econom. J. Econom. Soc. 1979, 47, 901–920. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 20, 114–115. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Index Layer | Index Property |
---|---|---|---|
Urban resilience | Economy resilience | GDP per capita (yuan). | + |
The proportion of tertiary industry in GDP (%). | + | ||
The proportion of science and technology expenditure in GDP (%). | + | ||
The actual amount of foreign capital utilized per capita (USD 10,000). | + | ||
The proportion of urban registered unemployed (%). | − | ||
Savings deposit per capita (yuan). | + | ||
The proportion of employees (%). | + | ||
Financial expenditure per capita (yuan). | + | ||
Society resilience | Urban disposable income per capita (yuan). | + | |
The proportion of employed persons in the tertiary industry (%). | + | ||
Average wage of on-the-job employees (yuan). | + | ||
Number of college students per 10,000 people. | + | ||
Number of beds per 10,000 people (piece). | + | ||
Urban population density (%). | + | ||
Public management and social organization personnel per 10,000 people. | + | ||
Environment resilience | Industrial sulfur dioxide emission intensity (10,000 tons/yuan). | − | |
Park green space area per capita (ha/10,000 people). | + | ||
Green area per capita (ha/10,000 people). | + | ||
The proportion of built-up area to urban area (km2). | + | ||
Greening coverage rate of built-up area (%). | + | ||
Domestic sewage treatment rate (%). | + | ||
Comprehensive utilization rate of general industrial solid waste (%). | + | ||
Infra-structure resilience | Road area per capita (m2). | + | |
Density of drainage pipe (%). | + | ||
Gas penetration rate (%). | + | ||
Buses and trams per 10,000 people (unit). | + | ||
The proportion of land for residential facilities (%). | + | ||
Public health facilities per capita (piece). | + | ||
Harmless treatment rate of municipal solid waste (%). | + |
Year | BTH | YRD | PRD | MYR | CC | GP | HC | CP |
---|---|---|---|---|---|---|---|---|
2005 | 0.140 | 0.161 | 0.253 | 0.096 | 0.077 | 0.087 | 0.097 | 0.091 |
2006 | 0.143 | 0.152 | 0.240 | 0.094 | 0.073 | 0.088 | 0.092 | 0.096 |
2007 | 0.147 | 0.162 | 0.263 | 0.100 | 0.078 | 0.090 | 0.100 | 0.101 |
2008 | 0.153 | 0.170 | 0.264 | 0.106 | 0.086 | 0.094 | 0.107 | 0.108 |
2009 | 0.151 | 0.164 | 0.263 | 0.100 | 0.081 | 0.089 | 0.095 | 0.102 |
2010 | 0.148 | 0.160 | 0.252 | 0.100 | 0.077 | 0.087 | 0.095 | 0.100 |
2011 | 0.163 | 0.184 | 0.299 | 0.114 | 0.089 | 0.095 | 0.100 | 0.115 |
2012 | 0.191 | 0.216 | 0.349 | 0.129 | 0.106 | 0.112 | 0.120 | 0.129 |
2013 | 0.168 | 0.190 | 0.305 | 0.113 | 0.093 | 0.098 | 0.106 | 0.117 |
2014 | 0.191 | 0.212 | 0.341 | 0.129 | 0.106 | 0.113 | 0.121 | 0.127 |
2015 | 0.200 | 0.218 | 0.354 | 0.132 | 0.106 | 0.109 | 0.120 | 0.128 |
2016 | 0.190 | 0.204 | 0.324 | 0.125 | 0.100 | 0.103 | 0.112 | 0.122 |
2017 | 0.201 | 0.228 | 0.351 | 0.146 | 0.112 | 0.112 | 0.121 | 0.137 |
2018 | 0.195 | 0.237 | 0.379 | 0.148 | 0.118 | 0.105 | 0.114 | 0.141 |
Mean | 0.170 | 0.190 | 0.303 | 0.117 | 0.093 | 0.099 | 0.107 | 0.115 |
Year | BTH | YRD | PRD | MYR | CC | GP | HC | CP | Overall Difference | Intragroup Difference | Intergroup Difference |
---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 0.100 | 0.086 | 0.216 | 0.064 | 0.053 | 0.114 | 0.049 | 0.038 | 0.175 | 0.093 | 0.082 |
2006 | 0.112 | 0.084 | 0.193 | 0.065 | 0.066 | 0.062 | 0.057 | 0.046 | 0.174 | 0.090 | 0.084 |
2007 | 0.099 | 0.082 | 0.185 | 0.070 | 0.066 | 0.091 | 0.063 | 0.051 | 0.181 | 0.091 | 0.090 |
2008 | 0.080 | 0.075 | 0.189 | 0.076 | 0.091 | 0.077 | 0.036 | 0.046 | 0.158 | 0.086 | 0.072 |
2009 | 0.091 | 0.084 | 0.180 | 0.074 | 0.109 | 0.082 | 0.065 | 0.057 | 0.187 | 0.095 | 0.092 |
2010 | 0.086 | 0.075 | 0.181 | 0.081 | 0.075 | 0.088 | 0.046 | 0.051 | 0.170 | 0.088 | 0.082 |
2011 | 0.097 | 0.074 | 0.175 | 0.085 | 0.076 | 0.085 | 0.068 | 0.047 | 0.175 | 0.090 | 0.086 |
2012 | 0.111 | 0.075 | 0.166 | 0.087 | 0.089 | 0.110 | 0.082 | 0.054 | 0.181 | 0.094 | 0.087 |
2013 | 0.107 | 0.075 | 0.170 | 0.086 | 0.093 | 0.112 | 0.074 | 0.063 | 0.180 | 0.096 | 0.084 |
2014 | 0.107 | 0.070 | 0.158 | 0.077 | 0.078 | 0.126 | 0.076 | 0.053 | 0.164 | 0.089 | 0.075 |
2015 | 0.098 | 0.065 | 0.159 | 0.078 | 0.094 | 0.115 | 0.071 | 0.060 | 0.164 | 0.088 | 0.075 |
2016 | 0.112 | 0.065 | 0.158 | 0.081 | 0.076 | 0.114 | 0.080 | 0.063 | 0.169 | 0.090 | 0.080 |
2017 | 0.109 | 0.061 | 0.143 | 0.076 | 0.075 | 0.096 | 0.070 | 0.067 | 0.156 | 0.084 | 0.072 |
2018 | 0.105 | 0.068 | 0.131 | 0.086 | 0.077 | 0.104 | 0.075 | 0.075 | 0.166 | 0.088 | 0.079 |
Year | Intragroup Contribution | Intergroup Contribution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
BTH | YRD | PRD | MYR | CC | GP | HC | CP | Sum | ||
2005 | 5.03% | 12.89% | 18.56% | 5.78% | 2.23% | 3.72% | 1.67% | 3.25% | 53.14% | 46.86% |
2006 | 5.82% | 12.53% | 16.89% | 5.90% | 2.63% | 2.03% | 1.82% | 4.10% | 51.72% | 48.28% |
2007 | 4.73% | 11.84% | 16.16% | 6.06% | 2.52% | 2.72% | 2.03% | 4.39% | 50.44% | 49.56% |
2008 | 4.33% | 12.27% | 17.19% | 7.70% | 4.31% | 2.65% | 1.36% | 4.61% | 54.42% | 45.58% |
2009 | 4.39% | 11.82% | 15.26% | 6.21% | 4.14% | 2.37% | 1.88% | 4.71% | 50.79% | 49.21% |
2010 | 4.52% | 11.47% | 15.90% | 7.77% | 2.99% | 2.81% | 1.56% | 4.63% | 51.65% | 48.35% |
2011 | 4.88% | 10.99% | 15.42% | 7.77% | 3.11% | 2.57% | 2.08% | 4.22% | 51.03% | 48.97% |
2012 | 5.36% | 10.90% | 14.16% | 7.62% | 3.67% | 3.27% | 2.47% | 4.59% | 52.03% | 47.97% |
2013 | 5.19% | 11.02% | 14.52% | 7.41% | 3.84% | 3.36% | 2.24% | 5.56% | 53.14% | 46.86% |
2014 | 5.72% | 11.24% | 14.06% | 7.76% | 3.69% | 4.28% | 2.59% | 4.95% | 54.30% | 45.70% |
2015 | 5.33% | 10.34% | 14.19% | 7.89% | 4.46% | 3.77% | 2.40% | 5.61% | 53.99% | 46.01% |
2016 | 5.99% | 10.12% | 13.73% | 7.88% | 3.36% | 3.60% | 2.54% | 5.68% | 52.90% | 47.10% |
2017 | 6.06% | 10.19% | 13.07% | 8.44% | 3.70% | 3.20% | 2.33% | 6.69% | 53.68% | 46.32% |
2018 | 5.31% | 10.67% | 11.74% | 8.84% | 3.69% | 3.18% | 2.24% | 6.97% | 52.64% | 47.36% |
Year | Economy | Society | Environment | Infrastructure |
---|---|---|---|---|
2005 | 46.87% | 18.95% | 21.73% | 12.45% |
2006 | 50.19% | 16.25% | 21.26% | 12.30% |
2007 | 49.98% | 16.51% | 23.26% | 10.25% |
2008 | 44.11% | 17.98% | 26.74% | 11.17% |
2009 | 51.74% | 15.46% | 22.47% | 10.33% |
2010 | 48.31% | 15.71% | 24.53% | 11.45% |
2011 | 52.58% | 12.64% | 24.09% | 10.69% |
2012 | 49.26% | 17.32% | 22.27% | 11.15% |
2013 | 47.21% | 19.03% | 22.92% | 10.84% |
2014 | 45.56% | 19.54% | 24.46% | 10.44% |
2015 | 44.47% | 20.59% | 24.45% | 10.49% |
2016 | 46.68% | 20.63% | 22.68% | 10.01% |
2017 | 45.13% | 23.00% | 22.06% | 9.81% |
2018 | 49.01% | 21.28% | 21.07% | 8.64% |
Urban Agglomeration | X1 | X2 | X3 | X4 |
---|---|---|---|---|
Overall | 0.824 *** | 0.773 *** | 0.800 *** | 0.453 *** |
BTH | 0.925 ** | 0.885 ** | 0.516 | 0.207 |
YRD | 0.770 *** | 0.896 *** | 0.733 *** | 0.701 *** |
PRD | 0.884 * | 0.916 ** | 0.934 ** | 0.954 ** |
MYR | 0.855 *** | 0.963 *** | 0.678 ** | 0.494 * |
CC | 0.778 * | 0.935 *** | 0.698 * | 0.884 ** |
GP | 0.849 | 0.941 ** | 0.775 | 0.942 ** |
HC | 0.933 *** | 0.888 ** | 0.730 | 0.977 *** |
CP | 0.520 | 0.716 ** | 0.795 *** | 0.710 *** |
Urban Agglomeration | ||||||
---|---|---|---|---|---|---|
Overall | 0.905 | 0.944 | 0.929 | 0.905 | 0.820 | 0.862 |
BTH | 0.967 | 0.972 | 0.948 | 0.957 | 0.946 | 0.576 |
YRD | 0.928 | 0.953 | 0.886 | 0.936 | 0.967 | 0.913 |
PRD | 0.986 | 1.000 | 0.987 | 0.973 | 0.987 | 0.978 |
MYR | 0.976 | 0.987 | 0.973 | 0.988 | 0.977 | 0.744 |
CC | 0.992 | 0.793 | 0.995 | 0.982 | 0.944 | 0.982 |
GP | 0.990 | 0.998 | 0.983 | 0.989 | 0.990 | 0.992 |
HC | 0.998 | 0.964 | 0.991 | 1.000 | 0.998 | 0.984 |
CP | 0.780 | 0.966 | 0.964 | 0.943 | 0.949 | 0.830 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Sun, Z.; Du, M. Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China. Land 2022, 11, 1470. https://doi.org/10.3390/land11091470
Huang J, Sun Z, Du M. Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China. Land. 2022; 11(9):1470. https://doi.org/10.3390/land11091470
Chicago/Turabian StyleHuang, Jie, Zimin Sun, and Minzhe Du. 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China" Land 11, no. 9: 1470. https://doi.org/10.3390/land11091470
APA StyleHuang, J., Sun, Z., & Du, M. (2022). Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China. Land, 11(9), 1470. https://doi.org/10.3390/land11091470