Open Spaces in the European Alps—GIS-Based Analysis and Implications for Spatial Planning from a Transnational Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detecting Alpine Open Spaces—State of the Art
2.2. Definitions
2.3. Data and Methodology
3. Results
3.1. Binary Open Space Analysis
3.2. Analysis of Natural Landscape Units
3.3. Spatial Differentiation and Overlay Analysis
4. Discussion
4.1. Methods
4.2. Emerging Pressures on Open Spaces
4.3. Role of Spatial Planning
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | EU Strategy for the Alpine Region (EUSALP), cf. www.alpine-region.eu (accessed on 1 September 2022). |
2 | Land use analysis using Corine Land Cover 2018 data. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata (accessed on 2 August 2022). |
3 | According to ALPARC [23] Strategic Alpine Connectivity Areas (SACA) consist of: Ecological Conservation Areas (SACA 1), Ecological Intervention Areas (SACA 2) and Connectivity Restoration Areas (SACA 3). |
References
- The European Environment—State and Outlook 2020. In Knowledge for Transition to a Sustainable EUROPE; European Environment Agency: Copenhagen, Denmark, 2019.
- Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.; et al. Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context. Sustainability 2020, 12, 8269. [Google Scholar] [CrossRef]
- Barbosa, A.; Vallecillo, S.; Baranzelli, C.; Jacobs-Crisioni, C.; Batista e Silva, F.; Perpiña-Castillo, C.; Lavalle, C.; Maes, J. Modelling built-up land take in Europe to 2020: An assessment of the Resource Efficiency Roadmap measure on land. J. Environ. Plan. Manag. 2016, 60, 1439–1463. [Google Scholar] [CrossRef]
- Meyer, C.; Peters, J.C.; Thiel, M.; Rathmann, J.; Job, H. Monitoring der Freiflächeninanspruchnahme und -versiegelung als Beitrag für eine nachhaltige Raumentwicklung in Bayern. Raumforsch. Raumordn. Spat. Res. Plan. 2021, 79, 172–189. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 131–202. [Google Scholar]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Gobiet, A.; Kotlarski, S. Future Climate Change in the European Alps. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Gurung, A.B.; Borsdorf, A.; Füreder, L.; Kienast, F.; Matt, P.; Scheidegger, C.; Schmocker, L.; Zappa, M.; Volkart, K. Rethinking Pumped Storage Hydropower in the European Alps. Mt. Res. Dev. 2016, 36, 222–232. [Google Scholar] [CrossRef]
- Vanham, D. The Alps under climate change: Implications for water management in Europe. J. Water Clim. Chang. 2012, 3, 197–206. [Google Scholar] [CrossRef]
- Schindelegger, A. Natural Hazard Risk Governance. Report on the State of the Alps; Alpine Convention: Mountain View, CA, USA, 2019. [Google Scholar]
- Einhorn, B.; Eckert, N.; Chaix, C.; Ravanel, L.; Deline, P.; Gardent, M.; Boudières, V.; Richard, D.; Vengeon, J.-M.; Giraud, G.; et al. Climate change and natural hazards in the Alps. Rev. Géogr. Alp. 2015, 103-2, 1–39. [Google Scholar] [CrossRef]
- Fuchs, S.; Röthlisberger, V.; Thaler, T.; Zischg, A.; Keiler, M. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Ann. Am. Assoc. Geogr. 2016, 107, 382–392. [Google Scholar] [CrossRef]
- Raška, P.; Bezak, N.; Ferreira, C.S.S.; Kalantari, Z.; Banasik, K.; Bertola, M.; Bourke, M.; Cerdà, A.; Davids, P.; Madruga de Brito, M.; et al. Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary overview using expert community approach. J. Environ. Manag. 2022, 310, 114725. [Google Scholar] [CrossRef]
- Job, H.; Mayer, M.; Haßlacher, P.; Nischik, G.; Knauf, C.; Pütz, M.; Essl, J.; Marlin, A.; Kopf, M.; Obkircher, S. Analysing, Assessing and Safeguarding Alpine Open Spaces through Spatial Planning; ARL—Academy for Territorial Development in the Leibniz Association: Hannover, Germany, 2017. [Google Scholar]
- The Alpine Region and Its Key Environmental Challenges. Available online: https://www.eea.europa.eu/themes/regions/the-alpine-region/key-environmental-challenges/key-environmental-challenges/challenges (accessed on 1 August 2022).
- Heeb, J.; Hindenlang, K. Negotiating Landscape in the Swiss Alps. Mt. Res. Dev. 2008, 28, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Scolozzi, R.; Dean, G.; Haller, A.; Jäger, H.; Kister, J.; Kovács, B.; Sarmiento, F.O.; Sattler, B.; Schleyer, C. Cultural ecosystem services in mountain regions: Conceptualising conflicts among users and limitations of use. Ecosyst. Serv. 2020, 46, 101210. [Google Scholar] [CrossRef]
- Bätzing, W. Die Alpen. Geschichte und Zukunft Einer Europäischen Kulturlandschaft; C.H.BECK: München, Germany, 2015. [Google Scholar]
- Mayer, M.; Mose, I. The opportunity costs of worthless land: The nexus between national parks and glacier ski resorts in the Alps. Eco.mont 2017, 9, 35–45. [Google Scholar] [CrossRef]
- Sonderegger, R.; Bätzing, W. Second homes in the Alpine Region. Rev. Géogr. Alp. 2013, 1–14. [Google Scholar] [CrossRef]
- Elmi, M. Sustainable tourism perspectives for Alpine destinations. In Destination und Lebensraum; Entrepreneurial Management und Standortentwicklung; Springer: Wiesbaden, Germany, 2019; pp. 195–204. [Google Scholar]
- Meyer, C.; Job, H.; Laner, P.; Omizzolo, A.; Kollmann, N.; Clare, J.; Vesely, P.; Riedler, W.; Plassmann, G.; Coronado, O.; et al. OpenSpaceAlps Planning Handbook: Perspectives for Consistent Safeguarding of Open Spaces in the Alpine Region; Würzburg/Salzburg/Bolzano/Chambéry/Ljubljana/Rome. 2022. Available online: https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-270401 (accessed on 1 September 2022).
- ALPARC—The Alpine Network of Protected Areas. ALPBIONET2030. Integrative Alpine Wildlife and Habitat Management for the Next Generation. Spatial Analysis and Perspectives of [Ecological] Connectivity in the Wider Alpine Areas; Extremdruck: Chambéry, France, 2019. [Google Scholar]
- Egner, H.; Jungmeier, M. Non-Territorial Nature Conservation? On Protected Areas in the Anthropocene. Mitt. Der Österreichischen Geogr. Ges. 2019, 1, 115–142. [Google Scholar] [CrossRef]
- Job, H.; Meyer, C. 50 Jahre Bayerischer Alpenplan—Würdigung und Plädoyer für eine Weiterentwicklung. Nat. Landschaft. Z. Nat. Landsch. 2022, 97, 117–123. [Google Scholar] [CrossRef]
- Paranunzio, R.; Laio, F.; Chiarle, M.; Nigrelli, G.; Guzzetti, F. Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps. Nat. Hazards Earth Syst. Sci. 2016, 16, 2085–2106. [Google Scholar] [CrossRef]
- ALPARC—The Alpine Network of Protected Areas. The Evolution of Open Spaces in the Alps—Between Land-Use and Conservation for Generations to Come; Interreg Alpine Space Project Open Space Alps: Chambéry, France, 2021. [Google Scholar]
- Kopf, M.; Marlin, A.; Obkircher, S. Wenig Erschlossene Landschaftsräume. Inventar Weißzone; Amt der Vorarlberger Landesregierung: Bregenz, Austria, 2017. [Google Scholar]
- Nischik, G.; Pütz, M. Naturnahe Freiräume in der Schweiz: Analysekonzept, Identifizierung und Raumplanerische Sicherung; Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL: Birmensdorf, Switzerland, 2018. [Google Scholar]
- Kienast, F.; Frick, J.; Steiger, U. Neue Ansätze zur Erfassung der Landschaftsqualität. Zwischenbericht Landschaftsbeobachtung Schweiz (LABES); BAFU: Bern, Switzerland, 2013. [Google Scholar]
- Haller, R. Mapping relevant factors for ecological connectivity—The JECAMI mapping service. In Alpine Nature 2030. Creating [Ecological] Connectivity for Generations to Come; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB): Berlin, Germany, 2016; pp. 137–146. [Google Scholar]
- Gallaun, H.; Dohr, K.; Puhm, M.; Stumpf, A.; Hugé, J. Copernicus Land Monitoring Service. Reference Data: EU-Hydro. River Net User Guide 1.3; European Environment Agency: Copenhagen, Denmark, 2019.
- Ritter, E.-H. Freiraum/Freiraumschutz. In Handwörterbuch der Raumordnung; ARL—Akademie für Raumforschung und Landesplanung/Academy for Territorial Development in the Leibniz Association: Hannover, Germany, 2005; pp. 336–340. [Google Scholar]
- Baier, H.; Erdmann, F.; Holz, R.; Klenke, R.; Waterstraat, A. Problemaufriss und Forschungsansatz. In Freiraum und Naturschutz. Die Wirkungen von Störungen und Zerschneidungen in der Landschaft; Baier, H., Erdmann, F., Holz, R., Klenke, R., Waterstraat, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–16. [Google Scholar]
- Maruani, T.; Amit-Cohen, I. Open space planning models: A review of approaches and methods. Landsc. Urban Plan. 2007, 81, 1–13. [Google Scholar] [CrossRef]
- Job, H.; Willi, G.; Mayer, M.; Pütz, M. Open Spaces in Alpine Countries: Analytical Concepts and Preservation Strategies in Spatial Planning. Mt. Res. Dev. 2020, 40, D1–D11. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.; Antunes, P. Green Infrastructure Planning Principles: An Integrated Literature Review. Land 2020, 9, 525. [Google Scholar] [CrossRef]
- Seiwert, A.; Rößler, S. Understanding the term green infrastructure: Origins, rationales, semantic content and purposes as well as its relevance for application in spatial planning. Land Use Policy 2020, 97, 104785. [Google Scholar] [CrossRef]
- Von Haaren, C.; Lovett, A.A.; Albert, C. Landscape Planning with Ecosystem Services. Theories and Methods for Application in Europe; Springer Nature: Dodrecht, The Netherland, 2019; Volume 24. [Google Scholar]
- Ronchi, S. Ecosystem Services for Spatial Planning. Innovative Approaches and Challenges for Practical Applications; Springer International: Cham, Switzerland, 2018. [Google Scholar]
- Bartol, B.; Červek, J.; Fanjeau, B.; Humerca Šolar, L.; Job, H.; Klee, A.; Laner, P.; Lintzmeyer, F.; Meyer, C.; Novljan, Ž.; et al. Safeguarding Open Spaces in the Alpine Region; ARL—Academy for Territorial Development in the Leibniz Association: Hannover, Germany, 2022. [Google Scholar]
- Corine Land Cover (CLC) 2018, Version 2020_20u1 (Metadata). Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata (accessed on 2 August 2022).
- High Resolution Layer: Impervious Built-Up (IBU) 2018 (Metadata). Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/impervious-built-up-2018?tab=metadata (accessed on 1 August 2022).
- Ali, M.; Barrington-Leigh, C.; Millard-Ball, A. The world’s user-generated road map is more than 80% complete. PLoS ONE 2017, 12, e0180698. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Mooney, P.; Zipf, A.; Schauss, A. Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets. In OpenStreetMap in GIScience; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2015; pp. 37–58. [Google Scholar]
- Koblar, S.; Pajk Koblar, V. Analiza prometne dostopnosti s podatki OpenStreetMapa. In GIS-i v Sloveniji—Modeliranje Pokrajine; Založba ZRC: Ljubljana, Slovenia, 2020; pp. 165–173. [Google Scholar] [CrossRef]
- Strand, G.-H. Accuracy of the Copernicus High-Resolution Layer Imperviousness Density (HRL IMD) Assessed by Point Sampling within Pixels. Remote Sens. 2022, 14, 3589. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Liu, Y. Exploring the accuracy and completeness patterns of global land-cover/land-use data in OpenStreetMap. Appl. Geogr. 2022, 145, 102742. [Google Scholar] [CrossRef]
- European Digital Elevation Model (EU-DEM), Version 1.1 (Metadata). Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata (accessed on 1 August 2022).
- Schoßleitner, R.; Vesely, P.; Job, H.; Meyer, C.; Laner, P.; Omizzolo, A.; Plassmann, G.; Coronado, O.; Praper Gulič, S.; Gulič, A.; et al. OpenSpaceAlps Strategic Recommendations. Extended Version; Salzburg/Würzburg/Bolzano/Chambéry/Ljubljana/Rome. 2022. Available online: https://www.eurac.edu/en/institutes-centers/institute-for-regional-development/projects/openspacealps (accessed on 1 September 2022).
- Runte, A. Worthless“ lands—Our national parks: The enigmatic past and uncertain future of America’s scenic wonderlands. Am. West 1973, 10, 4–11. [Google Scholar]
- ALPARC—The Alpine Network of Protected Areas. The Protected Areas. Available online: https://alparc.org/the-protected-areas (accessed on 3 August 2022).
- Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy 2018, 79, 339–349. [Google Scholar] [CrossRef]
- Arnold, S.; Smith, G.; Hazeu, G.; Kosztra, B.; Perger, C.; Banko, G.; Soukup, T.; Strand, G.-H.; Valcarcel Sanz, N.; Bock, M. The EAGLE Concept: A Paradigm Shift in Land Monitoring. In Land Use and Land Cover Semantics: Principles, Best Practices and Prospects; Ahlqvist, O., Varanka, D., Fritz, S., Janowicz, K., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 107–144. [Google Scholar]
- Bender, O.; Roth, C.E.; Job, H. Protected areas and population development in the Alps. J. Prot. Mt. Areas Res. Manag. 2017, 9, 5–16. [Google Scholar] [CrossRef]
- Threats & Pressures. Available online: https://biodiversity.europa.eu/threats (accessed on 1 August 2022).
- Egarter Vigl, L.; Marsoner, T.; Schirpke, U.; Tscholl, S.; Candiago, S.; Depellegrin, D. A multi-pressure analysis of ecosystem services for conservation planning in the Alps. Ecosyst. Serv. 2021, 47, 101230. [Google Scholar] [CrossRef]
- Data: High Nature Value (HNV) Farmland. Available online: https://www.eea.europa.eu/data-and-maps/data/high-nature-value-farmland-1 (accessed on 8 September 2022).
- Greiner, L.; Keller, A.; Grêt-Regamey, A.; Papritz, A. Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 2017, 69, 224–237. [Google Scholar] [CrossRef]
- Drobnik, T.; Greiner, L.; Keller, A.; Grêt-Regamey, A. Soil quality indicators—From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- Stöglehner, G.; Neugebauer, G.; Erker, S.; Narodoslawsky, M. Integrated Spatial and Energy Planning. Supporting Climate Protection and the Energy Turn with Means of Spatial Planning; Springer Nature: Berlin, Germany, 2016. [Google Scholar]
- Nadin, V.; Fernández Maldonado, A.M.; Zonneveld, W.; Stead, D.; Dabrowski, M.; Piskorek, K.; Sarkar, A.; Schmitt, P.; Smas, L.; Cotella, G.; et al. COMPASS—Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe. Final Report; ESPON EGTC: Luxembourg, 2018. [Google Scholar]
- Haßlacher, P.; Pütz, M.; Nischik, G.; Knauf, C.; Mayer, M.; Job, H. Alpine open spaces in spatial planning—A plea for greater cross-border cooperation. In Cross-Border Spatial Development in Bavaria—Dynamics in Cooperation—Potentials of Integration; Chilla, T., Sielker, F., Eds.; Arbeitsberichte der ARL; ARL—Academy for Territorial Development in the Leibniz Association: Hannover, Germany, 2022; pp. 23–44. [Google Scholar]
- Laner, P.; Ranzoni, M.; Omizzolo, A. Current Governance and Planning Systems for Open Spaces in Pilot Sites. WPT2—Local Governance and Implementation Level. Deliverable D.T2.1.1; Interreg Alpine Space Project OpenSpaceAlps: Bolzano, Italy, 2020. [Google Scholar]
- Job, H.; Mayer, M.; Kraus, F. Die beste Idee, die Bayern je hatte: Der Alpenplan. Raumplanung mit Weitblick. GAIA Ecol. Perspect. Sci. Soc. 2014, 23, 335–345. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Rugani, B.; Geneletti, D.; Brewer, T. Integration of ecosystem services into a conceptual spatial planning framework based on a landscape ecology perspective. Landsc. Ecol. 2018, 33, 2047–2059. [Google Scholar] [CrossRef]
- Longato, D.; Cortinovis, C.; Albert, C.; Geneletti, D. Practical applications of ecosystem services in spatial planning: Lessons learned from a systematic literature review. Environ. Sci. Policy 2021, 119, 72–84. [Google Scholar] [CrossRef]
- A New Global Framework for Managing Nature Though 2030: First Detailed Draft Agreement Debuts. Available online: https://www.cbd.int/article/draft-1-global-biodiversity-framework (accessed on 3 August 2022).
- Albert, C.; Brillinger, M.; Guerrero, P.; Gottwald, S.; Henze, J.; Schmidt, S.; Ott, E.; Schröter, B. Planning nature-based solutions: Principles, steps, and insights. Ambio 2020, 50, 1446–1461. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Nature-Based Solutions in Europe. Policy, Knowledge and Practice for Climate Change Adaptation and Disaster Risk Reduction; European Environment Agency: Copenhagen, Denmark, 2021.
“White Zones”, Vorarlberg, Austria | “Semi-Natural Open Spaces”, Switzerland | “Near-Natural Open Spaces”, EUSALP | “Near-Natural and Pure Open Spaces” in the Alpine Convention | |
---|---|---|---|---|
Editors and date | Kopf, Marlin and Obkircher 2017 [28] | Nischik and Pütz 2018 [29] | Plassmann and Coronado (ALPARC 2021) [27] | Job et al., 2022 (approach of this article) |
Institution | Vorarlberg Department of Spatial Planning and Building Law, Bregenz (AT) | Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf (CH) | ALPARC—The Alpine Network of Protected Areas, Chambery (FR) within the OpenSpaceAlps project | AlpPlan, Academy for Territorial Development (DE) and the OpenSpaceAlps project |
Research area: size and inhabitants (rounded numbers) | Federal State of Vorarlberg (AT): 2601 km2; ca. 400,000 | Switzerland: 41,290 km2; ca. 8,700,000 | Alpine macro-region (EUSALP): 442,697 km2; >80,000,000 | Alpine Convention perimeter: 191,888 km2; ca. 14,900,000 |
Spatial analysis units | 20,000 water catchments manually combined into hydrological units: 681 landscape “chambers” (mean size: 3.3 km2) | 7388 landscape perception units based on hydrological basins (larger than 2 km2) defined by the Swiss Federal Office for the Environment and aggregated in GIS | Analysis based on watershed basins defined by European Catchments and Rivers Network (ECRINS) System (EEA 2012); functional elementary catchments (mean size: 40.8 km2) | similar to ALPARC 2021, but choosing a finer resolution: EU-HYDRO hydrological basins (EEA 2020) (mean size: 22.5 km2) |
Data basis | VoGIS and aerial photographs | Infrastructure data records of the Swiss Topographic Landscape Model and Swiss ALTI3D digital elevation model | Open Street Map and Corine Land Cover 2018; High-resolution raster of Copernicus Land Monitoring Service 2020 | Open Street Map and Corine Land Cover 2018; High-resolution raster of Copernicus Land Monitoring Service 2020 (results from ALPARC 2021) |
Selection of disturbing infrastructures and buffers | 11 infrastructure categories with a general 200 m buffer for each feature | Different buffer classes from 25 to 1000 m, relate to disturbing effect of different infrastructure categories | Presence of infrastructure relating to 11 disruptive components and buffers based on Nischik and Pütz 2018 | Presence of infrastructure relating to 11 disruptive components and buffers based on Nischik and Pütz 2018 (results from ALPARC 2021) |
GIS processing | Calculation of the infrastructure buffer’s proportion for the area of each landscape “chamber” | Operationalization based on the approach of Kopf et al., 2017; population survey on landscape features and noise measurement studies of traffic infrastructure ** | Vector processing: Selection of infrastructure components and creation of buffer zones, Raster processing: Rasterization of buffer zones and merging of layers | Vector processing: Selection of infrastructure components and creation of buffer zones, Raster processing: Rasterization of buffer zones and merging of layers |
Terminology of identified open spaces | Classifying of cores of rather undeveloped landscape units with a degree of infrastructural development up to 20% *; “white zone” inventory comprising 83 individual units | Spatial development of a water catchment unit is determined by overlaying the interference effect of all infrastructure including buffers; 2394 “semi-natural open spaces” are defined as having a degree of infrastructure development of up to 20% | Polygons with an infrastructure development between 0% and 20% are extracted to identify the areas that remain with a low presence of infrastructure called ‘near-natural open spaces’ | Differentiation of “pure open spaces” (defined as 0% altered by any technical development) and “near-natural open spaces” having a degree of infrastructure development of up to 10%, up to 20%, up to 30%, 40%, 50% and so forth |
Critical remarks | Only buildings with a floor area of min. 200 m2 considered; a uniform buffer of 200 m does not differentiate the effective disturbance | Effects of infrastructures on landscape aesthetics not used as justification; data do not refer to the entire perimeter of the Alpine Convention (cf. Job et al., 2020) | Demarcation of hydrological basins (natural landscape units) is not precise enough and does not allow to make inferences for the local level | Demarcation of hydrological basins is precise from a transnational perspective but does not involve the human landscape perception adequately |
Layer (Infrastructure Component) | Sub-Categories of Datasets (If Applicable) | Buffer Size for GIS-Analysis | Data Source |
---|---|---|---|
Buildings (building footprints) | 25 m | Copernicus Land Monitoring Service: Impervious Built-up 2018 | |
Roads (except road segments in tunnels) | Motorway/Primary/Trunk | 200 m | OpenStreetMap (Roads and links) (OpenStreetMap contributors 2021) |
Secondary/Tertiary | 100 m | ||
Residential/Unclassified | 100 m | ||
Railways (except railway segments in tunnels) | 200 m | OpenStreetMap (OpenStreetMap contributors 2021) | |
Cable cars, Ropeways, Ski lifts (Linear Infrastructure Provision) | Ski lifts/facilities | 500 m | OpenStreetMap (OpenStreetMap contributors 2021) |
(Other) cable cars | 500 m | ||
Material cableway/Ropeway | 200 m | ||
Airport/Airfield | 1000 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 | |
Mine, Stone Quarry, Raw Material Extraction Site | 500 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 | |
Artificial Leisure Areas (e.g., Golf Course, Amusement Park, Campsites) | 200 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 | |
(High-voltage) Power Lines | 200 m | OpenStreetMap (OpenStreetMap contributors 2021) | |
Dams, Hydropower Facilities | 200 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 | |
Landfills/Waste Deposit Sites | 500 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 | |
Power Plants, Waste Incineration Plants, etc. (High Emission Facilities) | 1000 m | Copernicus Land Monitoring Service: Corine Land Cover 2018 |
Level of infrastructure development (%) | 0–0.1 | >0.1–10 | >10–20 | >20–30 | >30–40 | >40–50 | >50–60 | >60–70 | >70–80 | >80–90 | >90–100 |
Mean elevation (meters above sea level) | 2104 | 1731 | 1382 | 1136 | 925 | 809 | 659 | 641 | 744 | 866 | 508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Job, H.; Meyer, C.; Coronado, O.; Koblar, S.; Laner, P.; Omizzolo, A.; Plassmann, G.; Riedler, W.; Vesely, P.; Schindelegger, A. Open Spaces in the European Alps—GIS-Based Analysis and Implications for Spatial Planning from a Transnational Perspective. Land 2022, 11, 1605. https://doi.org/10.3390/land11091605
Job H, Meyer C, Coronado O, Koblar S, Laner P, Omizzolo A, Plassmann G, Riedler W, Vesely P, Schindelegger A. Open Spaces in the European Alps—GIS-Based Analysis and Implications for Spatial Planning from a Transnational Perspective. Land. 2022; 11(9):1605. https://doi.org/10.3390/land11091605
Chicago/Turabian StyleJob, Hubert, Constantin Meyer, Oriana Coronado, Simon Koblar, Peter Laner, Andrea Omizzolo, Guido Plassmann, Walter Riedler, Philipp Vesely, and Arthur Schindelegger. 2022. "Open Spaces in the European Alps—GIS-Based Analysis and Implications for Spatial Planning from a Transnational Perspective" Land 11, no. 9: 1605. https://doi.org/10.3390/land11091605
APA StyleJob, H., Meyer, C., Coronado, O., Koblar, S., Laner, P., Omizzolo, A., Plassmann, G., Riedler, W., Vesely, P., & Schindelegger, A. (2022). Open Spaces in the European Alps—GIS-Based Analysis and Implications for Spatial Planning from a Transnational Perspective. Land, 11(9), 1605. https://doi.org/10.3390/land11091605