Study on the Coupling and Coordination Relationship between Gross Ecosystem Product (GEP) and Regional Economic System: A Case Study of Jiangxi Province
Abstract
:1. Introduction
2. Coupling and Coordination Mechanism of GEP and Regional Economy
3. Data Sources and Research Methods
3.1. Overview of the Study Area
3.2. Data Sources
3.3. GEP Accounting
3.4. Construction of the Coupling Coordination Degree Model
4. Results and Analysis
4.1. Analysis of GEP Accounting Results in Jiangxi Province
4.2. Spatial and Temporal Analysis of the Comprehensive Index and Coupling Coordination Degree of GEP and Economic Development
5. Discussion and Suggestions
5.1. Discussion
5.2. Suggestions for the Coordinated Development of Ecosystems and Regional Economy
5.2.1. GEP into “Assessment”
5.2.2. GEP into “Planning”
5.2.3. GEP into “Decision”
6. Conclusions
- (1)
- From 2010 to 2020, GEP in Jiangxi Province was on the rise. The 10-year growth rate of the value of material products and cultural service products was 49.57% and 414.03% respectively, but the value of adjusted service products decreased by 9.89% in the 10-year period. In terms of the value of material products, the product type with the largest share of value was agricultural products, and the material product type with the largest increase in the past 10 years was ecological energy products. In terms of regulation service value, water conservation and climate regulation had the highest two values, respectively. The regulation service product with the largest decline in the past 10 years was flood storage, which decreased by 18.97%, followed by water conservation, which decreased by 15.99%. Among the cities in Jiangxi Province, Ganzhou had the highest GEP in 2010 and 2020, with 851.9 billion yuan and 838.8 billion yuan, respectively; Xinyu had the lowest in 2010 and 2020, with 87.2 billion yuan and 86.4 billion yuan, respectively. In terms of GEP distribution per unit area, GEP per unit area was higher in the east than in the west, and GEP per unit area in the north was higher than in the east.
- (2)
- From 2010 to 2020, the main coupling and coordinated development characteristics of the ecosystem and economic system in Jiangxi Province changed from Basic coordination-economic lag to Moderate coordination-ecological lag, indicating that the type of coupling and coordination between ecosystems and economic systems is evolving in a better direction, but the constraints of ecosystems on economic development are increasing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Current State and Trends: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 829–838. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C.; Soederqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.M.; Jansson, B.O.; Kautsky, N. The Value of Nature and the Nature of Value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef]
- Gumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; Cramon-Taubadel, S.V.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 89–90. [Google Scholar] [CrossRef]
- Campos, S.F.; David, J.; Lourenco-de-Moraes, R.; Rodrigues, P.; Silva, B.; Da Silva, C.V.; Cabral, P. The economic and ecological benefits of saving ecosystems to protect services. J. Clean. Prod. 2021, 311, 127551. [Google Scholar] [CrossRef]
- Pan, T.T.; Yan, F.Q.; Su, F.Z.; Lyne, V.; Zhou, C.D. Land Use Optimization for Coastal Urban Agglomerations Based on Economic and Ecological Gravitational Linkages and Accessibility. Land 2022, 11, 1003. [Google Scholar] [CrossRef]
- Fan, Q.D.; Yang, X.Y.; Zhang, C.M. A Review of Ecosystem Services Research Focusing on China against the Background of Urbanization. Int. J. Environ. Res. Public Health 2022, 19, 8271. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Wu, W.J.; Wang, J.N.; Yang, W.S.; Gao, Y.M.; Duan, Y.; Ma, G.X.; Wu, C.S.; Shao, J.C. Mapping global value of terrestrial ecosystem services by countries. Ecosyst. Serv. 2021, 52, 101361. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Song, C.S.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.G.; Ruckelshaus, M.; Shi, F.Q.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zhu, C.Q.; Yang, G.B.; Xu, W.H.; Yi, X. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Wang, L.; Su, K.; Jiang, X.; Zhou, X.; Yu, Z.; Chen, Z.; Wei, C.; Zhang, Y.; Liao, Z. Measuring Gross Ecosystem Product (GEP) in Guangxi, China, from 2005 to 2020. Land 2022, 11, 1213. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.L.; Hou, H.P.; Yang, Y.J.; Gong, Y.L. Assessing the Changes of Ecosystem Services in the Nansi Lake Wetland, China. Water 2019, 11, 788. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Wu, T.; Xiao, Y.; Song, C.S.; Wang, K.L.; Ouyang, Z.Y. Valuing natural capital amidst rapid urbanization: Assessing the gross ecosystem product (GEP) of China’s ‘Chang-Zhu-Tan’ megacity. Environ. Res. Lett. 2020, 15, 124019. [Google Scholar] [CrossRef]
- Geng, J.X.; Liang, C.Z. Analysis of the Internal Relationship between Ecological Value and Economic Value Based on the Forest Resources in China. Sustainability 2021, 13, 6795. [Google Scholar] [CrossRef]
- Ni, L.L.; Siu, S.W.; Xu, W.M.; Jie, Z.G. Measuring gross ecosystem product of nine cities within the Pearl River Delta of China. Environ. Chall. 2021, 4, 100105. [Google Scholar] [CrossRef]
- Biratu, A.A.; Bedadi, B.; Gebrehiwot, S.G.; Melesse, A.M.; Nebi, T.H.; Abera, W.; Tamene, L.; Egeru, A. Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia. Land 2022, 11, 1266. [Google Scholar] [CrossRef]
- Brian, R.; Mengistie, K.; Harison, K.; Stephen, K.; Dennis, O. Impact of land use/land cover changes on ecosystem service values in the cherangany hills water tower, Kenya. Environ. Chall. 2022, 8, 100576. [Google Scholar] [CrossRef]
- Madrigal-Martínez, S.; Puga-Calderón, R.J.; Bustínza Urviola, V.; Vilca Gomez, O. Spatiotemporal Changes in Land Use and Ecosystem Service Values Under the Influence of Glacier Retreat in a High-Andean Environment. Front. Environ. Sci. 2022, 10, 941887. [Google Scholar] [CrossRef]
- Shahriar, A.; Gani, A.M.S.; Dhrubo, B.; Mahbub, M.M.; Zobaidul, K.; Hossain, C.M.B.; Hassan, Q.K.; Dewan, A. Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecol Inform 2022, 70, 101730. [Google Scholar] [CrossRef]
- Coyne, C.; Williams, G.; Sangha, K.K. Assessing the Value of Ecosystem Services From an Indigenous Estate: Warddeken Indigenous Protected Area, Australia. Front. Environ. Sci. 2022, 10, 845178. [Google Scholar] [CrossRef]
- Hardaker, A.; Pagella, T.; Rayment, M. Integrated assessment, valuation and mapping of ecosystem services and dis- services from upland land use in Wales. Ecosyst. Serv. 2020, 43, 101098. [Google Scholar] [CrossRef]
- Nowak, D.J.; Ellis, A.; Greenfield, E.J. The disparity in tree cover and ecosystem service values among redlining classes in the United States. Landscape Urban Plan. 2022, 221, 104370. [Google Scholar] [CrossRef]
- Sutton, P.C.; Duncan, S.L.; Anderson, S.J. Valuing Our National Parks: An Ecological Economics Perspective. Land 2019, 8, 54. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, J.Y.; Liu, G.; Wang, H.M.; Alatalo, J.M.; Yang, Z.Q.; Mu, E.Y.; Bai, Y. Framework of basin eco-compensation standard valuation for cross-regional water supply—A case study in northern China. J. Clean. Prod. 2021, 279, 123630. [Google Scholar] [CrossRef]
- Wu, Z.J.; Du, S.M.; Huang, Y.; Zheng, B.F.; Xie, Z.Y.; Luo, C.K.; Wan, F.; Zhu, J.Q. Assessment of ecological conservation effect in southern jiangxi province based on gross ecosystem product. Acta Ecol. Sin. 2022, 42, 1–14. [Google Scholar] [CrossRef]
- Pema, D.; Xiao, Y.; Ouyang, Z.Y.; Wang, L.Y. Assessment of ecological conservation effect in Xishui county based on gross ecosystem product. Acta Ecol. Sin. 2020, 40, 499–509. [Google Scholar] [CrossRef]
- Ma, G.X.; Wang, J.N.; Yu, F.; Yang, W.S.; Ning, J.; Peng, F.; Zhou, X.F.; Zhou, Y.; Cao, D. Framework construction and application of China’s Gross Economic-Ecological Product accounting. J. Environ. Manage. 2020, 264, 109852. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Zhang, Y.Q.; Xi, X. Analysis of the Gross Ecosystem Product-Gross Domestic Product Synergistic States, Evolutionary Process, and Their Regional Contribution to the Chinese Mainland. Land 2022, 11, 732. [Google Scholar] [CrossRef]
- Xu, M.Y.; Chen, C.T.; Deng, X.Y. Systematic analysis of the coordination degree of China’s economy-ecological environment system and its influencing factor. Environ. Sci. Pollut. R. 2019, 26, 29722–29735. [Google Scholar] [CrossRef]
- Guan, S.; Liao, Q.; Wu, W.J.; Yi, C.; Gao, Y.M. Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province. Sustainability 2022, 14, 7546. [Google Scholar] [CrossRef]
- Zhang, C.M.; Wang, C.X.; Mao, G.X.; Wang, M.; Hsu, W.L. An Empirical Study on the Ecological Economy of the Huai River in China. Water 2020, 12, 2162. [Google Scholar] [CrossRef]
- Pan, Y.X.; Zhang, B.Y.; Wu, Y.; Tian, Y. Sustainability assessment of urban ecological-economic systems based on emergy analysis: A case study in Simao, China. Ecol. Indic. 2021, 121, 107157. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, A.W.; Zhou, Z.G. Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone. Int. J. Environ. Res. Public Health 2019, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Ren, B.N. Application of the gross ecosystem product accounting theory on rural ecological civilization assessment in Hainan Province: A case study of Wenmen Village in Sanya. Acta Ecol. Sin. 2020, 40, 3236–3246. [Google Scholar] [CrossRef]
- Shi, A.; Shaoliang, Z.; Huping, H.; Yiyan, Z.; Haonan, X.; Jie, L. Coupling Coordination Analysis of the Ecology and Economy in the Yellow River Basin under the Background of High-Quality Development. Land 2022, 11, 1235. [Google Scholar] [CrossRef]
- Hayha, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Model. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Levin, S.; Xepapadeas, T.; Crepin, A.S.; Norberg, J.; De Zeeuw, A.; Folke, C.; Hughes, T.; Arrow, K.; Barrett, S.; Daily, G.; et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environ. Dev. Econ. 2013, 18, 111–132. [Google Scholar] [CrossRef]
- Li, L.; Fan, Z.; Feng, W.; Yuxin, C.; Keyu, Q. Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yang, F.; Hu, N.; Liang, L.B. Evaluation of the coordination between eco-environment and socioeconomy under the “Ecological County Strategy” in western China: A case study of Meixian. Ecol. Indic. 2021, 125, 107585. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Yan, H.M.; Zhang, F.; Wei, X.Q. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Missemer, A. Natural Capital as an Economic Concept, History and Contemporary Issues. Ecol. Econ. 2018, 143, 90–96. [Google Scholar] [CrossRef]
- Wang, J.Y.; Liu, Y.J.; Li, Y.R. Ecological restoration under rural restructuring: A case study of Yan’an in China’s loess plateau. Land Use Policy 2019, 87, 104087. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Chen, Y.T.; Li, Z.B.; Li, P.; Zhang, Z.P.; Zhang, Y.X. Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability 2021, 13, 10637. [Google Scholar] [CrossRef]
- Zhou, L.L.; Guan, D.J.; Yuan, X.Z.; Zhang, M.J.; Gao, W.J. Quantifying the spatiotemporal characteristics of ecosystem services and livelihoods in China’s poverty-stricken counties. Front. Earth Sci. 2021, 15, 553–579. [Google Scholar] [CrossRef]
- Chen, W.X.; Zeng, J.; Zhong, M.X.; Pan, S.P. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Lin, Y. Coupling analysis of marine ecology and economy: Case study of Shanghai, China. Ocean Coast. Manag. 2020, 195, 105278. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, P.; Jiang, J.; Zhai, J.; Chen, Y.; Wang, Y.; Bai, J.; Zhang, B.; Xu, H. Coordination Study on Ecological and Economic Coupling of the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10664. [Google Scholar] [CrossRef]
- Liu, X.; Ke, L.; Zhuang, H.; Yang, X.; Song, N.; Wang, S. Analysis of Coupling Co-Ordination between Intensive Sea Use and the Marine Economy in the Liaoning Coastal Economic Belt of China. Complexity 2020, 2020, 6038497. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center. Available online: https://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3 (accessed on 25 April 2022).
- Normalized Difference Vegetation Index. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIid=49 (accessed on 25 April 2022).
- Net Primary Production. Available online: https://lpdaac.usgs.gov/data/get-started-data/collection-overview/ (accessed on 25 April 2022).
- China Meteorological Data Service Centre. Available online: http://data.cma.cn/en/?r=data/index&cid=0b9164954813c573 (accessed on 25 April 2022).
- Geospatial Date Cloud. Available online: http://www.gscloud.cn/sources/index?pid=302 (accessed on 25 April 2022).
- Yang, R.; Wong, C.W.Y.; Miao, X. Evaluation of the coordinated development of economic, urbanization and environmental systems: A case study of China. Clean Technol. Environ. Policy 2021, 23, 685–708. [Google Scholar] [CrossRef]
- Gryshova, I.; Kyzym, M.; Hubarieva, I.; Khaustova, V.; Livinskyi, A.; Koroshenko, M. Assessment of the EU and Ukraine Economic Security and Its Influence on Their Sustainable Economic Development. Sustainability 2020, 12, 7692. [Google Scholar] [CrossRef]
- Soja, S.J.; Anokic, A.; Jelic, D.B.; Maletic, R. Ranking EU Countries According to Their Level of Success in Achieving the Objectives of the Sustainable Development Strategy. Sustainability 2016, 8, 306. [Google Scholar] [CrossRef]
- Song, C.S.; Ouyang, Z.Y. Gross Ecosystem Product accounting for ecological benefits assessment: A case study of Qinghai Province. Acta Ecol. Sin. 2020, 40, 3207–3217. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Suo, Y. A new water balance equation introducing dew amount in arid area. J. Hydraul. Eng. 2019, 50, 710–720. [Google Scholar] [CrossRef]
- Du, H.Q.; Yu, S.; Zhang, P.T.; Zhang, L.L. Assessing payment for ecosystem services based on water retention value flow in Beijing-Tianjin-Hebei region. Acta Ecol. Sin. 2022, 42, 1–15. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Nengzouzam, G.; Islam, A. Evaluation of climate change impact on soil erosion in the integrated farming system based hilly micro-watersheds using Revised Universal Soil Loss Equation. Catena 2022, 214, 106306. [Google Scholar] [CrossRef]
- Allois, L.; John, O.; Christian, O. Soil Loss Assessment Using the Revised Universal Soil Loss Equation (RUSLE) Model. Appl. Environ. Soil Sci. 2022, 2022, 2122554. [Google Scholar] [CrossRef]
- Lian-Fang, X.U.; Zhang, H.B.; Zhang, M.Y.; Wang, K.L. Spatial-temporal variation characteristics of the soil conservation function and its economic value in the southern hill and mountain area, China. Resour. Environ. Yangtze Basin 2015, 24, 1599–1605. [Google Scholar] [CrossRef]
- Bing, L.F.; Wang, J.Y.; Yin, Y.; Xi, F.M.; Zhang, W.F.; Ma, M.J.; Niu, L. Evaluation of climate regulation service at prefecture-level city: A case study of Fuzhou City, China. Chin. J. Appl. Ecol. 2022, 33, 1966–1974. [Google Scholar] [CrossRef]
- Li, P.; Sheng, M.; Yang, D.; Tang, L. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Canu, D.M.; Ghermandi, A.; Nunes, P.A.L.D.; Lazzari, P.; Cossarini, G.; Solidoro, C. Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: An ecological economics approach. Global Environ. Chang. 2015, 32, 87–95. [Google Scholar] [CrossRef]
- Wen, Y.Y.; Sun, Q.; Yan, Y.C.; Xiao, M.Z.; Song, W.W.; Yang, J. Impacts of the terrestrial ecosystem changes on the carbon fixation and oxygen release services in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8482–8493. [Google Scholar] [CrossRef]
- Andres, S.; Cesar, R.; Edisson, C.; Flórez-Yepes, G.Y.; Vargas-Marín, L.A. On the Mismatches between the Monetary and Social Values of Air Purification in the Colombian Andean Region: A Case Study. Forests 2021, 12, 1274. [Google Scholar] [CrossRef]
- Bravo, M.G.L. Ecological and Cultural Values of Water Bodies: Recognising a Plural-Values Approach of Ecosystems. Biomed. J. Sci. Tech. Res. 2017, 1, 589–591. [Google Scholar] [CrossRef]
- Baixue, W.; Weiming, C.; Shengxin, L. Impact of land use changes on habitat quality in Altay region. J. Resour. Ecol. 2021, 12, 715–728. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.R.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. Int. J. Inf. Tech. Decis. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Huang, J.; Na, Y.; Guo, Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan. J. Geogr. Sci. 2020, 30, 1802–1824. [Google Scholar] [CrossRef]
- Li, R.R.; Ding, Z.Y.; An, Y. Examination and Forecast of Relationship among Tourism, Environment, and Economy: A Case Study in Shandong Province, China. Int. J. Environ. Res. Public Health 2022, 19, 2581. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, R.; Wang, F.; Huang, H.; Wang, J. Investigation on spatial and temporal variation of coupling coordination between socioeconomic and ecological environment: A case study of the Loess Plateau, China. Ecol. Indic. 2022, 136, 108667. [Google Scholar] [CrossRef]
- Han, Z.L.; Zhao, Y.Q.; Yan, X.L.; Zhong, J.Q. Coupling Coordination Mechanism and Spatial-Temporal Relationship Between Gross Ecosystem Product and Regional Economy:A Case Study of Dalian. Econ. Geogr. 2020, 40, 1–10. [Google Scholar] [CrossRef]
- Gao, J.J.; Shi, Q.H. The Shift of Agricultural Production Growth Path in China: Based on the Micro Perspective of Farm Input. J. Manag. World 2021, 37, 124–134. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Ding, M.; Zheng, X.; Sun, X.; Zhu, W.; Zhu, K.; Jiachun, A.N.; Zang, L.; Guo, J. Estimation and Long-term Trend Analysis of Surface Solar Radiation in Antarctica: A Case Study of Zhongshan Station. Adv. Atmos. Sci. 2021, 38, 1497–1509. [Google Scholar] [CrossRef]
- Zhang, L.B.; Yu, H.Y.; Hao, C.Z.; Wang, H.; Luo, R.J. Redefinition and Connotation Analysis of Ecosystem Product. Res. Environ. Sci. 2021, 34, 655–660. [Google Scholar] [CrossRef]
Function Category | Accounting Subjects | Functional Quantity Accounting Method | Value Accounting Method | References |
---|---|---|---|---|
Material products | agriculture, forestry, animal husbandry and fishery products | Literature review method (Statistical yearbook, Water Resources Bulletin, Statistical Bulletin, etc.) | Market value method | [12,14,16,59] |
water resources | ||||
eco-energy | ||||
Regulating services | water conservation | Water balance method | Shadow project method | [60,61] |
soil conservation | Revised universal soil loss equation (RUSLE) | Replacement cost method | [62,63,64] | |
climate regulation | Evapotranspiration model | Replacement cost method | [65] | |
flood regulation and storage | Water balance method and water storage equation | Shadow project method | [66] | |
carbon sequestration | Mass balance method | Replacement cost method | [67,68] | |
oxygen release | Mass balance method | Replacement cost method | [68] | |
air purification | Plant purification model | Replacement cost method | [69] | |
water purification | Water purification model | Replacement cost method | [70] | |
species conservation | Survey statistics method | Opportunity cost method | [71] | |
negative oxygen ions | Negative oxygen ion model | Replacement cost method | [10] | |
Cultural services | landscape recreation | Survey statistics method | Tourism revenue method | [10,12,14] |
Coupling Coordination Degree | Relative Development Degree | Coupling Coordination Type | Coupling and Coordinated Development Features |
---|---|---|---|
0 < D ≤ 0.2 | 0 < E ≤ 2 | Severely disordered | Severely disordered— ecological lag |
2 < E ≤ 4 | Severely disordered | ||
E > 4 | Severely disordered— economic lag | ||
0.2 < D ≤ 0.4 | 0 < E ≤ 2 | Moderately disordered | Moderately disordered— ecological lag |
2 < E ≤ 4 | Moderately disordered | ||
E > 4 | Moderately disordered— economic lag | ||
0.4 < D ≤ 0.6 | 0 < E ≤ 2 | Basic coordination | Basic coordination— ecological lag |
2 < E ≤ 4 | Basic coordination | ||
E > 4 | Basic coordination— economic lag | ||
0.6 < D ≤ 0.8 | 0 < E ≤ 2 | Moderate coordination | Moderate coordination— ecological lag |
2 < E ≤ 4 | Moderate coordination | ||
E > 4 | Moderate coordination— economic lag | ||
0.8 < D ≤ 1 | 0 < E ≤ 2 | High coordination | High coordination— ecological lag |
2 < E ≤ 4 | High coordination | ||
E > 4 | High coordination— economic lag |
Ecosystem Type | 2010 (km2) | 2020 (km2) | Changes from 2010 to 2020 | Net Change 2010–2020 (km2) |
---|---|---|---|---|
Forests | 94,280.3 | 93,321.3 | −1.02% | −959.0 |
Shrubs | 9264.4 | 9206.6 | −0.62% | −57.8 |
Grassland | 6794.0 | 7120.1 | 4.80% | 326.1 |
Wetland | 7653.9 | 7685.7 | 0.42% | 31.8 |
Farmland | 44,978.8 | 44,199.0 | −1.73% | −779.8 |
Urban land | 3970.0 | 5409.5 | 36.26% | 1439.5 |
Bare land | 18.0 | 17.3 | −3.85% | −0.7 |
Accounting Categories | 2010 (Billion Yuan) | 2020 (Billion Yuan) | Changes from 2010 to 2020 |
---|---|---|---|
Material product value | 215.3 | 322.0 | 49.57% |
Regulating service product value | 4343.1 | 3913.6 | −9.89% |
Cultural service product value | 81.8 | 420.6 | 414.03% |
GEP | 4640.2 | 4656.3 | 0.35% |
Accounting Categories | Product Type | Accounting Indicators (Billion Yuan) | 2010 | 2020 | Changes from 2010 to 2020 |
---|---|---|---|---|---|
Material products | Agricultural products | Agricultural product value | 80.2 | 131.1 | 63.57% |
Forestry products | Forest product value | 18.7 | 28.5 | 52.73% | |
Animal husbandry products | Animal husbandry product value | 58.4 | 87.3 | 49.46% | |
Fishery products | Fishery product value | 25.6 | 36.7 | 43.70% | |
Water products | Water product value | 28.3 | 28.8 | 1.82% | |
Eco-energy products | Eco-energy product value | 4.2 | 9.6 | 126.99% |
Accounting Categories | Product Type | Accounting Indicators | 2010 | 2020 | Changes from 2010 to 2020 |
---|---|---|---|---|---|
(Billion Yuan) | |||||
Regulatory service products | Water conservation | The value of water conservation | 2076.2 | 1744.3 | −15.99% |
Soil conservation | The value of reducing sedimentation | 40.89 | 41.5 | 1.65% | |
The value of reducing nitrogen non-point source pollution | 35.8 | 36.4 | |||
The value of reducing phosphorus nonpoint source pollution | 33.4 | 34.0 | |||
total | 110.1 | 111.9 | |||
Climate regulation | The value of climate regulation | 1128.7 | 1187.7 | 5.22% | |
Flood regulation and storage | The value of vegetation regulation and storage | 656.5 | 482.3 | −18.97% | |
The value of reservoir regulation and storage | 69.2 | 77.2 | |||
The value of lake regulation and storage | 94.4 | 105.0 | |||
total | 820.1 | 664.5 | |||
Carbon sequestration | The value of carbon sequestration | 7.5 | 7.4 | −0.91% | |
Oxygen release | The value of oxygen release | 36.2 | 35.9 | −0.92% | |
Air purification | The value of purified sulfur dioxide | 0.515 | 0.511 | −0.93% | |
The value of nitrogen oxides purified | 0.301 | 0.298 | |||
The value of cleaning industrial dust | 0.262 | 0.259 | |||
total | 1.078 | 1.068 | |||
Water purification | The value of purifying COD | 0.592 | 0.594 | 0.48% | |
The value of purifying total nitrogen | 0.057 | 0.058 | |||
The value of purifying total phosphorus | 0.183 | 0.184 | |||
total | 0.832 | 0.836 | |||
Species conservation | The value of biodiversity | 154.3 | 152.1 | −1.47% | |
Negative oxygen ions | The value of negative oxygen ions | 8.1 | 8.0 | −1.47% |
Accounting Categories | Product Type | Accounting Indicators | 2010 | 2020 | Changes from 2010 to 2020 |
---|---|---|---|---|---|
Cultural service products | Landscape recreation | Total number of tourists | 108.2 | 557.0 | 414.78% |
(million people) | |||||
Landscape and recreational value (billion yuan) | 81.8 | 420.6 | 414.03% |
City | Years | GEP | Economy | Coupling Coordination Degree | Relative Development Degree | Coupling and Coordinated Development Features |
---|---|---|---|---|---|---|
Nanchang | 2010 | 0.433 | 0.714 | 0.746 | 0.606 | Moderate coordination—ecological lag |
2020 | 0.532 | 0.866 | 0.824 | 0.614 | High coordination—economic lag | |
Jingdezhen | 2010 | 0.149 | 0.443 | 0.507 | 0.337 | Basic coordination—economic lag |
2020 | 0.126 | 0.502 | 0.501 | 0.251 | Basic coordination—economic lag | |
Pingxiang | 2010 | 0.086 | 0.443 | 0.441 | 0.193 | Basic coordination—economic lag |
2020 | 0.040 | 0.394 | 0.355 | 0.102 | Moderately disordered—economic lag | |
Jiujiang | 2010 | 0.618 | 0.260 | 0.633 | 2.381 | Basic coordination |
2020 | 0.670 | 0.597 | 0.795 | 1.123 | Basic coordination—economic lag | |
Xinyu | 2010 | 0.027 | 0.766 | 0.378 | 0.035 | Moderately disordered—economic lag |
2020 | 0.002 | 0.710 | 0.204 | 0.003 | Moderately disordered—economic lag | |
Yingtan | 2010 | 0.077 | 0.412 | 0.422 | 0.187 | Basic coordination—economic lag |
2020 | 0.051 | 0.757 | 0.442 | 0.067 | Basic coordination—economic lag | |
Ganzhou | 2010 | 0.841 | 0.168 | 0.613 | 5.020 | Moderate coordination—ecological lag |
2020 | 0.816 | 0.184 | 0.623 | 4.426 | Moderate coordination—ecological lag | |
Ji’an | 2010 | 0.668 | 0.130 | 0.543 | 5.129 | Basic coordination—ecological lag |
2020 | 0.535 | 0.276 | 0.620 | 1.935 | Moderate coordination—economic lag | |
Yichun | 2010 | 0.605 | 0.132 | 0.531 | 4.592 | Basic coordination—ecological lag |
2020 | 0.627 | 0.305 | 0.661 | 2.056 | Moderate coordination | |
Fuzhou | 2010 | 0.517 | 0.179 | 0.552 | 2.884 | Basic coordination |
2020 | 0.452 | 0.161 | 0.520 | 2.804 | Basic coordination | |
Shangrao | 2010 | 0.823 | 0.144 | 0.587 | 5.711 | Basic coordination—ecological lag |
2020 | 0.637 | 0.179 | 0.581 | 3.548 | Basic coordination |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Li, Z.; Xu, Y. Study on the Coupling and Coordination Relationship between Gross Ecosystem Product (GEP) and Regional Economic System: A Case Study of Jiangxi Province. Land 2022, 11, 1540. https://doi.org/10.3390/land11091540
Xie H, Li Z, Xu Y. Study on the Coupling and Coordination Relationship between Gross Ecosystem Product (GEP) and Regional Economic System: A Case Study of Jiangxi Province. Land. 2022; 11(9):1540. https://doi.org/10.3390/land11091540
Chicago/Turabian StyleXie, Hualin, Zhe Li, and Yu Xu. 2022. "Study on the Coupling and Coordination Relationship between Gross Ecosystem Product (GEP) and Regional Economic System: A Case Study of Jiangxi Province" Land 11, no. 9: 1540. https://doi.org/10.3390/land11091540
APA StyleXie, H., Li, Z., & Xu, Y. (2022). Study on the Coupling and Coordination Relationship between Gross Ecosystem Product (GEP) and Regional Economic System: A Case Study of Jiangxi Province. Land, 11(9), 1540. https://doi.org/10.3390/land11091540