Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details
2.3. Soil Sampling and Processing
2.4. Analytical Methods
2.4.1. Inorganic Phosphorus Fraction
2.4.2. Organic Phosphorus Fraction
2.4.3. Soil Biological Properties
2.4.4. Statistical Analysis
3. Results
3.1. Soluble and Loosely Bound P
3.2. Aluminum-Bound P
3.3. Iron-Bound P
3.4. Calcium-Bound P
3.5. Reductant Soluble-P
3.6. Labile Po
3.7. Moderately Labile Po
3.8. Non-Labile Po
3.9. Total P
3.10. Soil Biological Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 228. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Sci. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing carbon sequestration in croplands: A synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Res. 2020, 201, 104639. [Google Scholar] [CrossRef]
- Parihar, C.M.; Parihar, M.D.; Sapkota, T.B.; Nanwal, R.K.; Singh, A.K.; Jat, S.L.; Nayak, H.S.; Mahala, D.M.; Singh, L.K.; Kakraliya, S.K.; et al. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Sci. Total Environ. 2018, 640, 1382–1392. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Kundu, S.; Rakesh, S.; Lakshmi, C.S.; Kumar, G.R.; Manasa, R.; Somashekar, G.; Swamy, G.N.; Mrunalini, K.; Jayaraman, S.; et al. Managing Soil Organic Matter under Dryland Farming Systems for Climate Change Adaptation and Sustaining Agriculture Productivity. In Soil Organic Carbon and Feeding the Future; CRC Press: Boca Raton, FL, USA, 2021; pp. 219–251. [Google Scholar]
- Pooniya, V.; Zhiipao, R.R.; Biswakarma, N.; Jat, S.L.; Kumar, D.; Parihar, C.M.; Swarnalakshmi, K.; Lama, A.; Verma, A.K.; Roy, D.; et al. Long-term conservation agriculture and best nutrient management improves productivity and profitability coupled with soil properties of a maize–chickpea rotation. Sci. Rep. 2021, 11, 10386. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Pinto Gomes, C.J.; Quinto-Canas, R.; del Río, S.; Cano, E. Indicative value of the dominant plant species for a rapid evaluation of the nutritional value of soils. Agronomy 2020, 11, 1. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Merlin, A.; Rosolem, C.A. Phosphorus fractions in Brazilian Cerrado soils as affected by tillage. Soil Tillage Res. 2009, 105, 149–155. [Google Scholar] [CrossRef]
- Tiecher, T.; Gomes, M.V.; Ambrosini, V.G.; Amorim, M.B.; Bayer, C. Assessing linkage between soil phosphorus forms in contrasting tillage systems by path analysis. Soil Tillage Res. 2018, 175, 276–280. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Rodrigues, M.; Soltangheisi, A.; Sartor, L.R.; Withers, P.J.A. Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency. Agron. J. 2017, 109, 1039–1047. [Google Scholar] [CrossRef]
- Santos, J.Z.L.; Furtini Neto, A.E.; Resende, Á.V.D.; Curi, N.; Carneiro, L.F.; Costa, S.E.V.G.d.A. Phosphorus fractions in soil cultivated with corn as affected by different phosphates and application methods. Rev. Bras. Ciência Solo 2008, 32, 705–714. [Google Scholar] [CrossRef]
- Gatiboni, L.C.; Kaminski, J.; Rheinheimer, D.D.S.; Flores, J.P.C. Bioavailability of soil phosphorus forms in no-tillage system. Rev. Bras. Ciência Solo 2007, 31, 691–699. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World phosphorus use efficiency in cereal crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef]
- Dwivedi, B.S.; Singh, V.K.; Shekhawat, K.; Meena, M.C.; Dey, A. Enhancing use efficiency of phosphorus and potassium under different cropping systems of India. Indian J. Fertil. 2017, 13, 20–41. [Google Scholar]
- Kumar, A.; Behera, U.K.; Dhar, S.; Shukla, L.; Bhatiya, A.; Meena, M.C.; Gupta, G.; Singh, R.K. Effect of tillage, crop residue and phosphorus management practices on the productivity and profitability of maize cultivation in Inceptisols. J. Agric. Sci. 2018, 88, 182–188. [Google Scholar]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–545. [Google Scholar] [CrossRef]
- Xu, H.; Shao, H.; Lu, Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicol. Environ. Saf. 2019, 182, 109476. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Wei, K.; Chen, Z.; Zhu, A.; Zhang, J.; Chen, L. Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil Tillage Res. 2014, 138, 35–43. [Google Scholar] [CrossRef]
- Zhang, M.K.; He, Z.L.; Calvert, D.V.; Stoffella, P.J.; Yang, X.E.; Li, Y.C. Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions. Soil Sci. Soc. Am. J. 2003, 67, 1158–1167. [Google Scholar] [CrossRef]
- De Oliveira, L.E.Z.; Nunes, R.D.S.; De Sousa, D.M.; Busato, J.G.; De Figueiredo, C.C. Response of maize to different soil residual phosphorus conditions. Agron. J. 2019, 111, 3291–3300. [Google Scholar] [CrossRef]
- Sousa, D.M.G.; Rein, T.A.; Goedert, W.J.; Lobato, E.; Nunes, R.S. “Fósforo,” in Boas Práticas Para Uso Eficiente de Fertilizantes; Prochnow, L.I., Casarin, V., Stipp, S.R., Eds.; IPNI: Piracicaba, Brazil, 2010; Volume 2, pp. 67–132. [Google Scholar]
- Nunes, R.D.S.; De Sousa, D.M.G.; Goedert, W.J.; De Oliveira, L.E.Z.; Pavinato, P.S.; Pinheiro, T.D. Distribution of soil phosphorus fractions as a function of long-term soil tillage and phosphate fertilization management. Front. Earth Sci. 2020, 8, 350. [Google Scholar] [CrossRef]
- Haokip, I.C.; Dwivedi, B.S.; Meena, M.C.; Datta, S.P.; Jat, H.S.; Dey, A.; Tigga, P. Effect of conservation agriculture and nutrient management options on soil phosphorus fractions under maize-wheat cropping system. J. Indian Soc. Soil Sci. 2020, 68, 45–53. [Google Scholar] [CrossRef]
- Soil Survey Sttaff. Keys to Soil Taxonomy-Twelfth Edition, 2014; Deparment of Agrculture of United State: Washington, DC, USA, 2019. [Google Scholar]
- Chang, S.C.; Jackson, M.L. Fractionation of soil phosphorus. Soil Sci. 1957, 84, 133–144. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis. Part 3–Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Murphy, J.A.M.E.S.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ivanoff, D.B.; Reddy, K.R.; Robinson, S. Chemical fractionation of organic phosphorus in selected histosols1. Soil Sci. 1998, 163, 36–45. [Google Scholar] [CrossRef]
- Kovar, J.L.; Pierzynski, G.M. Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. South. Coop. Ser. Bull. 2009, 408, 1–118. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Gomez, A.K.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Ohno, T.; Erich, M.S. Inhibitory Effects of Crop Residue-Derived Organic Ligands on Phosphate Adsorption; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1997; Volume 26, pp. 889–895. [Google Scholar]
- Amaizah, N.R.; Čakmak, D.; Saljnikov, E.; Roglić, G.; Mrvic, V.; Krgović, R.; Manojlović, D.D. Fractionation of soil phosphorus in a long-term phosphate fertilization. J. Serb. Chem. Soc. 2012, 77, 971–981. [Google Scholar] [CrossRef]
- Bolo, P.; Kihara, J.; Mucheru-Muna, M.; Njeru, E.M.; Kinyua, M.; Sommer, R. Application of residue, inorganic fertilizer and lime affect phosphForus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma 2021, 390, 114962. [Google Scholar] [CrossRef]
- Weil, R.R.; Benedetto, P.W.; Sikora, L.J.; Bandel, V.A. Influence of tillage practices on phosphorus distribution and forms in three Ultisols. Agron. J. 1988, 80, 503–509. [Google Scholar] [CrossRef]
- Yin, Y.; Liang, C.H. Transformation of phosphorus fractions in paddy soil amended with pig manure. Soil Sci. Plant Nutr. 2013, 13, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Setia, R.K.; Sharma, K.N. Dynamics of forms of inorganic phosphorus during wheat growth in a continuous maize-wheat cropping system. J. Indian Soc. Soil Sci. 2007, 55, 139–146. [Google Scholar]
- Gerke, J. Humic (organic matter)-Al (Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci. 2010, 175, 417–425. [Google Scholar] [CrossRef]
- Song, K.; Xue, Y.; Zheng, X.; Lv, W.; Qiao, H.; Qin, Q.; Yang, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci. Rep. 2017, 7, 1164. [Google Scholar] [CrossRef]
- Abolfazli, F.; Forghani, A.; Norouzi, M. Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. J. Plant. Nutr. Soil Sci. 2012, 12, 349–362. [Google Scholar] [CrossRef]
- Kumawat, C.; Sharma, V.K.; Barman, M.; Meena, M.C.; Dwivedi, B.S.; Kumar, S.; Chakraborty, D.; Anil, A.S.; Patra, A. Phosphorus Forms under Crop Residue Retention and Phosphorus Fertilization in Maize–Wheat Rotation. Commun. Soil Sci. Plant Anal. 2022, 53, 257–267. [Google Scholar] [CrossRef]
- Ukwattage, N.; Lakmalie, U.V. Sequential Phosphorus Fractionation to Understand the Fate of Phosphorus Fertilizer in Sandy Ultisol, Amended with Biochar and Coal Fly Ash. Commun. Soil Sci. Plant Anal. 2022, 53, 2622–2634. [Google Scholar] [CrossRef]
- Motavalli, P.; Miles, R. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol. Fertil. Soils 2002, 36, 35–42. [Google Scholar]
- Aduhene-Chinbuah, J.; Sugihara, S.; Komatsuzaki, M.; Nishizawa, T.; Tanaka, H. No Tillage Increases SOM in Labile Fraction but Not Stable Fraction of Andosols from a Long-Term Experiment in Japan. Agronomy 2022, 12, 479. [Google Scholar] [CrossRef]
- Hallama, M.; Pekrun, C.; Pilz, S.; Jarosch, K.A.; Frąc, M.; Uksa, M.; Marhan, S.; Kandeler, E. Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture. Plant Soil. 2021, 463, 307–328. [Google Scholar] [CrossRef]
- Beck, M.A.; Sanchez, P.A. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil Sci. Soc. Am. J. 1994, 58, 1424–1431. [Google Scholar] [CrossRef]
- Turner, B.L.; Engelbrecht, B.M. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 2011, 103, 297–315. [Google Scholar] [CrossRef]
- Ramphisa, P.D. Evaluating the Use of Organic and Conventional Phosphorus Fertilizers in Field Crop Production; Washington State University: Pullman, WA, USA, 2018. [Google Scholar]
- Hao, X.; Godlinski, F.; Chang, C. Distribution of phosphorus forms in soil following long term continuous and discontinuous cattle manure applications. Soil Sci. Soc. Am. J. 2008, 72, 90–97. [Google Scholar] [CrossRef]
- Darilek, J.L.; Huang, B.; De-Cheng, L.I.; Wang, Z.G.; Zhao, Y.C.; Sun, W.X.; Shi, X.Z. Effect of land use conversion from rice paddies to vegetable fields on soil phosphorus fractions. Pedosphere 2010, 20, 137–145. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2057. [Google Scholar] [CrossRef]
- Schroeder, P.D.; Kovar, J.L. Comparison of organic and inorganic phosphorus fractions in an established buffer and adjacent production field. Commun. Soil Sci. Plant Anal. 2006, 37, 1219–1232. [Google Scholar] [CrossRef]
- Soltangheisi, A.; Rodrigues, M.; Coelho, M.J.A.; Gasperini, A.M.; Sartor, L.R.; Pavinato, P.S. Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil Tillage Res. 2018, 179, 20–28. [Google Scholar] [CrossRef]
- Reddy, D.; Kushwah, S.; Srivastava, S.; Khamparia, R.S. Long-term wheat residue management and supplementary nutrient input effects on phosphorus fractions and adsorption behavior in a Vertisol. Commun. Soil Sci. Plant Anal. 2014, 45, 541–554. [Google Scholar] [CrossRef]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Tillage Res. 2016, 161, 116–128. [Google Scholar] [CrossRef]
Soil Properties | Value |
---|---|
Sand (%) | 64.3 |
Silt (%) | 13.8 |
Clay (%) | 22.0 |
pH (1:2 soil: water) | 7.80 |
Bulk density (Mg m−3) | 1.65 |
Soil organic carbon (g kg−1) | 4.31 |
Available N (kg ha−1) | 158 |
Available P (kg ha−1) | 11.6 |
Available K (kg ha−1) | 248 |
Microbial biomass carbon (mg C g−1 soil) | 340 |
Alkaline phosphatase (mg p-NP Rel g−1 24 h−1) | 34.0 |
Crop | Variety | Seed Rate | Spacing | Fertilizer Dose |
---|---|---|---|---|
Kharif maize | HQPM–1 | 20 kg ha−1 | 67 × 25 cm | 150 kg N + 60 kg P2O5 + 40 kg K2O + 25 kg ZnSO4 ha−1 |
Rabi maize | HQPM–1 | 20 kg ha−1 | 67 × 20 cm | 180 kg N + 80 kg P2O5 + 60 kg K2O + 25 kg ZnSO4 ha−1 |
Wheat | PBW–343 | 100 kg ha−1 | Row spacing 22.5 cm (ZT and CT) 18.5 cm (PB) | 120 kg N + 60 kg P2O5 + 40 kg K2O ha−1 |
Chickpea | Pusa–547 | 80 kg ha−1 | 30 × 20 cm (ZT and CT) 18.5 × 20 cm (PB) | 30 kg N + 40 kg P2O5 + 40 kg K2O ha−1 |
Mustard | NRCDR–2 | 5 kg ha−1 | Row spacing 30 cm | 90 kg N + 40 kg P2O5 + 30 kg K2O ha−1 |
Mungbean | Pusa Vishal | 25 kg ha−1 | Row spacing 30 cm | 30 kg N + 40 kg P2O5 ha−1 |
Sesbania | Local cultivar | 35 kg ha−1 | Broadcasted | Not applied |
Treatments | SL-P | Al-P | Fe-P | RES-P | Ca-P | SL-P | Al-P | Fe-P | RES-P | Ca-P |
---|---|---|---|---|---|---|---|---|---|---|
0–5 cm | 5–15 cm | |||||||||
Tillage Practices (T) | ||||||||||
PB | 15.1 AB | 26.1 B | 28.9 B | 107 B | 218 B | 14.0 B | 21.5 | 28.1 B | 98.9 B | 220 |
ZT-flat | 16.3 A | 26.5 B | 31.1 B | 111 B | 223 B | 15.0 A | 18.5 | 31.3 A | 103 B | 225 |
CT-flat | 13.6 B | 28.9 A | 33.6 A | 124 A | 247 A | 13.2 B | 22.6 | 31.8 A | 116 A | 221 |
SEm (±) | 0.63 | 0.82 | 0.88 | 4.13 | 6.87 | 0.33 | 1.28 | 0.77 | 3.68 | 7.12 |
LSD (p ≤ 0.05) | 1.76 | 2.27 | 2.44 | 11.5 | 19.0 | 0.91 | NS | 2.13 | 10.2 | NS |
Cropping systems (CS) | ||||||||||
MWMb | 16.4 A | 27.9 A | 30.9 | 114 AB | 233 | 14.9 AB | 21.3 | 29.8 | 111 | 221 |
MCS | 16.9 A | 23.1 B | 30.7 | 123 A | 226 | 15.0 A | 20.5 | 30.4 | 111 | 219 |
MMuMb | 12.5 C | 28.3 A | 31.7 | 108 B | 230 | 12.6 C | 20.8 | 30.9 | 97.8 | 226 |
MMS | 14.2 B | 29.4 A | 31.4 | 111 B | 228 | 13.8 B | 20.7 | 30.3 | 105 | 223 |
SEm (±) | 0.66 | 1.27 | 0.88 | 5.16 | 6.72 | 0.53 | 1.28 | 1.07 | 6.08 | 5.62 |
LSD (p ≤ 0.05) | 1.39 | 2.68 | NS | 10.8 | NS | 1.12 | NS | NS | NS | NS |
T × CS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Labile Po | Moderately Labile Po | Non-Labile Po | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NaHCO3-Po | HCl-Po | Fulvic Acid Po | Humic Acid Po | Residual Po | ||||||
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
Tillage practices (T) | ||||||||||
PB | 29.7 | 20.9 | 49.5 | 36.5 A | 79.8 B | 71.8 A | 48.9 | 35.6 | 139 A | 128 A |
ZT-flat | 28.4 | 20.8 | 50.0 | 36.9 A | 81.4 A | 70.2 B | 50.0 | 36.3 | 146 A | 127 A |
CT-flat | 27.2 | 18.1 | 39.5 | 26.2 B | 68.1 C | 62.2 C | 43.8 | 29.4 | 115 B | 101 B |
SEm (±) | 2.18 | 1.06 | 4.09 | 2.98 | 0.29 | 0.53 | 3.72 | 2.94 | 4.74 | 0.80 |
LSD (p ≤ 0.05) | NS | NS | NS | 8.27 | 0.82 | 1.48 | NS | NS | 13.1 | 2.22 |
Cropping systems (CS) | ||||||||||
MWMb | 29.9 A | 20.8 B | 53.0 | 40.2 | 81.5 A | 72.9 A | 53.0 A | 39.3 A | 149 A | 134 A |
MCS | 31.1 A | 22.8 A | 50.6 | 38.1 | 77.8 B | 67.7 B | 52.2 AB | 38.5 A | 141 B | 125 B |
MMuMb | 25.1 B | 16.6 C | 41.4 | 27.6 | 75.5 B | 66.9 B | 45.9 B | 29.6 B | 124 C | 112 C |
MMS | 27.5 AB | 19.5 B | 40.3 | 26.8 | 70.9 C | 64.6 C | 39.2 C | 27.7 B | 118 C | 105 D |
SEm (±) | 1.94 | 0.91 | 5.84 | 5.69 | 1.16 | 0.68 | 3.11 | 1.73 | 3.42 | 2.62 |
LSD (p ≤ 0.05) | 4.08 | 1.91 | NS | NS | 2.43 | 1.44 | 6.53 | 3.64 | 7.18 | 5.50 |
T × CS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 9.53 |
Treatments | Alkaline Phosphatase Activities (µg p-NP g−1 soil h−1) | Microbial Biomass Phosphorus (mg g−1) | ||
---|---|---|---|---|
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
Tillage practices (T) | ||||
PB | 282.7 B | 165.6 B | 30.4 A | 27.2 B |
ZT-flat | 298.8 A | 185.3 A | 31.5 A | 29.1 A |
CT-flat | 252.5 C | 134.2 C | 21.7 B | 14.2 C |
SEm (±) | 2.28 | 2.19 | 1.12 | 0.44 |
LSD (p ≤ 0.05) | 6.34 | 6.08 | 3.12 | 1.22 |
Cropping systems (CS) | ||||
MWMb | 289.4 B | 143.6 D | 28.6 B | 25.0 B |
MCS | 308.6 A | 173.0 B | 33.6 A | 24.2 B |
MMuMb | 228.5 C | 180.1 A | 20.6 C | 17.5 C |
MMS | 285.4 B | 150.1 C | 28.7 B | 27.3 A |
SEm (±) | 2.41 | 1.77 | 1.14 | 0.74 |
LSD (p ≤ 0.05) | 5.06 | 3.72 | 2.39 | 1.55 |
T × CS | 8.77 | 6.45 | 4.14 | 2.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anil, A.S.; Sharma, V.K.; Jiménez-Ballesta, R.; Parihar, C.M.; Datta, S.P.; Barman, M.; Chobhe, K.A.; Kumawat, C.; Patra, A.; Jatav, S.S. Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil. Land 2022, 11, 1488. https://doi.org/10.3390/land11091488
Anil AS, Sharma VK, Jiménez-Ballesta R, Parihar CM, Datta SP, Barman M, Chobhe KA, Kumawat C, Patra A, Jatav SS. Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil. Land. 2022; 11(9):1488. https://doi.org/10.3390/land11091488
Chicago/Turabian StyleAnil, Ajin S., Vinod K. Sharma, Raimundo Jiménez-Ballesta, Chittar M. Parihar, Siba P. Datta, Mandira Barman, Kapil A. Chobhe, Chiranjeev Kumawat, Abhik Patra, and Surendra Singh Jatav. 2022. "Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil" Land 11, no. 9: 1488. https://doi.org/10.3390/land11091488
APA StyleAnil, A. S., Sharma, V. K., Jiménez-Ballesta, R., Parihar, C. M., Datta, S. P., Barman, M., Chobhe, K. A., Kumawat, C., Patra, A., & Jatav, S. S. (2022). Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil. Land, 11(9), 1488. https://doi.org/10.3390/land11091488