Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China
Abstract
:1. Introduction
1.1. Background
1.2. Questions and Framework
2. Literature Review
2.1. Urban Industrial Land Change and Influencing Factors
2.2. Socioeconomic Value of Land Use and Resource Management
2.3. Land Use Policy and Territorial Spatial Planning
2.4. Literature Limitations and New Breakthrough Directions
3. Materials and Methods
3.1. Study Area
3.2. Research Steps and Technical Route
3.3. Variables and Data Sources
3.4. Research Methods
3.4.1. Boston Consulting Group Matrix
3.4.2. Coefficient Variation and Exploratory Spatial Data Analysis
3.4.3. Geodetector
3.4.4. Decoupling Model
4. Results
4.1. Dynamics and Trends of Urban Industrial Land Use Change
4.1.1. Relative Share
4.1.2. Change Speed
4.1.3. Evolution Mode
4.2. Driving Mechanism of the Urban Industrial Land Evolution Model
4.2.1. Direct Influence
4.2.2. Interactive Influence
4.3. Economic Performance of Urban Industrial Land Consumption
4.3.1. Government: Secondary Industry Added Value
4.3.2. Market: Secondary Industry Enterprise Assets
5. Discussion
6. Conclusions
- (1)
- Behind the increasingly complex spatial and temporal evolution of urban industrial land dynamics, regular features of the process and spatial patterns of urban industrial land change are hidden. According to the Boston Consulting Group matrix, the spatio-temporal evolution model of urban industrial land can be divided into four types of stars, cows, dogs, and question, and the spatial agglomeration, heterogeneity, and correlation of different patterns have gradually decreased.
- (2)
- The forces of different factors on the evolution of urban industrial land are increasingly differentiated, and their direct and interactive influences are significantly enhanced, with bifactor enhancement dominating the interaction of factor pairs. It should be noted that the government demand is the key driving force of the evolution of urban industrial land, the influence of supporting facilities and the business environment has long remained stable, and the mechanism of action of industrialization, globalization, and innovation is becoming more complex.
- (3)
- The match and synergy between changes in urban industrial land and industrial economic growth are fine in general, and the land resource management policy of “seek-development-with-land” is still effective for the government, but its effectiveness for enterprises (market) is declining rapidly. The progressive, unchanged, and regressive types of decoupling exist side by side, and the much higher long-term stability than that of assets makes the added value more suitable for future urban industrial land-scale projections.
- (4)
- Based on the decoupling relationship, a technical framework for zoning management and classification governance of urban industrial land is constructed in this paper, with the land evolution pattern and its influencing factors taken into account. The Yangtze River Delta is divided into reduction-oriented transformation policy zoning, incremental high-quality development zoning, incremental synchronous growth zoning, and reduction and upgrading development zoning, and adaptive land quantity and quality control strategies are proposed for zonings.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
City | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 4 | 3 | 3 | 3 | 3 |
Nanjing | 3 | 3 | 4 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Wuxi | 3 | 4 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Xuzhou | 3 | 3 | 4 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 3 |
Changzhou | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 |
Suzhou-JS | 4 | 3 | 3 | 4 | 1 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
Nantong | 4 | 4 | 4 | 3 | 1 | 4 | 3 | 1 | 3 | 3 | 2 | 4 |
Lianyungang | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Huai’an | 1 | 2 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 |
Yancheng | 4 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 4 |
Yangzhou | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 |
Zhenjiang | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 1 |
Taizhou-JS | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 2 |
Suqian | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
Hangzhou | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 3 |
Ningbo | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 4 | 3 | 3 | 3 | 3 |
Wenzhou | 3 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 2 | 4 | 2 | 3 |
Jiaxing | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 2 |
Huzhou | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
Shaoxing | 4 | 4 | 2 | 4 | 1 | 4 | 1 | 4 | 2 | 4 | 2 | 2 |
Jinhua | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 2 |
Quzhou | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Zhoushan | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 |
Taizhou-ZJ | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 2 | 1 | 1 | 1 |
Lishui | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 |
Hefei | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 2 | 3 | 3 | 3 | 3 |
Wuhu | 1 | 1 | 3 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 2 |
Bengbu | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
Huainan | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
Ma’anshan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
Huaibei | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 |
Tongling | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
Anqing | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 |
Huangshan | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 |
Chuzhou | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 |
Fuyang | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 |
Suzhou-AH | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
Lu’an | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 |
Bozhou | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
Chizhou | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
Xuancheng | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
City | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 4 | 4 | 3 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 4 |
Nanjing | 4 | 3 | 3 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 4 | 4 |
Wuxi | 3 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 4 |
Xuzhou | 1 | 3 | 3 | 2 | 4 | 1 | 1 | 2 | 2 | 4 | 1 | 1 |
Changzhou | 4 | 3 | 3 | 4 | 3 | 4 | 1 | 4 | 4 | 3 | 1 | 4 |
Suzhou-JS | 3 | 3 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 |
Nantong | 1 | 4 | 3 | 1 | 4 | 1 | 1 | 4 | 1 | 3 | 1 | 1 |
Lianyungang | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 |
Huai’an | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 |
Yancheng | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
Yangzhou | 2 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 4 | 2 | 2 |
Zhenjiang | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
Taizhou-JS | 1 | 2 | 2 | 1 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
Suqian | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
Hangzhou | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 4 |
Ningbo | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 3 | 3 | 3 | 4 |
Wenzhou | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 4 | 4 | 1 |
Jiaxing | 1 | 2 | 2 | 1 | 3 | 1 | 2 | 3 | 1 | 4 | 1 | 1 |
Huzhou | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
Shaoxing | 2 | 4 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | 3 | 4 | 2 |
Jinhua | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 4 | 2 | 1 |
Quzhou | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 |
Zhoushan | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
Taizhou-ZJ | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 4 | 1 | 1 |
Lishui | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 |
Hefei | 4 | 3 | 4 | 3 | 4 | 4 | 2 | 2 | 4 | 4 | 3 | 4 |
Wuhu | 2 | 1 | 3 | 1 | 4 | 2 | 1 | 2 | 3 | 1 | 1 | 2 |
Bengbu | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
Huainan | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 |
Ma’anshan | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 4 | 2 | 1 | 1 |
Huaibei | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Tongling | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
Anqing | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 |
Huangshan | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 |
Chuzhou | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
Fuyang | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 |
Suzhou-AH | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
Lu’an | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 |
Bozhou | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 |
Chizhou | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
Xuancheng | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
City | Industrial Land | Added Value | Enterprise Assets | |||
---|---|---|---|---|---|---|
2010 | 2014 | 2010 | 2014 | 2010 | 2014 | |
Shanghai | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Nanjing | 0.2151 | 0.2256 | 0.2803 | 0.4414 | 0.2447 | 0.3024 |
Wuxi | 0.0721 | 0.0896 | 0.2161 | 0.2293 | 0.1859 | 0.1798 |
Xuzhou | 0.0430 | 0.0310 | 0.1297 | 0.1683 | 0.0856 | 0.1289 |
Changzhou | 0.0512 | 0.0719 | 0.1791 | 0.2219 | 0.1642 | 0.1961 |
Suzhou-JS | 0.2083 | 0.1752 | 0.2687 | 0.4334 | 0.2356 | 0.3457 |
Nantong | 0.0718 | 0.0195 | 0.0989 | 0.1152 | 0.0701 | 0.0879 |
Lianyungang | 0.0415 | 0.0589 | 0.0240 | 0.0465 | 0.0378 | 0.0563 |
Huai’an | 0.0581 | 0.0503 | 0.0524 | 0.0726 | 0.0280 | 0.0415 |
Yancheng | 0.0345 | 0.0404 | 0.0414 | 0.0635 | 0.0255 | 0.0367 |
Yangzhou | 0.0329 | 0.0461 | 0.0723 | 0.1440 | 0.0539 | 0.0809 |
Zhenjiang | 0.0437 | 0.0440 | 0.0616 | 0.0790 | 0.0473 | 0.0631 |
Taizhou-JS | 0.0342 | 0.0466 | 0.0417 | 0.0840 | 0.0353 | 0.0549 |
Suqian | 0.0175 | 0.0244 | 0.0199 | 0.0304 | 0.0141 | 0.0313 |
Hangzhou | 0.0816 | 0.1027 | 0.2966 | 0.3885 | 0.2885 | 0.3430 |
Ningbo | 0.1645 | 0.1992 | 0.2300 | 0.2805 | 0.2173 | 0.2199 |
Wenzhou | 0.0423 | 0.0005 | 0.0764 | 0.0888 | 0.0537 | 0.0372 |
Jiaxing | 0.0327 | 0.0201 | 0.0351 | 0.0367 | 0.0398 | 0.0463 |
Huzhou | 0.0431 | 0.0453 | 0.0390 | 0.0404 | 0.0313 | 0.0342 |
Shaoxing | 0.0332 | 0.0814 | 0.0234 | 0.1495 | 0.0344 | 0.1623 |
Jinhua | 0.0170 | 0.0192 | 0.0184 | 0.0172 | 0.0220 | 0.0177 |
Quzhou | 0.0203 | 0.0257 | 0.0168 | 0.0147 | 0.0146 | 0.0198 |
Zhoushan | 0.0053 | 0.0045 | 0.0208 | 0.0264 | 0.0265 | 0.0293 |
Taizhou-ZJ | 0.0581 | 0.0701 | 0.0514 | 0.0581 | 0.0445 | 0.0403 |
Lishui | 0.0000 | 0.0000 | 0.0031 | 0.0002 | 0.0073 | 0.0077 |
Hefei | 0.0843 | 0.0968 | 0.1387 | 0.2177 | 0.0854 | 0.1184 |
Wuhu | 0.0330 | 0.0125 | 0.0711 | 0.1004 | 0.0519 | 0.0855 |
Bengbu | 0.0240 | 0.0236 | 0.0177 | 0.0363 | 0.0119 | 0.0208 |
Huainan | 0.0163 | 0.0144 | 0.0307 | 0.0257 | 0.0609 | 0.0633 |
Ma’anshan | 0.0385 | 0.0442 | 0.0571 | 0.0514 | 0.0412 | 0.0445 |
Huaibei | 0.0211 | 0.0235 | 0.0272 | 0.0337 | 0.0368 | 0.0428 |
Tongling | 0.0078 | 0.0121 | 0.0333 | 0.0399 | 0.0281 | 0.0360 |
Anqing | 0.0278 | 0.0018 | 0.0140 | 0.0110 | 0.0070 | 0.0111 |
Huangshan | 0.0033 | 0.0059 | 0.0014 | 0.0000 | 0.0000 | 0.0000 |
Chuzhou | 0.0214 | 0.0353 | 0.0073 | 0.0122 | 0.0060 | 0.0094 |
Fuyang | 0.0075 | 0.0166 | 0.0056 | 0.0086 | 0.0048 | 0.0082 |
Suzhou-AH | 0.0131 | 0.0141 | 0.0068 | 0.0152 | 0.0050 | 0.0060 |
Lu’an | 0.0116 | 0.0121 | 0.0000 | 0.0080 | 0.0028 | 0.0070 |
Bozhou | 0.0060 | 0.0108 | 0.0028 | 0.0029 | 0.0007 | 0.0036 |
Chizhou | 0.0024 | 0.0001 | 0.0035 | 0.0042 | 0.0031 | 0.0062 |
Xuancheng | 0.0093 | 0.0148 | 0.0006 | 0.0009 | 0.0027 | 0.0023 |
City | Industrial Land | Added Value | Enterprise Assets | |||
---|---|---|---|---|---|---|
2015 | 2019 | 2015 | 2019 | 2015 | 2019 | |
Shanghai | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Nanjing | 0.2133 | 0.1678 | 0.4899 | 0.4833 | 0.2950 | 0.2981 |
Wuxi | 0.0887 | 0.1258 | 0.2391 | 0.2495 | 0.1766 | 0.2088 |
Xuzhou | 0.0319 | 0.0855 | 0.1728 | 0.1344 | 0.1236 | 0.0718 |
Changzhou | 0.0905 | 0.1597 | 0.2640 | 0.2842 | 0.2196 | 0.2101 |
Suzhou-JS | 0.1716 | 0.2334 | 0.4455 | 0.3947 | 0.3402 | 0.3634 |
Nantong | 0.0266 | 0.1116 | 0.1271 | 0.1445 | 0.0876 | 0.0772 |
Lianyungang | 0.0657 | 0.0895 | 0.0552 | 0.0712 | 0.0592 | 0.0630 |
Huai’an | 0.0681 | 0.0593 | 0.0836 | 0.0959 | 0.0466 | 0.0291 |
Yancheng | 0.0578 | 0.0650 | 0.1026 | 0.0860 | 0.0618 | 0.0571 |
Yangzhou | 0.0412 | 0.0646 | 0.1583 | 0.1440 | 0.0803 | 0.0631 |
Zhenjiang | 0.0455 | 0.0672 | 0.0889 | 0.0699 | 0.0633 | 0.0411 |
Taizhou-JS | 0.0544 | 0.0555 | 0.0917 | 0.0942 | 0.0576 | 0.0539 |
Suqian | 0.0273 | 0.0472 | 0.0380 | 0.0396 | 0.0334 | 0.0216 |
Hangzhou | 0.1033 | 0.2250 | 0.4034 | 0.4238 | 0.3437 | 0.3779 |
Ningbo | 0.1619 | 0.2394 | 0.2988 | 0.3192 | 0.2209 | 0.2616 |
Wenzhou | 0.0035 | 0.0044 | 0.1009 | 0.0844 | 0.0331 | 0.0358 |
Jiaxing | 0.0215 | 0.0568 | 0.0392 | 0.0546 | 0.0447 | 0.0538 |
Huzhou | 0.0346 | 0.0507 | 0.0455 | 0.0584 | 0.0359 | 0.0425 |
Shaoxing | 0.0829 | 0.1146 | 0.1574 | 0.1466 | 0.1498 | 0.1121 |
Jinhua | 0.0198 | 0.0387 | 0.0207 | 0.0188 | 0.0187 | 0.0186 |
Quzhou | 0.0272 | 0.0442 | 0.0169 | 0.0173 | 0.0222 | 0.0239 |
Zhoushan | 0.0045 | 0.0036 | 0.0317 | 0.0220 | 0.0280 | 0.0207 |
Taizhou-ZJ | 0.0400 | 0.0565 | 0.0615 | 0.0691 | 0.0413 | 0.0419 |
Lishui | 0.0000 | 0.0000 | 0.0029 | 0.0000 | 0.0072 | 0.0059 |
Hefei | 0.1020 | 0.1526 | 0.2357 | 0.2096 | 0.1432 | 0.1887 |
Wuhu | 0.0132 | 0.0227 | 0.1067 | 0.0916 | 0.0893 | 0.0947 |
Bengbu | 0.0258 | 0.0410 | 0.0430 | 0.0354 | 0.0257 | 0.0192 |
Huainan | 0.0167 | 0.0268 | 0.0232 | 0.0189 | 0.0616 | 0.0252 |
Ma’anshan | 0.0392 | 0.0578 | 0.0487 | 0.0500 | 0.0441 | 0.0498 |
Huaibei | 0.0194 | 0.0282 | 0.0304 | 0.0102 | 0.0474 | 0.0133 |
Tongling | 0.0122 | 0.0366 | 0.0477 | 0.0278 | 0.0387 | 0.0321 |
Anqing | 0.0020 | 0.0439 | 0.0134 | 0.0194 | 0.0134 | 0.0108 |
Huangshan | 0.0060 | 0.0109 | 0.0000 | 0.0006 | 0.0000 | 0.0000 |
Chuzhou | 0.0364 | 0.0400 | 0.0177 | 0.0358 | 0.0127 | 0.0216 |
Fuyang | 0.0212 | 0.0307 | 0.0109 | 0.0166 | 0.0102 | 0.0094 |
Suzhou-AH | 0.0143 | 0.0259 | 0.0205 | 0.0195 | 0.0065 | 0.0115 |
Lu’an | 0.0126 | 0.0171 | 0.0117 | 0.0123 | 0.0067 | 0.0048 |
Bozhou | 0.0118 | 0.0186 | 0.0074 | 0.0157 | 0.0049 | 0.0122 |
Chizhou | 0.0003 | 0.0035 | 0.0078 | 0.0091 | 0.0060 | 0.0062 |
Xuancheng | 0.0151 | 0.0250 | 0.0036 | 0.0041 | 0.0002 | 0.0057 |
References
- Louw, E.; Bontekoning, Y. Planning of industrial land in the Netherlands: Its rationales and consequences. Tijdschr. Voor Econo-Mische En Soc. Geogr. 2007, 98, 121–129. [Google Scholar] [CrossRef]
- Roost, F.; Jeckel, E. Post-Fordist Production and Urban Industrial Land Use Patterns. Urban Plan. 2021, 6, 321–333. [Google Scholar] [CrossRef]
- Funderburg, R.G.; Zhou, X.X. Trading industry clusters amid the legacy of industrial land-use planning in southern California. Environ. Plan. A—Econ. Space 2014, 45, 2752–2770. [Google Scholar] [CrossRef]
- Mavrakis, A.; Papavasileiou, C.; Salvati, L. Towards (Un)sustainable urban growth? Industrial development, land-use, soil depletion and climate aridity in a Greek agro-forest area. J. Arid. Environ. 2015, 121, 1–6. [Google Scholar] [CrossRef]
- Huang, Z.J.; He, C.F.; Li, H. Local government intervention, firm-government connection, and industrial land expansion in China. J. Urban Aff. 2019, 41, 206–222. [Google Scholar] [CrossRef]
- Tu, F.; Yu, X.F.; Ruan, J.Q. Industrial land use efficiency under government intervention: Evidence from Hangzhou, China. Habitat Int. 2014, 43, 1–10. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Gao, Y.; Ling, Y.K.; Fan, C.J.; Hou, D.Y.; Shen, T.Y.; Zhou, W.T. How did industrial land supply respond to transitions in state strategy? An analysis of prefecture-level cities in China from 2007 to 2016. Land Use Policy 2019, 87, 104009. [Google Scholar] [CrossRef]
- Song, M.L.; Wang, S.H.; Wu, K.Y. Environment-biased technological progress and industrial land-use efficiency in China’s new normal. Ann. Oper. Res. 2018, 268, 425–440. [Google Scholar] [CrossRef]
- Busscher, N.; Parra, C.; Vanclay, F. Environmental justice implications of land grabbing for industrial agriculture and forestry in Argentina. J. Environ. Plan. Manag. 2019, 63, 500–522. [Google Scholar] [CrossRef]
- Abel, T.D.; White, J.; Clauson, S. Risky Business: Sustainability and Industrial Land Use across Seattle’s Gentrifying Riskscape. Sustainability 2015, 7, 15718–15753. [Google Scholar] [CrossRef] [Green Version]
- Egidi, G.; Cividino, S.; Quaranta, G.; Alhuseen, A.; Salvati, L. Land mismatches, urban growth and spatial planning: A contribution to metropolitan sustainability. Environ. Impact Assess. Rev. 2020, 84, 106439. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zhao, J.; Lin, S.J.; Liu, Y. Identification of Industrial Land Parcels and Its Implications for Environmental Risk Management in the Beijing-Tianjin-Hebei Urban Agglomeration. Sustainability 2020, 12, 174. [Google Scholar] [CrossRef]
- Kapungwe, E.M. Industrial land use and heavy metal contaminated wastewater used for irrigation in periurban Zambia. Singap. J. Trop. Geogr. 2011, 32, 71–84. [Google Scholar] [CrossRef]
- Tang, B.; Winky, K. Land-use planning and market adjustment under de-industrialization: Restructuring of industrial space in Hong Kong. Land Use Policy 2015, 43, 28–36. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Cao, Y.D.; Yang, L.C. Industrial land supply at different technological intensities and its contribution to economic growth in China: A case study of the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 101, 105087. [Google Scholar] [CrossRef]
- Gao, J.B.; Qiao, W.F.; Ji, Q.Q.; Yu, C.; Sun, J.W.; Ma, Z.F. Intensive-use-oriented identification and optimization of industrial land readjustment during transformation and development: A case study of Huai’an, China. Habitat Int. 2021, 118, 102451. [Google Scholar] [CrossRef]
- Zambon, I.; Cerda, A.; Gambella, F.; Egidi, G.; Salvati, L. Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain. Land 2019, 8, 143. [Google Scholar] [CrossRef]
- Debela, D.D.; Stellmacher, T.; Azadi, H.; Kelboro, G.; Lebailly, P.; Ghorbani, M. The Impact of Industrial Investments on Land Use and Smallholder Farmers’ Livelihoods in Ethiopia. Land Use Policy 2021, 99, 105091. [Google Scholar] [CrossRef]
- Xiong, C.; Lu, J.Y.; Niu, F.Q. Urban Industrial Land Expansion and Its Influencing Factors in Shunde: 1995–2017. Complexity 2020, 2020, 6769176. [Google Scholar] [CrossRef]
- Park, J.I.; Leigh, N.G. Urban Industrial Land Loss and Foreign Direct Investment-Related Manufacturing Job Sprawl: An Atlanta, Georgia MSA Case Study. J. Urban Technol. 2017, 24, 95–113. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yue, W.Z.; Liu, Y.; Fan, P.L.; Wei, Y.H.D. Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities 2018, 78, 96–107. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Lavalle, C. Examining lag effects between industrial land development and regional economic changes: The Netherlands experience. PLoS ONE 2017, 12, e0183285. [Google Scholar] [CrossRef]
- Villarroya, A.; Puig, J. Urban and Industrial Land-Use Changes Alongside Motorways within the Pyrenean Area of Navarre, Spain. Environ. Eng. Manag. J. 2012, 11, 1213–1220. [Google Scholar]
- Pugh, G.; Fairburn, J. Evaluating the effects of the M6 toll road on industrial land development and employment. Reg. Stud. 2008, 42, 977–990. [Google Scholar] [CrossRef]
- Tonin, S.; Turvani, M. Redeveloping industrial land: Are contamination and remediation schemes affecting the price of industrial real estate properties? J. Environ. Plan. Manag. 2014, 57, 1043–1065. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y.A. Does industrial land price lead to industrial diffusion in China? An empirical study from a spatial perspective. Sustain. Cities Soc. 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y.A.; Wu, Q. How do industrial land price variations affect industrial diffusion? Evidence from a spatial analysis of China. Land Use Policy 2018, 71, 384–394. [Google Scholar] [CrossRef]
- Lin, Y.T.; Qin, Y.; Yang, Y.; Zhu, H.J. Can price regulation increase land-use intensity? Evidence from China’s industrial land market. Reg. Sci. Urban Econ. 2020, 81, 103501. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Skitmore, M.; Song, Y.; Hui, E. Industrial land price and its impact on urban growth: A Chinese case study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef]
- Yang, S.F.; Hu, S.G.; Li, W.D.; Zhang, C.R.; Song, D.D. Spatio-Temporal Nonstationary Effects of Impact Factors on Industrial Land Price in Industrializing Cities of China. Sustainability 2020, 12, 2792. [Google Scholar] [CrossRef]
- Li, C.X.; Wu, K.N. An input-output analysis of transportation equipment manufacturing industrial transfer: Evidence from Beijing-Tianjin-Hebei region, China. Growth Change 2022, 53, 91–111. [Google Scholar] [CrossRef]
- Kumpula, T.; Pajunen, A.; Kaarlejarvi, E.; Forbes, B.C.; Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Chang.—Hum. Policy Dimens. 2011, 21, 550–562. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, D.X.; Huang, L.Y.; Wen, H.Z.; Zhao, G.C.; Zhan, D.S. Spatial distribution and influential factors of industrial land productivity in China’s rapid urbanization. J. Clean. Prod. 2019, 234, 1287–1295. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S. Industrial land use planning and the growth of knowledge industry: Location pattern of knowledge-intensive services and their determinants in the Seoul metropolitan area. Land Use Policy 2020, 95, 104632. [Google Scholar] [CrossRef]
- Aktas, E.; Tahta, B.T. Investigation of suitable land use potential for industrial sites: The case of Kemalpaa. Environ. Monit. Assess. 2018, 190, 654. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Lai, Y.N.; Tong, D. Decoding the decision-making in the new wave of urban redevelopment in China: A case study of a bottom-up industrial land redevelopment in Shenzhen. Land Use Policy 2021, 111, 105774. [Google Scholar] [CrossRef]
- Danilo, V.D. The evolution process of Chicago’s industrial land-use policy. Urban Res. Pract. 2018, 11, 478–491. [Google Scholar] [CrossRef]
- Salari, M.; Shariat, S.M.; Rahimi, R.; Dashti, S. Land capability evaluation for identifying industrial zones: Combination multi-criteria decision-making method with geographic information system. Int. J. Environ. Sci. Technol. 2019, 16, 5501–5512. [Google Scholar] [CrossRef]
- Silva, F.B.E.; Koomen, E.; Diogo, V.; Lavalle, C. Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts. PLoS ONE 2014, 9, e91991. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Silva, F.B.E.; Lavalle, C. Quantifying and modelling industrial and commercial land-use demand in France. Environ. Dev. Sustain. 2020, 22, 519–549. [Google Scholar] [CrossRef]
- Sun, Y.F.; Ma, A.B.; Su, H.R.; Su, S.L.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Galarza, M.E.; Gonzalez, I.A.; Enjuto, M.C.T. Industrial Land Policies in Alava. Bol. De La Asoc. De Geogr. Esp. 2012, 58, 459–462. [Google Scholar] [CrossRef]
- Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.F.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Li, L.; Pan, C.Z.; Ling, S.; Li, M.Q. Ecological Efficiency of Urban Industrial Land in Metropolitan Areas: Evidence from China. Land 2022, 11, 104. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Wu, K.N.; Feng, Z.; Liu, Y.N.; Li, X.L. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 143167. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, A. Theoretical Explanation and Policy System Construction of Differentiated Land Management. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 10–16. [Google Scholar] [CrossRef]
- Zirlewagen, D.; von Wilpert, K. Upscaling of Environmental Information: Support of Land-Use Management Decisions by Spatio-Temporal Regionalization Approaches. Environ. Manag. 2010, 46, 878–893. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, W.; Qu, Y.; Zhang, R.; Zhou, D. How does sprawl differ across urban built-up land types in China? A spatial-temporal analysis of the Beijing metropolitan area using granted land parcel data. Cities. 2016, 58, 1–9. [Google Scholar] [CrossRef]
- Dai, P.C.; Sheng, R.X.; Miao, Z.Z.; Chen, Z.X.; Zhou, Y. Analysis of Spatial-Temporal Characteristics of Industrial Land Supply Scale in Relation to Industrial Structure in China. Land 2021, 10, 1272. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, Z.; Wen, C.; Yang, J.; Lv, T. Effect of complex road networks on intensive land use in China’s Beijing-Tianjin-Hebei urban agglomeration. Land. 2020, 9, 532. [Google Scholar] [CrossRef]
- Li, W.; Weng, L.; Zhao, K.; Zhao, S.; Zhang, P. Research on the Evaluation of Real Estate Inventory Management in China. Land 2021, 10, 1283. [Google Scholar] [CrossRef]
- Liu, S.C.; Lin, Y.B.; Ye, Y.M.; Xiao, W. Spatial-temporal characteristics of industrial land use efficiency in provincial China based on a stochastic frontier production function approach. J. Clean. Prod. 2021, 295, 126432. [Google Scholar] [CrossRef]
- Zhang, L.X.; Bi, X.; Huang, Z.J. Urban industrial land use efficiency under the background of economic transformation in the Yangtze River Economic Belt. Resour. Sci. 2020, 42, 1728–1738. [Google Scholar] [CrossRef]
- Huang, Z.J.; Zhu, S.J.; Shi, T. Industrial Land Transfer, Technological Relatedness and Industrial Entry Dynamics. Econ. Geogr. 2022, 42, 144–155. [Google Scholar] [CrossRef]
- Huang, Z.H.; Du, X.J. Strategic interaction in local governments’ industrial land supply: Evidence from China. Urban Stud. 2017, 54, 1328–1346. [Google Scholar] [CrossRef]
- Rahman, A.H.; Gandhi, D.K.; Smith, J.B. Industrial Land-Value and Asset Size—Theory and Evidence. Revue Canadienne des Sciences de l’Administration/Can. J. Adm. Sci. 1994, 11, 177–180. [Google Scholar] [CrossRef]
- Lou, J.; Zhao, X.; Wang, L.; Zhu, F.; Jin, P. Industrial Land Provision Based on Enterprise Life Cycle: A Case Study of Jiangsu. Mod. Urban Res. 2017, 10, 18–24. [Google Scholar] [CrossRef]
- Mai, P.T.Q.; Kyoung-Hoon, C.; Gyei-Kark, P. Efficiency Analysis for Major Ports in Korea and China using Boston Consulting Group and Data Envelopment Analysis Model. J. Navig. Port Res. 2018, 42, 107–116. [Google Scholar] [CrossRef]
- Myllyla, Y.; Kaivo-oja, J. Integrating Delphi methodology to some classical concepts of the Boston consulting group framework: Arctic maritime technology BCG Delphi foresight-a pilot study from Finland. Eur. J. Futures Res. 2015, 3, 2. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Zhao, S. Analyses on the Pattern of Chinese FDI Utilization and Strategic Choice Based on the Competition State. Econ. Geogr. 2012, 32, 23–29. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, P.; Li, W. A Study on Evaluation of Influencing Factors for Sustainable Development of Smart Construction En-terprises: Case Study from China. Buildings 2021, 11, 221. [Google Scholar] [CrossRef]
- Guan, X.Y.; Wang, S.L.; Gao, Z.Y.; Lv, Y.; Fu, X.J. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecol. Sin. 2012, 32, 198–206. [Google Scholar]
- Salvati, L.; Venanzoni, G.; Serra, P.; Carlucci, M. Scattered or polycentric? Untangling urban growth in three southern European metropolitan regions through exploratory spatial data analysis. Ann. Reg. Sci. 2016, 57, 1–29. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models, 1st ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 119–136. [Google Scholar]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial Pattern and Driving Mechanism of Urban–Rural Income Gap in Gansu Province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Shrestha, A.; Luo, W. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2017, 6, 297. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Argyriou, A.V.; Papadopoulos, N.; Alexakis, D.D. Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece. Land 2021, 10, 973. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Zhao, K.; Zhou, Y.; Zhao, S. A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China. Land 2022, 11, 942. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Qi, J. The Key Factors Driving the Development of New Towns by Mother Cities and Regions: Evidence from China. ISPRS Int. J. Geo-Inf. 2021, 10, 223. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Li, M.; Shi, Y.Y.; Duan, W.K.; Chen, A.Q.; Wang, N.; Hao, J.M. Spatiotemporal Decoupling of Population, Economy and Construction Land Changes in Hebei Province. Sustainability 2019, 11, 6794. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Hu, B.X. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ.-Zemed. Ekon. 2020, 66, 510–518. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Casadio Tarabusi, E.; Guarini, G. An axiomatic approach to decoupling indicators for green growth. Ecol. Indic. 2018, 84, 515–524. [Google Scholar] [CrossRef]
- Gupta, S. Decoupling: A step toward sustainable development with reference to OECD countries. Int. J. Sustain. Dev. World Ecol. 2015, 22, 510–519. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Longhofer, W.; Jorgenson, A. Decoupling reconsidered: Does world society integration influence the relationship between the environment and economic development? Soc. Sci. Res. 2017, 65, 17–29. [Google Scholar] [CrossRef]
- Louw, E.; van der Krabben, E.; van Amsterdam, H. The Spatial Productivity of Industrial Land. Reg. Studies 2012, 46, 137–147. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, H.; Zhou, L.; Shen, T. Spatial Patterns and Evolving Characteristics of Industrial Land Conveyance in China from 2007 to 2016. Areal Res. Dev. 2018, 37, 148–154. [Google Scholar] [CrossRef]
- Cui, X.; Meng, X.; Wang, D. Regional Differences and Convergence Characteristics of Industrial Land Marketization in Urban Agglomerations of China from the Spatial Perspective. China Land Sci. 2020, 34, 34–43. [Google Scholar] [CrossRef]
- Zhu, Z.; He, Q.; Qu, X. Evolution Characteristics of Industrial Land of Urban Agglomerations in the Middle Reaches of the Yangtze River. Econ. Geogr. 2021, 41, 106–114. [Google Scholar] [CrossRef]
- Xu, J.; He, Q.; Zhu, Z. The Evolution Characteristics of the Industrial Lands of the Changsha-Zhuzhou-Xiangtan Urban Agglomeration. Econ. Geogr. 2018, 38, 89–97. [Google Scholar] [CrossRef]
- He, H.; Yang, Q.; Bi, G.; Liang, W. Spatio-temporal Characteristics of Industrial Land Supply in Chongqing from 2009 to 2018. Resour. Environ. Yangtze Basin 2021, 30, 808–817. [Google Scholar] [CrossRef]
- Dong, Z.Y.Z.; Li, Y.C.; Balland, P.A.; Zheng, S.Q. Industrial land policy and economic complexity of Chinese Cities. Ind. Innov. 2021, 29, 367–395. [Google Scholar] [CrossRef]
- Qi, J.; Hu, M.; Han, B.; Zheng, J.; Wang, H. Decoupling Relationship between Industrial Land Expansion and Economic Development in China. Land 2022, 11, 1209. [Google Scholar] [CrossRef]
- Mei, L.; Wei, X. Industrial Land Allocation, Spatial Heterogeneity and Industrial Efficiency. Res. Econ. Manag. 2022, 43, 78–96. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Y.; Chen, C.; Wang, J.; Lei, G.; Wu, X. Rationality evaluation and driving force of industrial land expansion in Shandong Province. Resour. Sci. 2016, 38, 228–238. [Google Scholar] [CrossRef]
- Del Pozo, P.B. Promotion and evaluation of industrial land in Asturias. Bol. De La Asoc. De Geogr. Esp. 2006, 42, 99–119. [Google Scholar]
- Zhao, X.F.; Zhang, L.; Huang, X.J.; Zhao, Y.T.; Zhang, Y.P. Evolution of the Spatiotemporal Pattern of Urban Industrial Land Use Efficiency in China. Sustainability. 2018, 10, 2174. [Google Scholar] [CrossRef]
- Qian, L.; Ma, X.; Shi, X.; Zou, X.; Lan, J. Does the supply of industrial land affect industial energy carbon emissions? China Popul. Resour. Environ. 2019, 29, 57–67. [Google Scholar] [CrossRef]
- Xie, W.; Qu, W. Influencing Factors of Enterprises’ Land Use Preferences in the Reform of Flexible Leasing of Industrial Land in Chengdu City. China Land Sci. 2021, 35, 39–46. [Google Scholar] [CrossRef]
- Lai, Y.N.; Peng, Y.; Li, B.; Lin, Y.L. Industrial land development in urban villages in China: A property rights perspective. Habitat Int. 2014, 41, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Zeng, P.; Li, J. Spatiotemporal Responses Between Urban Regeneration and Policy Change of Stock Industrial Land: A Case Study of Tianjin Downtown Area. City Plan. Rev. 2020, 29, 36–46. [Google Scholar] [CrossRef]
- Powter, C.; Chymko, N.; Dinwoodie, G.; Howat, D.; Janz, A.; Puhlmann, R.; Richens, T.; Watson, D.; Sinton, H.; Ball, K. Regulatory history of Alberta’s industrial land conservation and reclamation program. Can. J. Soil Sci. 2012, 92, 39–51. [Google Scholar] [CrossRef]
- Needham, B.; Louw, E.; Metzemakers, P. An economic theory for industrial land policy. Land Use Policy 2013, 33, 227–234. [Google Scholar] [CrossRef]
Variables | No. | Code | Indicators | Implication |
---|---|---|---|---|
Dependent | 1 | Urban Industrial Land | Spatial Pattern/Evolution Model | |
Independent | 2 | Gross Domestic Product (GDP) | Government Demand | |
3 | Built-Up Area | |||
4 | Road Area | Environment | ||
5 | Real Estate Investment | |||
6 | Per Capita GDP | Industrialization | ||
7 | Tertiary Industry | |||
8 | Import | Globalization | ||
9 | Export | |||
10 | Foreign Direct Investment | |||
11 | Patent Application Number | Innovation | ||
12 | Higher Education Institution Number | |||
13 | Education investment | |||
Economic | 14 | Secondary Industry Added Value | Government Value | |
15 | Industrial Enterprise Assets | Market Value |
State | Characteristic | Future Alternative Strategies | ||
---|---|---|---|---|
Star-cities | High growth rate and relative share of urban industrial land, with great development potential and good opportunities. | They are at the stage of rapid growth and priority should be given to expansionary strategies and greater investment in urban industrial land to promote urban economic and social development. | ||
Cow-cities | High relative share of urban industrial land but low growth rate, high regional status but low development potential. | They are at the stage of maturity, and priority should be given to harvesting strategies to control or even reduce investment in urban industrial land to maximize the return on investment in land resources. | ||
Question-cities | Low relative share of urban industrial land, high growth rate, with possibility to become a new spatial growth pole for industrial economic development. | They are at the take-off stage and priority should be given to selective strategies. Due to the high uncertainty, it is necessary to be cautious and carefully analyze the real reasons for the increase in the growth rate, with a focus on cultivating cities that have the potential to become stars; otherwise, give up investment. | ||
Dog-cities | Low relative share and growth rate of urban industrial land, and low regional status and development potential. | They are at the stage of recession and the priority should be given to withdrawal strategies. It is necessary to reduce the scale of land input to mitigate risks and avoid waste of resources due to blind investment. |
Type | Implication | |||
---|---|---|---|---|
SD | ≤0 | ≥0 | ≤0 | It indicates the first best state, where the industrial growth is accompanied by a steady decline in urban industrial land; it has been a benchmark for regional high-quality development since the development of the real economy got rid of the expansion of urban industrial land. |
WD | >0 | >0 | (0,0.8] | It indicates the second-best state, where the growth of the industrial economy is faster than that of urban industrial land with efficient use and intensive development of land resources. |
EC | >0 | >0 | (0.8,1.2] | It indicates the state of steady incremental expansion, with the growth of industrial economy largely synchronized with that of urban industrial land, and the development still heavily depending on land resources. |
END | >0 | >0 | (1.2, +∞) | It indicates the state of incremental and extensive development, with the growth of the industrial economy being slower than that of urban industrial land, low utilization efficiency of land resources, and insufficient transformation of land investment into economic returns. |
RD | <0 | <0 | (1.2, +∞) | It indicates that the cities are in contraction, with both the industrial economy and urban industrial land in negative growth, land resources decreasing faster than the economy, and a high level of land use efficiency and intensity. |
RC | <0 | <0 | (0.8,1.2] | It indicates the stage of steady reduction and contraction, where the industrial economy and urban industrial land are largely declining in a synchronous manner and development is still dependent on land resources. |
WND | <0 | <0 | (0,0.8] | It indicates the second-worst state, with the industrial economy reduction occurring faster than that of urban industrial land, the added value of land output gradually decreasing, and the land reduction having an unhealthy effect of nonlinear amplification on economic development. |
SND | >0 | <0 | <0 | It indicates the worst state, where the urban industrial land continues to grow, but the industrial economy is declining gradually, the land investment has not transformed into economic returns, and there is a waste of resources, leading to unsustainable development. |
2010–2014 | 2015–2019 | |
---|---|---|
RS (%) | 0.07 | 0.07 |
CS (%) | 1.24 | 3.82 |
Star-cities | 4 | 2 |
Cow-cities | 4 | 7 |
Question-cities | 22 | 11 |
Dog-cities | 11 | 21 |
Indicators | Code | 2010–2014 | 2015–2019 | Change | ||
---|---|---|---|---|---|---|
q | p | q | p | q | ||
Gross Domestic Product (GDP) | 0.34 | 0.03 | 0.54 | 0.01 | 0.2 | |
Built-Up Area | 0.34 | 0.04 | 0.6 | 0 | 0.26 | |
Road Area | 0.38 | 0.01 | 0.57 | 0 | 0.19 | |
Real Estate Investment | 0.44 | 0.01 | 0.55 | 0.01 | 0.11 | |
Per Capita GDP | 0.09 | 0.98 | 0.31 | 0.02 | # | |
Tertiary Industry | 0.43 | 0.01 | 0.58 | 0 | 0.15 | |
Import | 0.36 | 0.01 | 0.34 | 0.26 | # | |
Export | 0.29 | 0.22 | 0.64 | 0 | # | |
Foreign Direct Investment | 0.35 | 0.01 | 0.44 | 0.02 | 0.09 | |
Patent Application Number | 0.28 | 0.04 | 0.57 | 0 | 0.3 | |
Higher Education Institution Number | 0.42 | 0.01 | 0.41 | 0.04 | −0.01 | |
Education investment | 0.22 | 0.12 | 0.54 | 0 | # |
0.34 | ||||||||||||
0.40 | 0.34 | |||||||||||
0.69 | 0.69 | 0.38 | ||||||||||
0.74 | 0.53 | 0.71 | 0.44 | |||||||||
0.38 | 0.38 | 0.41 | 0.47 | 0.09 | ||||||||
0.49 | 0.47 | 0.74 | 0.66 | 0.45 | 0.43 | |||||||
0.54 | 0.45 | 0.63 | 0.50 | 0.40 | 0.52 | 0.36 | ||||||
0.53 | 0.55 | 0.64 | 0.53 | 0.34 | 0.56 | 0.50 | 0.29 | |||||
0.75 | 0.54 | 0.46 | 0.50 | 0.38 | 0.65 | 0.56 | 0.58 | 0.35 | ||||
0.74 | 0.51 | 0.76 | 0.50 | 0.32 | 0.64 | 0.42 | 0.53 | 0.49 | 0.28 | |||
0.54 | 0.47 | 0.54 | 0.62 | 0.44 | 0.51 | 0.61 | 0.50 | 0.52 | 0.49 | 0.42 | ||
0.51 | 0.48 | 0.63 | 0.69 | 0.26 | 0.58 | 0.53 | 0.52 | 0.67 | 0.54 | 0.51 | 0.22 |
0.54 | ||||||||||||
0.82 | 0.60 | |||||||||||
0.73 | 0.81 | 0.57 | ||||||||||
0.57 | 0.81 | 0.74 | 0.55 | |||||||||
0.64 | 0.81 | 0.73 | 0.63 | 0.31 | ||||||||
0.64 | 0.80 | 0.74 | 0.60 | 0.73 | 0.58 | |||||||
0.61 | 0.72 | 0.72 | 0.59 | 0.51 | 0.62 | 0.34 | ||||||
0.84 | 0.77 | 0.81 | 0.83 | 0.79 | 0.81 | 0.75 | 0.64 | |||||
0.59 | 0.81 | 0.78 | 0.61 | 0.65 | 0.65 | 0.56 | 0.84 | 0.44 | ||||
0.82 | 0.74 | 0.84 | 0.81 | 0.71 | 0.80 | 0.78 | 0.69 | 0.84 | 0.57 | |||
0.66 | 0.72 | 0.75 | 0.68 | 0.60 | 0.63 | 0.49 | 0.78 | 0.56 | 0.77 | 0.41 | ||
0.56 | 0.81 | 0.73 | 0.56 | 0.62 | 0.60 | 0.61 | 0.84 | 0.60 | 0.81 | 0.66 | 0.54 |
Average | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010–2014 | 0.23 | 0.16 | 0.25 | 0.14 | 0.30 | 0.14 | 0.16 | 0.24 | 0.21 | 0.26 | 0.10 | 0.32 | 0.21 |
2015–2019 | 0.14 | 0.18 | 0.19 | 0.12 | 0.37 | 0.11 | 0.29 | 0.16 | 0.24 | 0.21 | 0.26 | 0.13 | 0.20 |
City | Decoupling Index | Secondary Industry Added Value Growth Rate | Urban Industrial Land Growth Rate | Urban Industrial Land Area |
---|---|---|---|---|
Shanghai | −1.09 | 5.00 | −5.46 | 383.95 |
Nanjing | −1.91 | 6.73 | −12.87 | 41.08 |
Wuxi | 0.11 | 6.79 | 0.74 | 74.67 |
Xuzhou | 1.00 | 7.12 | 7.12 | 75.51 |
Changzhou | 0.71 | 5.88 | 4.15 | 114.27 |
Suzhou-JS | −0.03 | 4.86 | −0.15 | 127.66 |
Nantong | 1.00 | 6.81 | 6.81 | 94.83 |
Lianyungang | 0.00 | 10.00 | −0.05 | 51.95 |
Huai’an | −0.92 | 10.42 | −9.55 | 19.71 |
Yancheng | −1.40 | 7.79 | −10.89 | 19.55 |
Yangzhou | 0.66 | 5.94 | 3.90 | 48.86 |
Zhenjiang | 0.40 | 2.52 | 1.01 | 42.70 |
Taizhou-JS | −0.80 | 7.78 | −6.25 | 23.06 |
Suqian | 0.59 | 10.00 | 5.92 | 41.67 |
Hangzhou | 1.00 | 8.90 | 8.90 | 207.50 |
Ningbo | 0.22 | 9.93 | 2.21 | 150.56 |
Wenzhou | −0.26 | 7.79 | −1.99 | 5.96 |
Jiaxing | 0.40 | 7.06 | 2.82 | 40.92 |
Huzhou | 0.12 | 7.09 | 0.82 | 33.00 |
Shaoxing | 0.05 | 9.90 | 0.51 | 67.52 |
Jinhua | 0.40 | 7.72 | 3.09 | 30.02 |
Quzhou | 0.43 | 9.47 | 4.07 | 35.49 |
Zhoushan | −3.71 | 10.00 | −37.12 | 0.39 |
Taizhou-ZJ | 0.08 | 5.83 | 0.44 | 35.42 |
Lishui | 0.00 | 12.66 | 0.00 | 4.36 |
Hefei | 0.55 | 10.38 | 5.66 | 119.35 |
Wuhu | 0.40 | 6.48 | 2.59 | 19.22 |
Bengbu | 0.40 | 6.36 | 2.54 | 30.52 |
Huainan | 0.68 | 8.45 | 5.74 | 26.08 |
Ma’anshan | 0.21 | 7.46 | 1.57 | 38.64 |
Huaibei | −0.15 | 13.40 | −2.01 | 17.17 |
Tongling | −0.50 | 13.08 | −6.54 | 15.93 |
Anqing | 1.00 | 13.32 | 13.32 | 58.88 |
Huangshan | 0.33 | 9.41 | 3.07 | 12.17 |
Chuzhou | −0.20 | 5.08 | −1.03 | 24.17 |
Fuyang | 0.08 | 7.62 | 0.58 | 21.45 |
Suzhou-AH | 0.72 | 7.24 | 5.24 | 24.68 |
Lu’an | −0.01 | 9.36 | −0.13 | 13.38 |
Bozhou | 0.13 | 8.19 | 1.07 | 15.24 |
Chizhou | 0.77 | 9.52 | 7.34 | 9.56 |
Xuancheng | 0.34 | 6.49 | 2.24 | 20.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Zhang, S.; Zhao, K.; Quan, F. Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China. Land 2022, 11, 1580. https://doi.org/10.3390/land11091580
Xie F, Zhang S, Zhao K, Quan F. Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China. Land. 2022; 11(9):1580. https://doi.org/10.3390/land11091580
Chicago/Turabian StyleXie, Fei, Shuaibing Zhang, Kaixu Zhao, and Fengmei Quan. 2022. "Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China" Land 11, no. 9: 1580. https://doi.org/10.3390/land11091580
APA StyleXie, F., Zhang, S., Zhao, K., & Quan, F. (2022). Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China. Land, 11(9), 1580. https://doi.org/10.3390/land11091580