Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection and Ecosystem Type Classification
2.3. Identify Critical Problems and Ecosystem Services Framework Design
2.4. Quantify and Sample Ecosystem Services
- (1)
- Rainstorm runoff regulating service:
- (2)
- Soil conservation service:
- (3)
- Water conservation service:
- (4)
- Grain production service:
- (5)
- Carbon sequestration services:
2.5. Evaluate Trade-Offs and Synergies of Ecosystem Services
- (1)
- Calculation of correlation coefficients between ES [9,14]: Through the standardization of de-dimension treatment, the correlation analysis was carried out by using SPSS, and the correlation coefficient matrix between water conservation service, soil conservation service, rainstorm runoff service, carbon sequestration service, and gain production service were obtained.
- (2)
- Evaluation of intensity of trade-offs/synergies between ES [14]: If the correlation coefficient between a pair of ES passes the horizontal significance test and the correlation coefficient is negative, there is a significant trade-off between the pairs of ES. Conversely, if the significance test is passed, but its value is positive, it is a significant synergy for ES.
2.6. Investigate Spatial–Temporal Pattern of Ecosystem Service Bundles
2.7. Put Forward Environmental Governance Strategies
3. Results
3.1. Spatial–Temporal Change and Ecosystem Transition and Change
3.2. Investigate Spatial–Temporal Pattern of Ecosystem Service Bundles
3.3. Evaluate Trade-Offs and Synergies of Ecosystem Services
4. Discussion
4.1. Trade-Offs/Synergies and Managing Ecosystem Services
4.2. Contributions and Limitations
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Bennett, E.M.; Morrison, P.; Holzer, J.M.; Winkler, K.J.; Fraser, E.D.G.; Green, S.J.; Robinson, B.E.; Sherren, K.; Botzas-Coluni, J.; Palen, W. Facing the challenges of using place-based social-ecological research to support ecosystem service governance at multiple scales. Ecosyst. People 2021, 17, 574–589. [Google Scholar] [CrossRef]
- Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Turner, V.K.; Galletti, C.S. Do Sustainable Urban Designs Generate More Ecosystem Services? A Case Study of Civano in Tucson, Arizona. Prof. Geogr. 2015, 67, 204–217. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Baro, F.; Gomez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Saidi, N.; Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 2018, 13, 113001. [Google Scholar] [CrossRef]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Dickie, I.A.; Yeates, G.W.; St. John, M.G.; Stevenson, B.A.; Scott, J.T.; Rillig, M.C.; Peltzer, D.A.; Orwin, K.H.; Kirschbaum, M.U.F.; Hunt, J.E.; et al. Ecosystem service and biodiversity trade-offs in two woody successions. J. Appl. Ecol. 2011, 48, 926–934. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Peng, J.; Liu, Y.X.; Li, T.Y.; Wang, Y.L. Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China. Ecol. Econ. 2018, 152, 106–117. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J. Ecosystem services-based decision-making: A bridge from science to practice. Environ. Sci. Policy 2022, 135, 6–15. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Li, J.; Wu, L. Examining the potential impact of land use/cover changes on the NPP ecosystem services of Yan’an region of China: A scenario-based analysis. Int. J. Glob. Warm. 2015, 8, 319–334. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.F.; Robinson, B.E.; Liu, G.; Ma, D.C.; Wang, F.C.; Lu, F.; Ouyang, Z.Y.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Ma, L.; Bicking, S.; Mueller, F. Mapping and comparing ecosystem service indicators of global climate regulation in Schleswig-Holstein, Northern Germany. Sci. Total Environ. 2019, 648, 1582–1597. [Google Scholar] [CrossRef]
- Hou, Y.; Ding, S.; Chen, W.; Li, B.; Burkhard, B.; Bicking, S.; Müller, F. Ecosystem service potential, flow, demand and their spatial associations: A comparison of the nutrient retention service between a human- and a nature-dominated watershed. Sci. Total Environ. 2020, 748, 141341. [Google Scholar] [CrossRef]
- Sadat, M.; Zoghi, M.; Malekmohammadi, B. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: Case study in Qaem Shahr County, Iran. Environ. Dev. Sustain. 2020, 22, 8135–8158. [Google Scholar] [CrossRef]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- UN—Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2011 Revision; UN: New York, NY, USA, 2012. [Google Scholar]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W.-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Li, J.; Zhang, W. Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone. Environ. Sci. Pollut. Res. 2016, 23, 15407–15417. [Google Scholar] [CrossRef]
- Su, S.; Li, D.; Hu, Y.N.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol. Indic. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Wang, W.J.; Wu, T.; Li, Y.Z.; Zheng, H.; Ouyang, Z.Y. Matching Ecosystem Services Supply and Demand through Land Use Optimization: A Study of the Guangdong-Hong Kong-Macao Megacity. Int. J. Environ. Res. Public Health 2021, 18, 2324. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Peng, J.; Xu, Z.H.; Wang, X.Y.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.W.; Feng, X.M.; Yan, H.M.; Su, M.R.; Wu, M.W. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the Lower Pearl River Basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Yang, R.; Qin, B.; Lin, Y. Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China. Land 2021, 10, 1219. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Song, C.; Xu, J.; Fan, F. Investigation of Dynamic Coupling Coordination between Urbanization and the Eco-Environment-A Case Study in the Pearl River Delta Area. Land 2021, 10, 190. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Wang, W.J.; Wu, T.; Li, Y.Z.; Xie, S.L.; Han, B.L.; Zheng, H.; Ouyang, Z.Y. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service. Urban Hydrology for SmallWatersheds—Technical Release 55; US Department of Agriculture Natural Resources Conservation: Washington, DC, USA, 1986.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Li, K.; Hou, Y.; Andersen, P.S.; Xin, R.; Rong, Y.; Skov-Petersen, H. An ecological perspective for understanding regional integration based on ecosystem service budgets, bundles, and flows: A case study of the Jinan metropolitan area in China. J. Environ. Manag. 2022, 305, 114371. [Google Scholar] [CrossRef]
- Queiroz, C.; Meacham, M.; Richter, K.; Norstrom, A.V.; Andersson, E.; Norberg, J.; Peterson, G. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape. AMBIO 2015, 44, S89–S101. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Cai, W.; Jiang, W.; Du, H.; Chen, R.; Cai, Y. Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 8130. [Google Scholar] [CrossRef]
- Sun, W.; Li, D.; Wang, X.; Li, R.; Li, K.; Xie, Y. Exploring the scale effects, trade-offs and driving forces of the mismatch of ecosystem services. Ecol. Indic. 2019, 103, 617–629. [Google Scholar] [CrossRef]
Data | Time | Resolution | Type | Source |
---|---|---|---|---|
Land cover/use (Cropland and forest) | 2000/2015 | 30 m | Spatial data: Raster | Resources and Environmental Scientific Data Center (RESDC) of the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/) (accessed on 1 May 2021) |
The Digital Elevation Model (DEM) | / | 30 m | Spatial data: Raster | Geospatial Data Cloud (http://www.gscloud.cn/) (accessed on 1 May 2021). |
Net Primary Productivity (NPP) | 2000/2015 | 500 m | Spatial data: Raster | Resources and Environmental Scientific Data Center (RESDC) of the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/) (accessed on 1 May 2021) |
Daily rainfall data of each station in the GBA | 2000/2015 | / | text | Resources and Environmental Scientific Data Center (RESDC) of the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/) (accessed on 1 May 2021) |
Soil type map | / | / | Spatial data: Raster | Resources and Environmental Scientific Data Center (RESDC) of the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/) (accessed on 1 May 2021) |
Normalized Difference Vegetation Index (NDVI) | 2000/2015 | 1 km | Spatial Data Raster | Resources and Environmental Scientific Data Center (RESDC) of the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/) (accessed on 1 May 2021) |
Ecosystem services model parameters | / | / | Document | Technical specification for accounting gross ecosystem product of Shenzhen (http://www.sz.gov.cn/attachment/0/753/753300/8567910.pdf) (accessed on 1 May 2021) |
Guangdong Rural Statistics Report, Hongkong, Macao Statistics Report | 2001/2016 | / | Document | Local academic institutions and governments |
Ecosystem Type | LULC |
---|---|
Cropland | Paddy Field |
Grassland | |
Urban | Urban Land |
Rural Residential Land | |
Other Construction Land | |
Forest | Forestland |
Shrubland | |
Open Land | |
Other Land | |
Grassland | High Coverage Grassland |
Medium Coverage Grassland | |
Low Coverage Grassland | |
Wetland | River |
Lake | |
Pond | |
Tidal Flat | |
Shoal Land | |
Marsh Land | |
Other | Sand Land |
Bare Land | |
Other Land |
2000 | Carbon Sequestration | Soil Retention | Rainstorm Runoff | Water Conservation | Grain Production |
ESB1 | 0.25 | 0.02 | 0.32 | 0.63 | 0.34 |
ESB2 | 0.75 | 0.15 | 0.31 | 0.57 | 0.00 |
ESB3 | 0.47 | 0.03 | 0.19 | 0.49 | 0.02 |
2015 | Carbon Sequestration | Soil Retention | Rainstorm Runoff | Water Conservation | Grain Production |
ESB1 | 0.25 | 0.02 | 0.32 | 0.63 | 0.34 |
ESB2 | 0.74 | 0.16 | 0.34 | 0.58 | 0.00 |
ESB3 | 0.25 | 0.03 | 0.28 | 0.48 | 0.02 |
Type | 2015 | ||||||
---|---|---|---|---|---|---|---|
2000 | Grassland | Cropland | Other | Urban | Forest | Wetland | Total |
Grassland | 1004.15 | 19.39 | 0.03 | 79.30 | 102.01 | 13.61 | 1218.49 |
Cropland | 25.61 | 11,455.87 | 0.22 | 2028.75 | 339.80 | 494.45 | 14,344.70 |
Other | 0.11 | 2.35 | 5.36 | 3.92 | 1.18 | 0.26 | 13.18 |
Urban | 8.87 | 159.95 | 0.01 | 4133.25 | 121.64 | 77.43 | 4501.14 |
Forest | 190.58 | 299.05 | 0.44 | 914.46 | 29,034.16 | 93.38 | 30,532.07 |
Wetland | 17.14 | 564.37 | 0.29 | 626.62 | 60.76 | 2985.14 | 4254.33 |
Total | 1246.45 | 12,500.99 | 6.35 | 7786.29 | 29,659.55 | 3664.27 | 54,863.91 |
Type of Ecosystem Service | Grain Production | Carbon Sequestration | Soil Retention | Rainstorm Runoff | Water Conservation | |
---|---|---|---|---|---|---|
Pearson correlation | Grain Production | 1.00 | −0.235 ** | −0.234 ** | −0.087 ** | −0.075 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Carbon Sequestration | −0.235 ** | 1.00 | 0.503 ** | 0.206 ** | 0.265 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Soil Retention | −0.234 ** | 0.503 ** | 1.00 | 0.170 ** | 0.255 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Rainstorm Runoff | −0.087 ** | 0.206 ** | 0.170 ** | 1.00 | 0.471 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Water Conservation | −0.075 ** | 0.265 ** | 0.255 ** | 0.471 ** | 1.00 |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 |
Type of Ecosystem Service | Grain Production | Carbon Sequestration | Soil Retention | Rainstorm Runoff | Water Conservation | |
---|---|---|---|---|---|---|
Pearson correlation | Grain Production | 1.00 | −0.365 ** | −0.279 ** | −0.073 ** | −0.040 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Carbon Sequestration | −0.365 ** | 1.00 | 0.563 ** | 0.00 | −0.115 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.51 | 0.00 | ||
Pearson correlation | Soil Retention | −0.279 ** | 0.563 ** | 1.00 | 0.135 ** | 0.018 ** |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 | ||
Pearson correlation | Rainstorm Runoff | −0.073 ** | 0.00 | 0.135 ** | 1.00 | 0.508 ** |
Sig. (double tail) | 0.00 | 0.51 | 0.00 | 0.00 | ||
Pearson correlation | Water Conservation | −0.040 ** | −0.115 ** | 0.018 ** | 0.508 ** | 1.00 |
Sig. (double tail) | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W. Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region. Land 2022, 11, 1593. https://doi.org/10.3390/land11091593
Cai W. Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region. Land. 2022; 11(9):1593. https://doi.org/10.3390/land11091593
Chicago/Turabian StyleCai, Wenbo. 2022. "Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region" Land 11, no. 9: 1593. https://doi.org/10.3390/land11091593
APA StyleCai, W. (2022). Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region. Land, 11(9), 1593. https://doi.org/10.3390/land11091593